You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/mmc/host/cmdq_hci-crypto-qti.c

467 lines
12 KiB

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <crypto/algapi.h>
#include "sdhci.h"
#include "sdhci-pltfm.h"
#include "sdhci-msm.h"
#include "cmdq_hci-crypto-qti.h"
#include <linux/crypto-qti-common.h>
#include <linux/atomic.h>
#if IS_ENABLED(CONFIG_CRYPTO_DEV_QCOM_ICE)
#include <crypto/ice.h>
#include <linux/blkdev.h>
#endif
#define RAW_SECRET_SIZE 32
#define MINIMUM_DUN_SIZE 512
#define MAXIMUM_DUN_SIZE 65536
static struct cmdq_host_crypto_variant_ops cmdq_crypto_qti_variant_ops = {
.host_init_crypto = cmdq_crypto_qti_init_crypto,
.enable = cmdq_crypto_qti_enable,
.disable = cmdq_crypto_qti_disable,
.resume = cmdq_crypto_qti_resume,
.debug = cmdq_crypto_qti_debug,
.reset = cmdq_crypto_qti_reset,
.prepare_crypto_desc = cmdq_crypto_qti_prep_desc,
};
static atomic_t keycache;
static bool cmdq_use_default_du_size;
static bool ice_cap_idx_valid(struct cmdq_host *host,
unsigned int cap_idx)
{
return cap_idx < host->crypto_capabilities.num_crypto_cap;
}
static uint8_t get_data_unit_size_mask(unsigned int data_unit_size)
{
unsigned int du_size;
if (data_unit_size < MINIMUM_DUN_SIZE ||
data_unit_size > MAXIMUM_DUN_SIZE ||
!is_power_of_2(data_unit_size))
return 0;
if (cmdq_use_default_du_size)
du_size = MINIMUM_DUN_SIZE;
else
du_size = data_unit_size;
return du_size / MINIMUM_DUN_SIZE;
}
void cmdq_crypto_qti_enable(struct cmdq_host *host)
{
int err = 0;
if (!cmdq_host_is_crypto_supported(host))
return;
host->caps |= CMDQ_CAP_CRYPTO_SUPPORT;
err = crypto_qti_enable(host->crypto_vops->priv);
if (err) {
pr_err("%s: Error enabling crypto, err %d\n",
__func__, err);
cmdq_crypto_qti_disable(host);
}
}
void cmdq_crypto_qti_disable(struct cmdq_host *host)
{
cmdq_crypto_disable_spec(host);
crypto_qti_disable(host->crypto_vops->priv);
}
int cmdq_crypto_qti_reset(struct cmdq_host *host)
{
atomic_set(&keycache, 0);
return 0;
}
static int cmdq_crypto_qti_keyslot_program(struct keyslot_manager *ksm,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct cmdq_host *host = keyslot_manager_private(ksm);
int err = 0;
u8 data_unit_mask;
int crypto_alg_id;
crypto_alg_id = cmdq_crypto_cap_find(host, key->crypto_mode,
key->data_unit_size);
if (!cmdq_is_crypto_enabled(host) ||
!cmdq_keyslot_valid(host, slot) ||
!ice_cap_idx_valid(host, crypto_alg_id)) {
return -EINVAL;
}
data_unit_mask = get_data_unit_size_mask(key->data_unit_size);
if (!(data_unit_mask &
host->crypto_cap_array[crypto_alg_id].sdus_mask)) {
return -EINVAL;
}
mmc_host_clk_hold(host->mmc);
err = crypto_qti_keyslot_program(host->crypto_vops->priv, key,
slot, data_unit_mask, crypto_alg_id);
if (err)
pr_err("%s: failed with error %d\n", __func__, err);
mmc_host_clk_release(host->mmc);
return err;
}
static int cmdq_crypto_qti_keyslot_evict(struct keyslot_manager *ksm,
const struct blk_crypto_key *key,
unsigned int slot)
{
int err = 0;
