You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/firmware/qcom/tz_log.c

1243 lines
30 KiB

/* Copyright (c) 2011-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/debugfs.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/msm_ion.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/of.h>
#include <linux/dma-buf.h>
#include <linux/ion_kernel.h>
#include <linux/pm.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/qseecomi.h>
/* QSEE_LOG_BUF_SIZE = 32K */
#define QSEE_LOG_BUF_SIZE 0x8000
/* TZ Diagnostic Area legacy version number */
#define TZBSP_DIAG_MAJOR_VERSION_LEGACY 2
/*
* Preprocessor Definitions and Constants
*/
#define TZBSP_MAX_CPU_COUNT 0x08
/*
* Number of VMID Tables
*/
#define TZBSP_DIAG_NUM_OF_VMID 16
/*
* VMID Description length
*/
#define TZBSP_DIAG_VMID_DESC_LEN 7
/*
* Number of Interrupts
*/
#define TZBSP_DIAG_INT_NUM 32
/*
* Length of descriptive name associated with Interrupt
*/
#define TZBSP_MAX_INT_DESC 16
/*
* TZ 3.X version info
*/
#define QSEE_VERSION_TZ_3_X 0x800000
/*
* TZ 4.X version info
*/
#define QSEE_VERSION_TZ_4_X 0x1000000
#define TZBSP_AES_256_ENCRYPTED_KEY_SIZE 256
#define TZBSP_NONCE_LEN 12
#define TZBSP_TAG_LEN 16
/*
* VMID Table
*/
struct tzdbg_vmid_t {
uint8_t vmid; /* Virtual Machine Identifier */
uint8_t desc[TZBSP_DIAG_VMID_DESC_LEN]; /* ASCII Text */
};
/*
* Boot Info Table
*/
struct tzdbg_boot_info_t {
uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */
uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */
uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */
uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */
uint32_t warm_jmp_addr; /* Last Warmboot Jump Address */
uint32_t spare; /* Reserved for future use. */
};
/*
* Boot Info Table for 64-bit
*/
struct tzdbg_boot_info64_t {
uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */
uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */
uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */
uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */
uint32_t psci_entry_cnt;/* PSCI syscall entry CPU Counter */
uint32_t psci_exit_cnt; /* PSCI syscall exit CPU Counter */
uint64_t warm_jmp_addr; /* Last Warmboot Jump Address */
uint32_t warm_jmp_instr; /* Last Warmboot Jump Address Instruction */
};
/*
* Reset Info Table
*/
struct tzdbg_reset_info_t {
uint32_t reset_type; /* Reset Reason */
uint32_t reset_cnt; /* Number of resets occurred/CPU */
};
/*
* Interrupt Info Table
*/
struct tzdbg_int_t {
/*
* Type of Interrupt/exception
*/
uint16_t int_info;
/*
* Availability of the slot
*/
uint8_t avail;
/*
* Reserved for future use
*/
uint8_t spare;
/*
* Interrupt # for IRQ and FIQ
*/
uint32_t int_num;
/*
* ASCII text describing type of interrupt e.g:
* Secure Timer, EBI XPU. This string is always null terminated,
* supporting at most TZBSP_MAX_INT_DESC characters.
* Any additional characters are truncated.
*/
uint8_t int_desc[TZBSP_MAX_INT_DESC];
uint64_t int_count[TZBSP_MAX_CPU_COUNT]; /* # of times seen per CPU */
};
/*
* Interrupt Info Table used in tz version >=4.X
*/
struct tzdbg_int_t_tz40 {
uint16_t int_info;
uint8_t avail;
uint8_t spare;
uint32_t int_num;
uint8_t int_desc[TZBSP_MAX_INT_DESC];
uint32_t int_count[TZBSP_MAX_CPU_COUNT]; /* uint32_t in TZ ver >= 4.x*/
};
/* warm boot reason for cores */
struct tzbsp_diag_wakeup_info_t {
/* Wake source info : APCS_GICC_HPPIR */
uint32_t HPPIR;
/* Wake source info : APCS_GICC_AHPPIR */
uint32_t AHPPIR;
};
/*
* Log ring buffer position
*/
struct tzdbg_log_pos_t {
uint16_t wrap;
uint16_t offset;
};
/*
* Log ring buffer
*/
struct tzdbg_log_t {
struct tzdbg_log_pos_t log_pos;
/* open ended array to the end of the 4K IMEM buffer */
uint8_t log_buf[];
};
/*
* Diagnostic Table
* Note: This is the reference data structure for tz diagnostic table
* supporting TZBSP_MAX_CPU_COUNT, the real diagnostic data is directly
* copied into buffer from i/o memory.
