// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020, Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include "sdhci.h" #include "sdhci-pltfm.h" #include "sdhci-msm.h" #include "cmdq_hci-crypto-qti.h" #include #include #if IS_ENABLED(CONFIG_CRYPTO_DEV_QCOM_ICE) #include #include #endif #define RAW_SECRET_SIZE 32 #define MINIMUM_DUN_SIZE 512 #define MAXIMUM_DUN_SIZE 65536 static struct cmdq_host_crypto_variant_ops cmdq_crypto_qti_variant_ops = { .host_init_crypto = cmdq_crypto_qti_init_crypto, .enable = cmdq_crypto_qti_enable, .disable = cmdq_crypto_qti_disable, .resume = cmdq_crypto_qti_resume, .debug = cmdq_crypto_qti_debug, .reset = cmdq_crypto_qti_reset, .prepare_crypto_desc = cmdq_crypto_qti_prep_desc, }; static atomic_t keycache; static bool cmdq_use_default_du_size; static bool ice_cap_idx_valid(struct cmdq_host *host, unsigned int cap_idx) { return cap_idx < host->crypto_capabilities.num_crypto_cap; } static uint8_t get_data_unit_size_mask(unsigned int data_unit_size) { unsigned int du_size; if (data_unit_size < MINIMUM_DUN_SIZE || data_unit_size > MAXIMUM_DUN_SIZE || !is_power_of_2(data_unit_size)) return 0; if (cmdq_use_default_du_size) du_size = MINIMUM_DUN_SIZE; else du_size = data_unit_size; return du_size / MINIMUM_DUN_SIZE; } void cmdq_crypto_qti_enable(struct cmdq_host *host) { int err = 0; if (!cmdq_host_is_crypto_supported(host)) return; host->caps |= CMDQ_CAP_CRYPTO_SUPPORT; err = crypto_qti_enable(host->crypto_vops->priv); if (err) { pr_err("%s: Error enabling crypto, err %d\n", __func__, err); cmdq_crypto_qti_disable(host); } } void cmdq_crypto_qti_disable(struct cmdq_host *host) { cmdq_crypto_disable_spec(host); crypto_qti_disable(host->crypto_vops->priv); } int cmdq_crypto_qti_reset(struct cmdq_host *host) { atomic_set(&keycache, 0); return 0; } static int cmdq_crypto_qti_keyslot_program(struct keyslot_manager *ksm, const struct blk_crypto_key *key, unsigned int slot) { struct cmdq_host *host = keyslot_manager_private(ksm); int err = 0; u8 data_unit_mask; int crypto_alg_id; crypto_alg_id = cmdq_crypto_cap_find(host, key->crypto_mode, key->data_unit_size); if (!cmdq_is_crypto_enabled(host) || !cmdq_keyslot_valid(host, slot) || !ice_cap_idx_valid(host, crypto_alg_id)) { return -EINVAL; } data_unit_mask = get_data_unit_size_mask(key->data_unit_size); if (!(data_unit_mask & host->crypto_cap_array[crypto_alg_id].sdus_mask)) { return -EINVAL; } mmc_host_clk_hold(host->mmc); err = crypto_qti_keyslot_program(host->crypto_vops->priv, key, slot, data_unit_mask, crypto_alg_id); if (err) pr_err("%s: failed with error %d\n", __func__, err); mmc_host_clk_release(host->mmc); return err; } static int cmdq_crypto_qti_keyslot_evict(struct keyslot_manager *ksm, const struct blk_crypto_key *key, unsigned int slot) { int err = 0; int val = 0; struct cmdq_host *host = keyslot_manager_private(ksm); if (!cmdq_is_crypto_enabled(host) || !cmdq_keyslot_valid(host, slot)) { return -EINVAL; } mmc_host_clk_hold(host->mmc); err = crypto_qti_keyslot_evict(host->crypto_vops->priv, slot); if (err) { pr_err("%s: failed with error %d\n", __func__, err); mmc_host_clk_release(host->mmc); return err; } mmc_host_clk_release(host->mmc); val = atomic_read(&keycache) & ~(1 << slot); atomic_set(&keycache, val); return err; } static int cmdq_crypto_qti_derive_raw_secret(struct keyslot_manager *ksm, const u8 *wrapped_key, unsigned int wrapped_key_size, u8 *secret, unsigned int secret_size) { int err = 0; err = crypto_qti_derive_raw_secret(wrapped_key, wrapped_key_size, secret, secret_size); return err; } static const struct keyslot_mgmt_ll_ops cmdq_crypto_qti_ksm_ops = { .keyslot_program = cmdq_crypto_qti_keyslot_program, .keyslot_evict = cmdq_crypto_qti_keyslot_evict, .derive_raw_secret = cmdq_crypto_qti_derive_raw_secret }; enum