int val = 0;
struct cmdq_host *host = keyslot_manager_private(ksm);
if (!cmdq_is_crypto_enabled(host) ||
!cmdq_keyslot_valid(host, slot)) {
return -EINVAL;
}
mmc_host_clk_hold(host->mmc);
err = crypto_qti_keyslot_evict(host->crypto_vops->priv, slot);
if (err) {
pr_err("%s: failed with error %d\n", __func__, err);
mmc_host_clk_release(host->mmc);
return err;
}
mmc_host_clk_release(host->mmc);
val = atomic_read(&keycache) & ~(1 << slot);
atomic_set(&keycache, val);
return err;
}
static int cmdq_crypto_qti_derive_raw_secret(struct keyslot_manager *ksm,
const u8 *wrapped_key, unsigned int wrapped_key_size,
u8 *secret, unsigned int secret_size)
{
int err = 0;
err = crypto_qti_derive_raw_secret(wrapped_key, wrapped_key_size,
secret, secret_size);
return err;
}
static const struct keyslot_mgmt_ll_ops cmdq_crypto_qti_ksm_ops = {
.keyslot_program = cmdq_crypto_qti_keyslot_program,
.keyslot_evict = cmdq_crypto_qti_keyslot_evict,
.derive_raw_secret = cmdq_crypto_qti_derive_raw_secret
};
enum blk_crypto_mode_num cmdq_blk_crypto_qti_mode_num_for_alg_dusize(
enum cmdq_crypto_alg cmdq_crypto_alg,
enum cmdq_crypto_key_size key_size)
{
/*
* Currently the only mode that eMMC and blk-crypto both support.
*/
if (cmdq_crypto_alg == CMDQ_CRYPTO_ALG_AES_XTS &&
key_size == CMDQ_CRYPTO_KEY_SIZE_256)
return BLK_ENCRYPTION_MODE_AES_256_XTS;
return BLK_ENCRYPTION_MODE_INVALID;
}
#if IS_ENABLED(CONFIG_MMC_QTI_NONCMDQ_ICE)
int cmdq_host_init_crypto_qti_spec(struct cmdq_host *host,
const struct keyslot_mgmt_ll_ops *ksm_ops)
{
int err = 0;
unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX];
enum blk_crypto_mode_num blk_mode_num;
host->crypto_capabilities.reg_val = LEGACY_ICE_CAP_VAL;
host->crypto_cfg_register = (u32)host->icemmio;
host->crypto_cap_array =
devm_kcalloc(mmc_dev(host->mmc),
host->crypto_capabilities.num_crypto_cap,
sizeof(host->crypto_cap_array[0]), GFP_KERNEL);
if (!host->crypto_cap_array) {
err = -ENOMEM;
pr_err("%s failed to allocate memory\n", __func__);
goto out;
}
memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported));
host->crypto_cap_array[CRYPTO_ICE_INDEX].algorithm_id =
CMDQ_CRYPTO_ALG_AES_XTS;
host->crypto_cap_array[CRYPTO_ICE_INDEX].key_size =
CMDQ_CRYPTO_KEY_SIZE_256;
blk_mode_num = cmdq_blk_crypto_qti_mode_num_for_alg_dusize(
host->crypto_cap_array[CRYPTO_ICE_INDEX].algorithm_id,
host->crypto_cap_array[CRYPTO_ICE_INDEX].key_size);
crypto_modes_supported[blk_mode_num] |= CRYPTO_CDU_SIZE * 512;
host->ksm = keyslot_manager_create(host->mmc->parent,
cmdq_num_keyslots(host), ksm_ops,
BLK_CRYPTO_FEATURE_STANDARD_KEYS |
BLK_CRYPTO_FEATURE_WRAPPED_KEYS,
crypto_modes_supported, host);
if (!host->ksm) {
err = -ENOMEM;
goto out;
}
keyslot_manager_set_max_dun_bytes(host->ksm, sizeof(u32));
/*
* In case host controller supports cryptographic operations
* then, it uses 128bit task descriptor. Upper 64 bits of task
* descriptor would be used to pass crypto specific informaton.