*/
struct tzdbg_t {
uint32_t magic_num;
uint32_t version;
/*
* Number of CPU's
*/
uint32_t cpu_count;
/*
* Offset of VMID Table
*/
uint32_t vmid_info_off;
/*
* Offset of Boot Table
*/
uint32_t boot_info_off;
/*
* Offset of Reset info Table
*/
uint32_t reset_info_off;
/*
* Offset of Interrupt info Table
*/
uint32_t int_info_off;
/*
* Ring Buffer Offset
*/
uint32_t ring_off;
/*
* Ring Buffer Length
*/
uint32_t ring_len;
/* Offset for Wakeup info */
uint32_t wakeup_info_off;
/*
* VMID to EE Mapping
*/
struct tzdbg_vmid_t vmid_info[TZBSP_DIAG_NUM_OF_VMID];
/*
* Boot Info
*/
struct tzdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT];
/*
* Reset Info
*/
struct tzdbg_reset_info_t reset_info[TZBSP_MAX_CPU_COUNT];
uint32_t num_interrupts;
struct tzdbg_int_t int_info[TZBSP_DIAG_INT_NUM];
/* Wake up info */
struct tzbsp_diag_wakeup_info_t wakeup_info[TZBSP_MAX_CPU_COUNT];
uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE];
uint8_t nonce[TZBSP_NONCE_LEN];
uint8_t tag[TZBSP_TAG_LEN];
/*
* We need at least 2K for the ring buffer
*/
struct tzdbg_log_t ring_buffer; /* TZ Ring Buffer */
};
struct hypdbg_log_pos_t {
uint16_t wrap;
uint16_t offset;
};
struct hypdbg_boot_info_t {
uint32_t warm_entry_cnt;
uint32_t warm_exit_cnt;
};
struct hypdbg_t {
/* Magic Number */
uint32_t magic_num;
/* Number of CPU's */
uint32_t cpu_count;
/* Ring Buffer Offset */
uint32_t ring_off;
/* Ring buffer position mgmt */
struct hypdbg_log_pos_t log_pos;
uint32_t log_len;
/* S2 fault numbers */
uint32_t s2_fault_counter;
/* Boot Info */
struct hypdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT];
/* Ring buffer pointer */
uint8_t log_buf_p[];
};
/*
* Enumeration order for VMID's
*/
enum tzdbg_stats_type {
TZDBG_BOOT = 0,
TZDBG_RESET,
TZDBG_INTERRUPT,
TZDBG_VMID,
TZDBG_GENERAL,
TZDBG_LOG,
TZDBG_QSEE_LOG,
TZDBG_HYP_GENERAL,
TZDBG_HYP_LOG,
TZDBG_STATS_MAX
};
struct tzdbg_stat {
char *name;
char *data;
};
struct tzdbg {
void __iomem *virt_iobase;
void __iomem *hyp_virt_iobase;
struct tzdbg_t *diag_buf;
struct hypdbg_t *hyp_diag_buf;
char *disp_buf;
int debug_tz[TZDBG_STATS_MAX];
struct tzdbg_stat stat[TZDBG_STATS_MAX];
uint32_t hyp_debug_rw_buf_size;
bool is_hyplog_enabled;
uint32_t tz_version;
};
static struct tzdbg tzdbg = {
.stat[TZDBG_BOOT].name = "boot",
.stat[TZDBG_RESET].name = "reset",
.stat[TZDBG_INTERRUPT].name = "interrupt",
.stat[TZDBG_VMID].name = "vmid",
.stat[TZDBG_GENERAL].name = "general",
.stat[TZDBG_LOG].name = "log",
.stat[TZDBG_QSEE_LOG].name = "qsee_log",
.stat[TZDBG_HYP_GENERAL].name = "hyp_general",
.stat[TZDBG_HYP_LOG].name = "hyp_log",
};
static struct tzdbg_log_t *g_qsee_log;
static dma_addr_t coh_pmem;
static uint32_t debug_rw_buf_size;
static bool restore_from_hibernation;
/*
* Debugfs data structure and functions
*/
static int _disp_tz_general_stats(void)
{
int len = 0;
len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1,
" Version : 0x%x\n"
" Magic Number : 0x%x\n"
" Number of CPU : %d\n",
tzdbg.diag_buf->version,
tzdbg.diag_buf->magic_num,
tzdbg.diag_buf->cpu_count);
tzdbg.stat[TZDBG_GENERAL].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_vmid_stats(void)
{
int i, num_vmid;
int len = 0;
struct tzdbg_vmid_t *ptr;
ptr = (struct tzdbg_vmid_t *)((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->vmid_info_off);
num_vmid = ((tzdbg.diag_buf->boot_info_off -
tzdbg.diag_buf->vmid_info_off)/
(sizeof(struct tzdbg_vmid_t)));