blk_crypto_mode_num cmdq_blk_crypto_qti_mode_num_for_alg_dusize( enum cmdq_crypto_alg cmdq_crypto_alg, enum cmdq_crypto_key_size key_size) { /* * Currently the only mode that eMMC and blk-crypto both support. */ if (cmdq_crypto_alg == CMDQ_CRYPTO_ALG_AES_XTS && key_size == CMDQ_CRYPTO_KEY_SIZE_256) return BLK_ENCRYPTION_MODE_AES_256_XTS; return BLK_ENCRYPTION_MODE_INVALID; } #if IS_ENABLED(CONFIG_MMC_QTI_NONCMDQ_ICE) int cmdq_host_init_crypto_qti_spec(struct cmdq_host *host, const struct keyslot_mgmt_ll_ops *ksm_ops) { int err = 0; unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX]; enum blk_crypto_mode_num blk_mode_num; host->crypto_capabilities.reg_val = LEGACY_ICE_CAP_VAL; host->crypto_cfg_register = (u32)host->icemmio; host->crypto_cap_array = devm_kcalloc(mmc_dev(host->mmc), host->crypto_capabilities.num_crypto_cap, sizeof(host->crypto_cap_array[0]), GFP_KERNEL); if (!host->crypto_cap_array) { err = -ENOMEM; pr_err("%s failed to allocate memory\n", __func__); goto out; } memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported)); host->crypto_cap_array[CRYPTO_ICE_INDEX].algorithm_id = CMDQ_CRYPTO_ALG_AES_XTS; host->crypto_cap_array[CRYPTO_ICE_INDEX].key_size = CMDQ_CRYPTO_KEY_SIZE_256; blk_mode_num = cmdq_blk_crypto_qti_mode_num_for_alg_dusize( host->crypto_cap_array[CRYPTO_ICE_INDEX].algorithm_id, host->crypto_cap_array[CRYPTO_ICE_INDEX].key_size); crypto_modes_supported[blk_mode_num] |= CRYPTO_CDU_SIZE * 512; host->ksm = keyslot_manager_create(host->mmc->parent, cmdq_num_keyslots(host), ksm_ops, BLK_CRYPTO_FEATURE_STANDARD_KEYS | BLK_CRYPTO_FEATURE_WRAPPED_KEYS, crypto_modes_supported, host); if (!host->ksm) { err = -ENOMEM; goto out; } keyslot_manager_set_max_dun_bytes(host->ksm, sizeof(u32)); /* * In case host controller supports cryptographic operations * then, it uses 128bit task descriptor. Upper 64 bits of task * descriptor would be used to pass crypto specific informaton. */ host->caps |= CMDQ_TASK_DESC_SZ_128; return 0; out: /* Indicate that init failed by setting crypto_capabilities to 0 */ host->crypto_capabilities.reg_val = 0; return err; } #else int cmdq_host_init_crypto_qti_spec(struct cmdq_host *host, const struct keyslot_mgmt_ll_ops *ksm_ops) { int cap_idx = 0; int err = 0; unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX]; enum blk_crypto_mode_num blk_mode_num; /* Default to disabling crypto */ host->caps &= ~CMDQ_CAP_CRYPTO_SUPPORT; if (!(cmdq_readl(host, CQCAP) & CQ_CAP_CS)) { pr_debug("%s no crypto capability\n", __func__); err = -ENODEV; goto out; } /* * Crypto Capabilities should never be 0, because the * config_array_ptr > 04h. So we use a 0 value to indicate that * crypto init failed, and can't be enabled. */ host->crypto_capabilities.reg_val = cmdq_readl(host, CQ_CCAP); host->crypto_cfg_register = (u32)host->crypto_capabilities.config_array_ptr * 0x100; host->crypto_cap_array = devm_kcalloc(mmc_dev(host->mmc), host->crypto_capabilities.num_crypto_cap, sizeof(host->crypto_cap_array[0]), GFP_KERNEL); if (!host->crypto_cap_array) { err = -ENOMEM; pr_err("%s failed to allocate memory\n", __func__); goto out; } memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported)); /* * Store all the capabilities now so that we don't need to repeatedly * access the device each time we want to know its capabilities */ for (cap_idx = 0; cap_idx < host->crypto_capabilities.num_crypto_cap; cap_idx++) { host->crypto_cap_array[cap_idx].reg_val = cpu_to_le32(cmdq_readl(host, CQ_CRYPTOCAP + cap_idx * sizeof(__le32))); blk_mode_num = cmdq_blk_crypto_qti_mode_num_for_alg_dusize( host->crypto_cap_array[cap_idx].algorithm_id, host->crypto_cap_array[cap_idx].key_size); if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) continue; crypto_modes_supported[blk_mode_num] |= host->crypto_cap_array[cap_idx].sdus_mask * 512; } host->ksm = keyslot_manager_create(host->mmc->parent, cmdq_num_keyslots(host), ksm_ops, BLK_CRYPTO_FEATURE_STANDARD_KEYS | BLK_CRYPTO_FEATURE_WRAPPED_KEYS, crypto_modes_supported, host); if (!host->ksm) { err = -ENOMEM; goto out; } keyslot_manager_set_max_dun_bytes(host->ksm, sizeof(u32)); /* * In case host controller supports cryptographic operations * then, it uses 128bit task descriptor. Upper 64 bits of task * descriptor would be used to pass crypto specific informaton. */ host->caps |= CMDQ_TASK_DESC_SZ_128; return 0; out: /* Indicate that init failed by setting crypto_capabilities to 0 */ host->crypto_capabilities.reg_val = 0; return err; } #endif int cmdq_crypto_qti_init_crypto(struct cmdq_host *host, const struct keyslot_mgmt_ll_ops *ksm_ops) { int err = 0; struct sdhci_host *sdhci = mmc_priv(host->mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci); struct sdhci_msm_host *msm_host = pltfm_host->priv; struct resource *cmdq_ice_memres = NULL; cmdq_ice_memres = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM, "cmdq_ice"); if (!cmdq_ice_memres) { pr_debug("%s ICE not supported\n", __func__); host->icemmio = NULL; return PTR_ERR(cmdq_ice_memres); } host->icemmio = devm_ioremap(&msm_host->pdev->dev, cmdq_ice_memres->start, resource_size(cmdq_ice_memres)); if (!host->icemmio) { pr_err("%s failed to remap ice regs\n", __func__); return PTR_ERR(host->icemmio); } err = cmdq_host_init_crypto_qti_spec(host, &cmdq_crypto_qti_ksm_ops); if (err) { pr_err("%s: Error initiating crypto capabilities, err %d\n", __func__, err); return err; } err = crypto_qti_init_crypto(&msm_host->pdev->dev, host->icemmio, (void **)&host->crypto_vops->priv); if (err) { pr_err("%s: Error initiating crypto, err %d\n", __func__, err); } return err; } int cmdq_crypto_qti_prep_desc(struct cmdq_host *host, struct mmc_request *mrq, u64 *ice_ctx) { struct bio_crypt_ctx *bc; struct request *req = mrq->req; int ret = 0; int val = 0; #if IS_ENABLED(CONFIG_CRYPTO_DEV_QCOM_ICE) struct ice_data_setting setting; bool bypass = true; short key_index = 0; #endif *ice_ctx = 0; if (!req || !req->bio) return ret; if (!bio_crypt_should_process(req)) { #if IS_ENABLED(CONFIG_CRYPTO_DEV_QCOM_ICE) ret = qcom_ice_config_start(req, &setting); if (!ret) { key_index = setting.crypto_data.key_index; bypass = (rq_data_dir(req) == WRITE) ? setting.encr_bypass : setting.decr_bypass; *ice_ctx = DATA_UNIT_NUM(req->__sector) | CRYPTO_CONFIG_INDEX(key_index) | CRYPTO_ENABLE(!bypass); } else { pr_err("%s crypto config failed err = %d\n", __func__, ret); } #endif return ret; } if (WARN_ON(!cmdq_is_crypto_enabled(host))) { /* * Upper layer asked us to do inline encryption * but that isn't enabled, so we fail this request. */ return -EINVAL; } bc = req->bio->bi_crypt_context; if (!cmdq_keyslot_valid(host, bc->bc_keyslot)) return -EINVAL; if (!(atomic_read(&keycache) & (1 << bc->bc_keyslot))) { if (bc->is_ext4) cmdq_use_default_du_size = true; else cmdq_use_default_du_size = false; ret = cmdq_crypto_qti_keyslot_program(host->ksm, bc->bc_key, bc->bc_keyslot); if (ret) { pr_err("%s keyslot program failed %d\n", __func__, ret); return ret; } val = atomic_read(&keycache) | (1 << bc->bc_keyslot); atomic_set(&keycache, val); } if (ice_ctx) { if (bc->is_ext4) *ice_ctx = DATA_UNIT_NUM(req->__sector); else *ice_ctx = DATA_UNIT_NUM(bc->bc_dun[0]); *ice_ctx = *ice_ctx | CRYPTO_CONFIG_INDEX(bc->bc_keyslot) | CRYPTO_ENABLE(true); } return 0; } int cmdq_crypto_qti_debug(struct cmdq_host *host) { return crypto_qti_debug(host->crypto_vops->priv); } void cmdq_crypto_qti_set_vops(struct cmdq_host *host) { return cmdq_crypto_set_vops(host, &cmdq_crypto_qti_variant_ops); } int cmdq_crypto_qti_resume(struct cmdq_host *host) { return crypto_qti_resume(host->crypto_vops->priv); }