You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/regulator/cpr4-mmss-ldo-regulator.c

769 lines
20 KiB

/*
* Copyright (c) 2016-2019, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/msm-ldo-regulator.h>
#include "cpr3-regulator.h"
#define SDM660_MMSS_FUSE_CORNERS 6
/**
* struct cpr4_sdm660_mmss_fuses - MMSS specific fuse data for SDM660
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* @offset_voltage: The closed-loop voltage margin adjustment fuse parameter
* value for each fuse corner (raw, not converted to a
* voltage)
* @cpr_fusing_rev: CPR fusing revision fuse parameter value
* @ldo_enable: The ldo enable fuse parameter for each fuse corner
* indicates that VDD_GFX can be configured to LDO mode in
* the corresponding fuse corner.
* @ldo_cpr_cl_enable: A fuse parameter indicates that GFX CPR can be
* configured to operate in closed-loop mode when VDD_GFX
* is configured for LDO sub-regulated mode.
*
* This struct holds the values for all of the fuses read from memory.
*/
struct cpr4_sdm660_mmss_fuses {
u64 init_voltage[SDM660_MMSS_FUSE_CORNERS];
u64 offset_voltage[SDM660_MMSS_FUSE_CORNERS];
u64 cpr_fusing_rev;
u64 ldo_enable[SDM660_MMSS_FUSE_CORNERS];
u64 ldo_cpr_cl_enable;
};
/* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */
#define CPR4_SDM660_MMSS_FUSE_COMBO_COUNT 8
/*
* SDM660 MMSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*/
static const struct cpr3_fuse_param
sdm660_mmss_init_voltage_param[SDM660_MMSS_FUSE_CORNERS][2] = {
{{65, 39, 43}, {} },
{{65, 39, 43}, {} },
{{65, 34, 38}, {} },
{{65, 34, 38}, {} },
{{65, 29, 33}, {} },
{{65, 24, 28}, {} },
};
static const struct cpr3_fuse_param sdm660_cpr_fusing_rev_param[] = {
{71, 34, 36},
{},
};
static const struct cpr3_fuse_param
sdm660_mmss_offset_voltage_param[SDM660_MMSS_FUSE_CORNERS][2] = {
{{} },
{{} },
{{} },
{{65, 52, 55}, {} },
{{65, 48, 51}, {} },
{{65, 44, 47}, {} },
};
static const struct cpr3_fuse_param
sdm660_mmss_ldo_enable_param[SDM660_MMSS_FUSE_CORNERS][2] = {
{{73, 62, 62}, {} },
{{73, 61, 61}, {} },
{{73, 60, 60}, {} },
{{73, 59, 59}, {} },
{{73, 58, 58}, {} },
{{73, 57, 57}, {} },
};
static const struct cpr3_fuse_param sdm660_ldo_cpr_cl_enable_param[] = {
{71, 38, 38},
{},
};
/* Additional SDM660 specific data: */
/* Open loop voltage fuse reference voltages in microvolts */
static const int sdm660_mmss_fuse_ref_volt[SDM660_MMSS_FUSE_CORNERS] = {
585000,
645000,
725000,
790000,
870000,
925000,
};
#define SDM660_MMSS_FUSE_STEP_VOLT 10000
#define SDM660_MMSS_OFFSET_FUSE_STEP_VOLT 10000
#define SDM660_MMSS_VOLTAGE_FUSE_SIZE 5
#define SDM660_MMSS_CPR_SENSOR_COUNT 11
#define SDM660_MMSS_CPR_CLOCK_RATE 19200000
/**
* cpr4_sdm660_mmss_read_fuse_data() - load MMSS specific fuse parameter
* values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cpr4_sdm660_mmss_fuses struct, fills it with
* values read out of hardware fuses, and finally copies common fuse values
* into the regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_sdm660_mmss_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cpr4_sdm660_mmss_fuses *fuse;
int i, rc;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
rc = cpr3_read_fuse_param(base, sdm660_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
rc = cpr3_read_fuse_param(base, sdm660_ldo_cpr_cl_enable_param,
&fuse->ldo_cpr_cl_enable);
if (rc) {
cpr3_err(vreg, "Unable to read ldo cpr closed-loop enable fuse, rc=%d\n",
rc);
return rc;
}
for (i = 0; i < SDM660_MMSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
sdm660_mmss_init_voltage_param[i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_mmss_offset_voltage_param[i],
&fuse->offset_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_mmss_ldo_enable_param[i],
&fuse->ldo_enable[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d ldo enable fuse, rc=%d\n",
i, rc);
return rc;
}
}
vreg->fuse_combo = fuse->cpr_fusing_rev;
if (vreg->fuse_combo >= CPR4_SDM660_MMSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found, not in range 0 - %d\n",
vreg->fuse_combo,
CPR4_SDM660_MMSS_FUSE_COMBO_COUNT - 1);
return -EINVAL;
}
vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
vreg->fuse_corner_count = SDM660_MMSS_FUSE_CORNERS;
vreg->platform_fuses = fuse;
return 0;
}
/**
* cpr3_sdm660_mmss_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_sdm660_mmss_calculate_open_loop_voltages(
struct cpr3_regulator *vreg)
{
struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
int i, rc = 0;
const int *ref_volt;
int *fuse_volt;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
if (!fuse_volt)
return -ENOMEM;
ref_volt = sdm660_mmss_fuse_ref_volt;
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
SDM660_MMSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
SDM660_MMSS_VOLTAGE_FUSE_SIZE);
cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n",
i, fuse_volt[i]);
