/* * Copyright (c) 2016-2019, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpr3-regulator.h" #define SDM660_MMSS_FUSE_CORNERS 6 /** * struct cpr4_sdm660_mmss_fuses - MMSS specific fuse data for SDM660 * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value * for each fuse corner (raw, not converted to a voltage) * @offset_voltage: The closed-loop voltage margin adjustment fuse parameter * value for each fuse corner (raw, not converted to a * voltage) * @cpr_fusing_rev: CPR fusing revision fuse parameter value * @ldo_enable: The ldo enable fuse parameter for each fuse corner * indicates that VDD_GFX can be configured to LDO mode in * the corresponding fuse corner. * @ldo_cpr_cl_enable: A fuse parameter indicates that GFX CPR can be * configured to operate in closed-loop mode when VDD_GFX * is configured for LDO sub-regulated mode. * * This struct holds the values for all of the fuses read from memory. */ struct cpr4_sdm660_mmss_fuses { u64 init_voltage[SDM660_MMSS_FUSE_CORNERS]; u64 offset_voltage[SDM660_MMSS_FUSE_CORNERS]; u64 cpr_fusing_rev; u64 ldo_enable[SDM660_MMSS_FUSE_CORNERS]; u64 ldo_cpr_cl_enable; }; /* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */ #define CPR4_SDM660_MMSS_FUSE_COMBO_COUNT 8 /* * SDM660 MMSS fuse parameter locations: * * Structs are organized with the following dimensions: * Outer: 0 to 3 for fuse corners from lowest to highest corner * Inner: large enough to hold the longest set of parameter segments which * fully defines a fuse parameter, +1 (for NULL termination). * Each segment corresponds to a contiguous group of bits from a * single fuse row. These segments are concatentated together in * order to form the full fuse parameter value. The segments for * a given parameter may correspond to different fuse rows. */ static const struct cpr3_fuse_param sdm660_mmss_init_voltage_param[SDM660_MMSS_FUSE_CORNERS][2] = { {{65, 39, 43}, {} }, {{65, 39, 43}, {} }, {{65, 34, 38}, {} }, {{65, 34, 38}, {} }, {{65, 29, 33}, {} }, {{65, 24, 28}, {} }, }; static const struct cpr3_fuse_param sdm660_cpr_fusing_rev_param[] = { {71, 34, 36}, {}, }; static const struct cpr3_fuse_param sdm660_mmss_offset_voltage_param[SDM660_MMSS_FUSE_CORNERS][2] = { {{} }, {{} }, {{} }, {{65, 52, 55}, {} }, {{65, 48, 51}, {} }, {{65, 44, 47}, {} }, }; static const struct cpr3_fuse_param sdm660_mmss_ldo_enable_param[SDM660_MMSS_FUSE_CORNERS][2] = { {{73, 62, 62}, {} }, {{73, 61, 61}, {} }, {{73, 60, 60}, {} }, {{73, 59, 59}, {} }, {{73, 58, 58}, {} }, {{73, 57, 57}, {} }, }; static const struct cpr3_fuse_param sdm660_ldo_cpr_cl_enable_param[] = { {71, 38, 38}, {}, }; /* Additional SDM660 specific data: */ /* Open loop voltage fuse reference voltages in microvolts */ static const int sdm660_mmss_fuse_ref_volt[SDM660_MMSS_FUSE_CORNERS] = { 585000, 645000, 725000, 790000, 870000, 925000, }; #define SDM660_MMSS_FUSE_STEP_VOLT 10000 #define SDM660_MMSS_OFFSET_FUSE_STEP_VOLT 10000 #define SDM660_MMSS_VOLTAGE_FUSE_SIZE 5 #define SDM660_MMSS_CPR_SENSOR_COUNT 11 #define SDM660_MMSS_CPR_CLOCK_RATE 19200000 /** * cpr4_sdm660_mmss_read_fuse_data() - load MMSS specific fuse parameter * values * @vreg: Pointer to the CPR3 regulator * * This function allocates a cpr4_sdm660_mmss_fuses struct, fills it with * values read out of hardware fuses, and finally copies common fuse values * into the regulator struct. * * Return: 0 on success, errno on failure */ static int cpr4_sdm660_mmss_read_fuse_data(struct cpr3_regulator *vreg) { void __iomem *base = vreg->thread->ctrl->fuse_base; struct cpr4_sdm660_mmss_fuses *fuse; int i, rc; fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL); if (!fuse) return -ENOMEM; rc = cpr3_read_fuse_param(base, sdm660_cpr_fusing_rev_param, &fuse->cpr_fusing_rev); if (rc) { cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); rc = cpr3_read_fuse_param(base, sdm660_ldo_cpr_cl_enable_param, &fuse->ldo_cpr_cl_enable); if (rc) { cpr3_err(vreg, "Unable to read ldo cpr closed-loop enable fuse, rc=%d\n", rc); return rc; } for (i = 0; i < SDM660_MMSS_FUSE_CORNERS; i++) { rc = cpr3_read_fuse_param(base, sdm660_mmss_init_voltage_param[i], &fuse->init_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm660_mmss_offset_voltage_param[i], &fuse->offset_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm660_mmss_ldo_enable_param[i], &fuse->ldo_enable[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d