*/
host->caps |= CMDQ_TASK_DESC_SZ_128;
return 0;
out:
/* Indicate that init failed by setting crypto_capabilities to 0 */
host->crypto_capabilities.reg_val = 0;
return err;
}
#else
int cmdq_host_init_crypto_qti_spec(struct cmdq_host *host,
const struct keyslot_mgmt_ll_ops *ksm_ops)
{
int cap_idx = 0;
int err = 0;
unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX];
enum blk_crypto_mode_num blk_mode_num;
/* Default to disabling crypto */
host->caps &= ~CMDQ_CAP_CRYPTO_SUPPORT;
if (!(cmdq_readl(host, CQCAP) & CQ_CAP_CS)) {
pr_debug("%s no crypto capability\n", __func__);
err = -ENODEV;
goto out;
}
/*
* Crypto Capabilities should never be 0, because the
* config_array_ptr > 04h. So we use a 0 value to indicate that
* crypto init failed, and can't be enabled.
*/
host->crypto_capabilities.reg_val = cmdq_readl(host, CQ_CCAP);
host->crypto_cfg_register =
(u32)host->crypto_capabilities.config_array_ptr * 0x100;
host->crypto_cap_array =
devm_kcalloc(mmc_dev(host->mmc),
host->crypto_capabilities.num_crypto_cap,
sizeof(host->crypto_cap_array[0]), GFP_KERNEL);
if (!host->crypto_cap_array) {
err = -ENOMEM;
pr_err("%s failed to allocate memory\n", __func__);
goto out;
}
memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported));
/*
* Store all the capabilities now so that we don't need to repeatedly
* access the device each time we want to know its capabilities
*/
for (cap_idx = 0; cap_idx < host->crypto_capabilities.num_crypto_cap;
cap_idx++) {
host->crypto_cap_array[cap_idx].reg_val =
cpu_to_le32(cmdq_readl(host,
CQ_CRYPTOCAP +
cap_idx * sizeof(__le32)));
blk_mode_num = cmdq_blk_crypto_qti_mode_num_for_alg_dusize(
host->crypto_cap_array[cap_idx].algorithm_id,
host->crypto_cap_array[cap_idx].key_size);
if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
continue;
crypto_modes_supported[blk_mode_num] |=
host->crypto_cap_array[cap_idx].sdus_mask * 512;
}
host->ksm = keyslot_manager_create(host->mmc->parent,
cmdq_num_keyslots(host), ksm_ops,
BLK_CRYPTO_FEATURE_STANDARD_KEYS |
BLK_CRYPTO_FEATURE_WRAPPED_KEYS,
crypto_modes_supported, host);
if (!host->ksm) {
err = -ENOMEM;
goto out;
}
keyslot_manager_set_max_dun_bytes(host->ksm, sizeof(u32));
/*
* In case host controller supports cryptographic operations
* then, it uses 128bit task descriptor. Upper 64 bits of task
* descriptor would be used to pass crypto specific informaton.