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
= fuse_volt[vreg->corner[i].cpr_fuse_corner];
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
rc);
done:
kfree(fuse_volt);
return rc;
}
/**
* cpr4_mmss_parse_ldo_mode_data() - Parse the LDO mode enable state for each
* corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* This function considers 2 sets of data: one set from device node and other
* set from fuses and applies set intersection to decide the final LDO mode
* enable state of each corner. If the device node configuration is not
* specified, then the function applies LDO mode disable for all corners.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_mmss_parse_ldo_mode_data(struct cpr3_regulator *vreg)
{
struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
int i, rc = 0;
u32 *ldo_allowed;
char *prop_str = "qcom,cpr-corner-allow-ldo-mode";
if (!of_find_property(vreg->of_node, prop_str, NULL)) {
cpr3_debug(vreg, "%s property is missing. LDO mode is disabled for all corners\n",
prop_str);
return 0;
}
ldo_allowed = kcalloc(vreg->corner_count, sizeof(*ldo_allowed),
GFP_KERNEL);
if (!ldo_allowed)
return -ENOMEM;
rc = cpr3_parse_corner_array_property(vreg, prop_str, 1, ldo_allowed);
if (rc) {
cpr3_err(vreg, "%s read failed, rc=%d\n", prop_str, rc);
goto done;
}
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].ldo_mode_allowed
= (ldo_allowed[i] && fuse->ldo_enable[i]);
done:
kfree(ldo_allowed);
return rc;
}
/**
* cpr4_mmss_parse_corner_operating_mode() - Parse the CPR closed-loop operation
* enable state for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* This function ensures that closed-loop operation is enabled only for LDO
* mode allowed corners.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_mmss_parse_corner_operating_mode(struct cpr3_regulator *vreg)
{
struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
int i, rc = 0;
u32 *use_closed_loop;
char *prop_str = "qcom,cpr-corner-allow-closed-loop";
if (!of_find_property(vreg->of_node, prop_str, NULL)) {
cpr3_debug(vreg, "%s property is missing. Use open-loop for all corners\n",
prop_str);
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].use_open_loop = true;
return 0;
}
use_closed_loop = kcalloc(vreg->corner_count, sizeof(*use_closed_loop),
GFP_KERNEL);
if (!use_closed_loop)
return -ENOMEM;
rc = cpr3_parse_corner_array_property(vreg, prop_str, 1,
use_closed_loop);
if (rc) {
cpr3_err(vreg, "%s read failed, rc=%d\n", prop_str, rc);
goto done;
}
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].use_open_loop
= !(fuse->ldo_cpr_cl_enable && use_closed_loop[i]
&& vreg->corner[i].ldo_mode_allowed);
done:
kfree(use_closed_loop);
return rc;
}
/**
* cpr4_mmss_parse_corner_data() - parse MMSS corner data from device tree
* properties of the regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_mmss_parse_corner_data(struct cpr3_regulator *vreg)
{
int i, rc;
u32 *temp;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp),
GFP_KERNEL);
if (!temp)
return -ENOMEM;
rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients",
CPR3_RO_COUNT, temp);
if (rc) {
cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc);
goto done;
}
for (i = 0; i < vreg->corner_count; i++)
memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT],
sizeof(*temp) * CPR3_RO_COUNT);
done:
kfree(temp);
return rc;
}
/**
* cpr4_sdm660_mmss_adjust_target_quotients() - adjust the target quotients for
* each corner according to device tree values and fuse values
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_sdm660_mmss_adjust_target_quotients(struct cpr3_regulator *vreg)
{
struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
const struct cpr3_fuse_param (*offset_param)[2];
int *volt_offset;
int i, fuse_len, rc = 0;
volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset),
GFP_KERNEL);
if (!volt_offset)
return -ENOMEM;
offset_param = sdm660_mmss_offset_voltage_param;
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_len = offset_param[i][0].bit_end + 1
- offset_param[i][0].bit_start;
volt_offset[i] = cpr3_convert_open_loop_voltage_fuse(
0, SDM660_MMSS_OFFSET_FUSE_STEP_VOLT,
fuse->offset_voltage[i], fuse_len);
if (volt_offset[i])
cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n",
i, volt_offset[i]);
}
rc = cpr3_adjust_target_quotients(vreg, volt_offset);
if (rc)
cpr3_err(vreg, "adjust target quotients failed, rc=%d\n", rc);
kfree(volt_offset);
return rc;
}
/**
* cpr4_mmss_print_settings() - print out MMSS CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cpr4_mmss_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
}
/**
* cpr4_mmss_init_thread() - perform all steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cpr4_mmss_init_thread(struct cpr3_thread *thread)
{
struct cpr3_controller *ctrl = thread->ctrl;
struct cpr3_regulator *vreg = &thread->vreg[0];