ldo enable fuse, rc=%d\n", i, rc); return rc; } } vreg->fuse_combo = fuse->cpr_fusing_rev; if (vreg->fuse_combo >= CPR4_SDM660_MMSS_FUSE_COMBO_COUNT) { cpr3_err(vreg, "invalid CPR fuse combo = %d found, not in range 0 - %d\n", vreg->fuse_combo, CPR4_SDM660_MMSS_FUSE_COMBO_COUNT - 1); return -EINVAL; } vreg->cpr_rev_fuse = fuse->cpr_fusing_rev; vreg->fuse_corner_count = SDM660_MMSS_FUSE_CORNERS; vreg->platform_fuses = fuse; return 0; } /** * cpr3_sdm660_mmss_calculate_open_loop_voltages() - calculate the open-loop * voltage for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr4_sdm660_mmss_calculate_open_loop_voltages( struct cpr3_regulator *vreg) { struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses; int i, rc = 0; const int *ref_volt; int *fuse_volt; fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt), GFP_KERNEL); if (!fuse_volt) return -ENOMEM; ref_volt = sdm660_mmss_fuse_ref_volt; for (i = 0; i < vreg->fuse_corner_count; i++) { fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i], SDM660_MMSS_FUSE_STEP_VOLT, fuse->init_voltage[i], SDM660_MMSS_VOLTAGE_FUSE_SIZE); cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n", i, fuse_volt[i]); } rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt); if (rc) { cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n", rc); goto done; } for (i = 1; i < vreg->fuse_corner_count; i++) { if (fuse_volt[i] < fuse_volt[i - 1]) { cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n", i, fuse_volt[i], i - 1, fuse_volt[i - 1], i, fuse_volt[i - 1]); fuse_volt[i] = fuse_volt[i - 1]; } } for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].open_loop_volt = fuse_volt[vreg->corner[i].cpr_fuse_corner]; cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n"); for (i = 0; i < vreg->corner_count; i++) cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i, vreg->corner[i].open_loop_volt); rc = cpr3_adjust_open_loop_voltages(vreg); if (rc) cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n", rc); done: kfree(fuse_volt); return rc; } /** * cpr4_mmss_parse_ldo_mode_data() - Parse the LDO mode enable state for each * corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * This function considers 2 sets of data: one set from device node and other * set from fuses and applies set intersection to decide the final LDO mode * enable state of each corner. If the device node configuration is not * specified, then the function applies LDO mode disable for all corners. * * Return: 0 on success, errno on failure */ static int cpr4_mmss_parse_ldo_mode_data(struct cpr3_regulator *vreg) { struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses; int i, rc = 0; u32 *ldo_allowed; char *prop_str = "qcom,cpr-corner-allow-ldo-mode"; if (!of_find_property(vreg->of_node, prop_str, NULL)) { cpr3_debug(vreg, "%s property is missing. LDO mode is disabled for all corners\n", prop_str); return 0; } ldo_allowed = kcalloc(vreg->corner_count, sizeof(*ldo_allowed), GFP_KERNEL); if (!ldo_allowed) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, prop_str, 1, ldo_allowed); if (rc) { cpr3_err(vreg, "%s read failed, rc=%d\n", prop_str, rc); goto done; } for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].ldo_mode_allowed = (ldo_allowed[i] && fuse->ldo_enable[i]); done: kfree(ldo_allowed); return rc; } /** * cpr4_mmss_parse_corner_operating_mode() - Parse the CPR closed-loop operation * enable state for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * This function ensures that closed-loop operation is enabled only for LDO * mode allowed corners. * * Return: 0 on success, errno on failure */ static int cpr4_mmss_parse_corner_operating_mode(struct cpr3_regulator *vreg) { struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses; int i, rc = 0; u32 *use_closed_loop; char *prop_str = "qcom,cpr-corner-allow-closed-loop"; if (!of_find_property(vreg->of_node, prop_str, NULL)) { cpr3_debug(vreg, "%s property is missing. Use open-loop for all corners\n", prop_str); for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].use_open_loop = true; return 0; } use_closed_loop = kcalloc(vreg->corner_count, sizeof(*use_closed_loop), GFP_KERNEL); if (!use_closed_loop) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, prop_str, 1, use_closed_loop); if (rc) { cpr3_err(vreg, "%s read failed, rc=%d\n", prop_str, rc); goto done; } for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].use_open_loop = !