*/
host->caps |= CMDQ_TASK_DESC_SZ_128;
return 0;
out:
/* Indicate that init failed by setting crypto_capabilities to 0 */
host->crypto_capabilities.reg_val = 0;
return err;
}
#endif
int cmdq_crypto_qti_init_crypto(struct cmdq_host *host,
const struct keyslot_mgmt_ll_ops *ksm_ops)
{
int err = 0;
struct sdhci_host *sdhci = mmc_priv(host->mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_msm_host *msm_host = pltfm_host->priv;
struct resource *cmdq_ice_memres = NULL;
cmdq_ice_memres = platform_get_resource_byname(msm_host->pdev,
IORESOURCE_MEM,
"cmdq_ice");
if (!cmdq_ice_memres) {
pr_debug("%s ICE not supported\n", __func__);
host->icemmio = NULL;
return PTR_ERR(cmdq_ice_memres);
}
host->icemmio = devm_ioremap(&msm_host->pdev->dev,
cmdq_ice_memres->start,
resource_size(cmdq_ice_memres));
if (!host->icemmio) {
pr_err("%s failed to remap ice regs\n", __func__);
return PTR_ERR(host->icemmio);
}
err = cmdq_host_init_crypto_qti_spec(host, &cmdq_crypto_qti_ksm_ops);
if (err) {
pr_err("%s: Error initiating crypto capabilities, err %d\n",
__func__, err);
return err;
}
err = crypto_qti_init_crypto(&msm_host->pdev->dev,
host->icemmio, (void **)&host->crypto_vops->priv);
if (err) {
pr_err("%s: Error initiating crypto, err %d\n",
__func__, err);
}
return err;
}
int cmdq_crypto_qti_prep_desc(struct cmdq_host *host, struct mmc_request *mrq,
u64 *ice_ctx)
{
struct bio_crypt_ctx *bc;
struct request *req = mrq->req;
int ret = 0;
int val = 0;
#if IS_ENABLED(CONFIG_CRYPTO_DEV_QCOM_ICE)
struct ice_data_setting setting;
bool bypass = true;
short key_index = 0;
#endif
*ice_ctx = 0;
if (!req || !req->bio)
return ret;
if (!bio_crypt_should_process(req)) {
#if IS_ENABLED(CONFIG_CRYPTO_DEV_QCOM_ICE)
ret = qcom_ice_config_start(req, &setting);
if (!ret) {
key_index = setting.crypto_data.key_index;
bypass = (rq_data_dir(req) == WRITE) ?
setting.encr_bypass : setting.decr_bypass;
*ice_ctx = DATA_UNIT_NUM(req->__sector) |
CRYPTO_CONFIG_INDEX(key_index) |
CRYPTO_ENABLE(!bypass);
} else {
pr_err("%s crypto config failed err = %d\n", __func__,
ret);
}
#endif
return ret;
}
if (WARN_ON(!cmdq_is_crypto_enabled(host))) {
/*
* Upper layer asked us to do inline encryption
* but that isn't enabled, so we fail this request.
*/
return -EINVAL;
}
bc = req->bio->bi_crypt_context;
if (!cmdq_keyslot_valid(host, bc->bc_keyslot))
return -EINVAL;
if (!(atomic_read(&keycache) & (1 << bc->bc_keyslot))) {
if (bc->is_ext4)
cmdq_use_default_du_size = true;
else
cmdq_use_default_du_size = false;
ret = cmdq_crypto_qti_keyslot_program(host->ksm, bc->bc_key,
bc->bc_keyslot);
if (ret) {
pr_err("%s keyslot program failed %d\n", __func__, ret);
return ret;
}
val = atomic_read(&keycache) | (1 << bc->bc_keyslot);
atomic_set(&keycache, val);
}
if (ice_ctx) {
if (bc->is_ext4)
*ice_ctx = DATA_UNIT_NUM(req->__sector);
else
*ice_ctx = DATA_UNIT_NUM(bc->bc_dun[0]);
*ice_ctx = *ice_ctx | CRYPTO_CONFIG_INDEX(bc->bc_keyslot) |
CRYPTO_ENABLE(true);
}
return 0;
}
int cmdq_crypto_qti_debug(struct cmdq_host *host)
{
return crypto_qti_debug(host->crypto_vops->priv);
}
void cmdq_crypto_qti_set_vops(struct cmdq_host *host)
{
return cmdq_crypto_set_vops(host, &cmdq_crypto_qti_variant_ops);
}
int cmdq_crypto_qti_resume(struct cmdq_host *host)
{
return crypto_qti_resume(host->crypto_vops->priv);
}