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n",
rc);
return rc;
}
if (!of_find_property(ctrl->dev->of_node, "vdd-thread0-ldo-supply",
NULL)) {
cpr3_err(vreg, "ldo supply regulator is not specified\n");
return -EINVAL;
}
vreg->ldo_regulator = devm_regulator_get(ctrl->dev, "vdd-thread0-ldo");
if (IS_ERR(vreg->ldo_regulator)) {
rc = PTR_ERR(vreg->ldo_regulator);
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to request vdd-thread0-ldo regulator, rc=%d\n",
rc);
return rc;
}
vreg->ldo_mode_allowed = !of_property_read_bool(vreg->of_node,
"qcom,ldo-disable");
vreg->ldo_regulator_bypass = BHS_MODE;
vreg->ldo_type = CPR3_LDO300;
rc = cpr4_sdm660_mmss_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
rc = cpr4_mmss_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
rc);
return rc;
}
rc = cpr4_sdm660_mmss_adjust_target_quotients(vreg);
if (rc) {
cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n",
rc);
return rc;
}
rc = cpr4_sdm660_mmss_calculate_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
rc = cpr4_mmss_parse_ldo_mode_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to parse ldo mode data, rc=%d\n", rc);
return rc;
}
rc = cpr4_mmss_parse_corner_operating_mode(vreg);
if (rc) {
cpr3_err(vreg, "unable to parse closed-loop operating mode data, rc=%d\n",
rc);
return rc;
}
cpr4_mmss_print_settings(vreg);
return 0;
}
/**
* cpr4_mmss_init_controller() - perform MMSS CPR4 controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr4_mmss_init_controller(struct cpr3_controller *ctrl)
{
int rc;
rc = cpr3_parse_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
ctrl->sensor_count = SDM660_MMSS_CPR_SENSOR_COUNT;
/*
* MMSS only has one thread (0) so the zeroed array does not need
* further modification.
*/
ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
sizeof(*ctrl->sensor_owner), GFP_KERNEL);
if (!ctrl->sensor_owner)
return -ENOMEM;
ctrl->cpr_clock_rate = SDM660_MMSS_CPR_CLOCK_RATE;
ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
ctrl->support_ldo300_vreg = true;
/*
* Use fixed step quotient if specified otherwise use dynamic
* calculated per RO step quotient
*/
of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-step-quot-fixed",
&ctrl->step_quot_fixed);
ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
/* iface_clk is optional for sdm660 */
ctrl->iface_clk = NULL;
ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk");
if (IS_ERR(ctrl->bus_clk)) {
rc = PTR_ERR(ctrl->bus_clk);
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable request bus clock, rc=%d\n",
rc);
return rc;
}
return 0;
}
static int cpr4_mmss_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cpr3_controller *ctrl;
int rc;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = dev;
/* Set to false later if anything precludes CPR operation. */
ctrl->cpr_allowed_hw = true;
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
rc = cpr3_allocate_threads(ctrl, 0, 0);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
if (ctrl->thread_count != 1) {
cpr3_err(ctrl, "expected 1 thread but found %d\n",
ctrl->thread_count);
return -EINVAL;
} else if (ctrl->thread[0].vreg_count != 1) {
cpr3_err(ctrl, "expected 1 regulator but found %d\n",
ctrl->thread[0].vreg_count);
return -EINVAL;
}
rc = cpr4_mmss_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
rc = cpr4_mmss_init_thread(&ctrl->thread[0]);
if (rc) {
cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n",
rc);
return rc;
}
rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]);
if (rc) {
cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n",
rc);
return rc;
}
platform_set_drvdata(pdev, ctrl);
return cpr3_regulator_register(pdev, ctrl);
}
static int cpr4_mmss_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_unregister(ctrl);
}
static int cpr4_mmss_regulator_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_suspend(ctrl);
}
static int cpr4_mmss_regulator_resume(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_resume(ctrl);
}
/* Data corresponds to the SoC revision */
static const struct of_device_id cpr4_mmss_regulator_match_table[] = {
{
.compatible = "qcom,cpr4-sdm660-mmss-ldo-regulator",
.data = (void *)NULL,
},
{ },
};
static struct platform_driver cpr4_mmss_regulator_driver = {
.driver = {
.name = "qcom,cpr4-mmss-ldo-regulator",
.of_match_table = cpr4_mmss_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cpr4_mmss_regulator_probe,
.remove = cpr4_mmss_regulator_remove,
.suspend = cpr4_mmss_regulator_suspend,
.resume = cpr4_mmss_regulator_resume,
};
static int cpr_regulator_init(void)
{
return platform_driver_register(&cpr4_mmss_regulator_driver);
}
static void cpr_regulator_exit(void)
{
platform_driver_unregister(&cpr4_mmss_regulator_driver);
}
MODULE_DESCRIPTION("CPR4 MMSS LDO regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(cpr_regulator_init);
module_exit(cpr_regulator_exit);