(fuse->ldo_cpr_cl_enable && use_closed_loop[i] && vreg->corner[i].ldo_mode_allowed); done: kfree(use_closed_loop); return rc; } /** * cpr4_mmss_parse_corner_data() - parse MMSS corner data from device tree * properties of the regulator's device node * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr4_mmss_parse_corner_data(struct cpr3_regulator *vreg) { int i, rc; u32 *temp; rc = cpr3_parse_common_corner_data(vreg); if (rc) { cpr3_err(vreg, "error reading corner data, rc=%d\n", rc); return rc; } temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp), GFP_KERNEL); if (!temp) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients", CPR3_RO_COUNT, temp); if (rc) { cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->corner_count; i++) memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT], sizeof(*temp) * CPR3_RO_COUNT); done: kfree(temp); return rc; } /** * cpr4_sdm660_mmss_adjust_target_quotients() - adjust the target quotients for * each corner according to device tree values and fuse values * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr4_sdm660_mmss_adjust_target_quotients(struct cpr3_regulator *vreg) { struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses; const struct cpr3_fuse_param (*offset_param)[2]; int *volt_offset; int i, fuse_len, rc = 0; volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset), GFP_KERNEL); if (!volt_offset) return -ENOMEM; offset_param = sdm660_mmss_offset_voltage_param; for (i = 0; i < vreg->fuse_corner_count; i++) { fuse_len = offset_param[i][0].bit_end + 1 - offset_param[i][0].bit_start; volt_offset[i] = cpr3_convert_open_loop_voltage_fuse( 0, SDM660_MMSS_OFFSET_FUSE_STEP_VOLT, fuse->offset_voltage[i], fuse_len); if (volt_offset[i]) cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n", i, volt_offset[i]); } rc = cpr3_adjust_target_quotients(vreg, volt_offset); if (rc) cpr3_err(vreg, "adjust target quotients failed, rc=%d\n", rc); kfree(volt_offset); return rc; } /** * cpr4_mmss_print_settings() - print out MMSS CPR configuration settings into * the kernel log for debugging purposes * @vreg: Pointer to the CPR3 regulator */ static void cpr4_mmss_print_settings(struct cpr3_regulator *vreg) { struct cpr3_corner *corner; int i; cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n"); for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n", i, corner->proc_freq, corner->cpr_fuse_corner, corner->floor_volt, corner->open_loop_volt, corner->ceiling_volt); } } /** * cpr4_mmss_init_thread() - perform all steps necessary to initialize the * configuration data for a CPR3 thread * @thread: Pointer to the CPR3 thread * * Return: 0 on success, errno on failure */ static int cpr4_mmss_init_thread(struct cpr3_thread *thread) { struct cpr3_controller *ctrl = thread->ctrl; struct cpr3_regulator *vreg = &thread->vreg[0]; int rc; rc = cpr3_parse_common_thread_data(thread); if (rc) { cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n", rc); return rc; } if (!of_find_property(ctrl->dev->of_node, "vdd-thread0-ldo-supply", NULL)) { cpr3_err(vreg, "ldo supply regulator is not specified\n"); return -EINVAL; } vreg->ldo_regulator = devm_regulator_get(ctrl->dev, "vdd-thread0-ldo"); if (IS_ERR(vreg->ldo_regulator)) { rc = PTR_ERR(vreg->ldo_regulator); if (rc != -EPROBE_DEFER) cpr3_err(vreg, "unable to request vdd-thread0-ldo regulator, rc=%d\n", rc); return rc; } vreg->ldo_mode_allowed = !of_property_read_bool(vreg->of_node, "qcom,ldo-disable"); vreg->ldo_regulator_bypass = BHS_MODE; vreg->ldo_type = CPR3_LDO300; rc = cpr4_sdm660_mmss_read_fuse_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc); return rc; } rc = cpr4_mmss_parse_corner_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n", rc); return rc; } rc = cpr4_sdm660_mmss_adjust_target_quotients(vreg); if (rc) { cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n", rc); return rc; } rc = cpr4_sdm660_mmss_calculate_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n", rc); return rc; } rc = cpr3_limit_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n", rc); return rc; } cpr3_open_loop_voltage_as_ceiling(vreg); rc = cpr3_limit_floor_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc); return rc; } rc = cpr4_mmss_parse_ldo_mode_data(vreg); if (rc) { cpr3_err(vreg, "unable to parse ldo mode data, rc=%d\n", rc); return rc; } rc = cpr4_mmss_parse_corner_operating_mode(vreg); if (rc) { cpr3_err(vreg, "unable to parse closed-loop operating mode data, rc=%d\n", rc); return rc; } cpr4_mmss_print_settings(vreg); return 0; } /** * cpr4_mmss_init_controller() - perform MMSS CPR4 controller specific * initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr4_mmss_init_controller(struct cpr3_controller *ctrl) { int rc; rc = cpr3_parse_common_ctrl_data(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n", rc); return rc; } ctrl->sensor_count = SDM660_MMSS_CPR_SENSOR_COUNT; /* * MMSS only has one thread (0) so the zeroed array does not need * further modification. */ ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count, sizeof(*ctrl->sensor_owner), GFP_KERNEL); if (!ctrl->sensor_owner) return -ENOMEM; ctrl->cpr_clock_rate = SDM660_MMSS_CPR_CLOCK_RATE; ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4; ctrl->support_ldo300_vreg = true; /* * Use fixed step quotient if specified otherwise use dynamic * calculated per RO step quotient */ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed", &ctrl->step_quot_fixed); ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed; /* iface_clk is optional for sdm660 */ ctrl->iface_clk = NULL; ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk"); if (IS_ERR(ctrl->bus_clk)) { rc = PTR_ERR(ctrl->bus_clk); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable request bus clock, rc=%d\n", rc); return rc; } return 0; } static int cpr4_mmss_regulator_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct cpr3_controller *ctrl; int rc; if (!dev->of_node) { dev_err(dev, "Device tree node is missing\n"); return -EINVAL; } ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = dev; /* Set to false later if anything precludes CPR operation. */ ctrl->cpr_allowed_hw = true; rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name", &ctrl->name); if (rc) { cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n", rc); return rc; } rc = cpr3_map_fuse_base(ctrl, pdev); if (rc) { cpr3_err(ctrl, "could not map fuse base address\n"); return rc; } rc = cpr3_allocate_threads(ctrl, 0, 0); if (rc) { cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n", rc); return rc; } if (ctrl->thread_count != 1) { cpr3_err(ctrl, "expected 1 thread but found %d\n", ctrl->thread_count); return -EINVAL; } else if (ctrl->thread[0].vreg_count != 1) { cpr3_err(ctrl, "expected 1 regulator but found %d\n", ctrl->thread[0].vreg_count); return -EINVAL; } rc = cpr4_mmss_init_controller(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n", rc); return rc; } rc = cpr4_mmss_init_thread(&ctrl->thread[0]); if (rc) { cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n", rc); return rc; } rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]); if (rc) { cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n", rc); return rc; } platform_set_drvdata(pdev, ctrl); return cpr3_regulator_register(pdev, ctrl); } static int cpr4_mmss_regulator_remove(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_unregister(ctrl); } static int cpr4_mmss_regulator_suspend(struct platform_device *pdev, pm_message_t state) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_suspend(ctrl); } static int cpr4_mmss_regulator_resume(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_resume(ctrl); } /* Data corresponds to the SoC revision */ static const struct of_device_id cpr4_mmss_regulator_match_table[] = { { .compatible = "qcom,cpr4-sdm660-mmss-ldo-regulator", .data = (void *)NULL, }, { }, }; static struct platform_driver cpr4_mmss_regulator_driver = { .driver = { .name = "qcom,cpr4-mmss-ldo-regulator", .of_match_table = cpr4_mmss_regulator_match_table, .owner = THIS_MODULE, }, .probe = cpr4_mmss_regulator_probe, .remove = cpr4_mmss_regulator_remove, .suspend = cpr4_mmss_regulator_suspend, .resume = cpr4_mmss_regulator_resume, }; static int cpr_regulator_init(void) { return platform_driver_register(&cpr4_mmss_regulator_driver); } static void cpr_regulator_exit(void) { platform_driver_unregister(&cpr4_mmss_regulator_driver); } MODULE_DESCRIPTION("CPR4 MMSS LDO regulator driver"); MODULE_LICENSE("GPL v2"); arch_initcall(cpr_regulator_init); module_exit(cpr_regulator_exit);