for (i = 0; i < num_vmid; i++) {
if (ptr->vmid < 0xFF) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" 0x%x %s\n",
(uint32_t)ptr->vmid, (uint8_t *)ptr->desc);
}
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
tzdbg.stat[TZDBG_VMID].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_boot_stats(void)
{
int i;
int len = 0;
struct tzdbg_boot_info_t *ptr = NULL;
struct tzdbg_boot_info64_t *ptr_64 = NULL;
pr_info("qsee_version = 0x%x\n", tzdbg.tz_version);
if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) {
ptr_64 = (struct tzdbg_boot_info64_t *)((unsigned char *)
tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off);
} else {
ptr = (struct tzdbg_boot_info_t *)((unsigned char *)
tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off);
}
for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) {
if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Warmboot jump address : 0x%llx\n"
" Warmboot entry CPU counter : 0x%x\n"
" Warmboot exit CPU counter : 0x%x\n"
" Power Collapse entry CPU counter : 0x%x\n"
" Power Collapse exit CPU counter : 0x%x\n"
" Psci entry CPU counter : 0x%x\n"
" Psci exit CPU counter : 0x%x\n"
" Warmboot Jump Address Instruction : 0x%x\n",
i, (uint64_t)ptr_64->warm_jmp_addr,
ptr_64->wb_entry_cnt,
ptr_64->wb_exit_cnt,
ptr_64->pc_entry_cnt,
ptr_64->pc_exit_cnt,
ptr_64->psci_entry_cnt,
ptr_64->psci_exit_cnt,
ptr_64->warm_jmp_instr);
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr_64++;
} else {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Warmboot jump address : 0x%x\n"
" Warmboot entry CPU counter: 0x%x\n"
" Warmboot exit CPU counter : 0x%x\n"
" Power Collapse entry CPU counter: 0x%x\n"
" Power Collapse exit CPU counter : 0x%x\n",
i, ptr->warm_jmp_addr,
ptr->wb_entry_cnt,
ptr->wb_exit_cnt,
ptr->pc_entry_cnt,
ptr->pc_exit_cnt);
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
}
tzdbg.stat[TZDBG_BOOT].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_reset_stats(void)
{
int i;
int len = 0;
struct tzdbg_reset_info_t *ptr;
ptr = (struct tzdbg_reset_info_t *)((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->reset_info_off);
for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Reset Type (reason) : 0x%x\n"
" Reset counter : 0x%x\n",
i, ptr->reset_type, ptr->reset_cnt);
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
tzdbg.stat[TZDBG_RESET].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_interrupt_stats(void)
{
int i, j;
int len = 0;
int *num_int;
void *ptr;
struct tzdbg_int_t *tzdbg_ptr;
struct tzdbg_int_t_tz40 *tzdbg_ptr_tz40;
num_int = (uint32_t *)((unsigned char *)tzdbg.diag_buf +
(tzdbg.diag_buf->int_info_off - sizeof(uint32_t)));
ptr = ((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->int_info_off);
pr_info("qsee_version = 0x%x\n", tzdbg.tz_version);
if (tzdbg.tz_version < QSEE_VERSION_TZ_4_X) {
tzdbg_ptr = ptr;
for (i = 0; i < (*num_int); i++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" Interrupt Number : 0x%x\n"
" Type of Interrupt : 0x%x\n"
" Description of interrupt : %s\n",
tzdbg_ptr->int_num,
(uint32_t)tzdbg_ptr->int_info,
(uint8_t *)tzdbg_ptr->int_desc);
for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" int_count on CPU # %d : %u\n",
(uint32_t)j,
(uint32_t)tzdbg_ptr->int_count[j]);
}
len += scnprintf(tzdbg.disp_buf + len,
debug_rw_buf_size - 1, "\n");
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into buf\n",
__func__);
break;
}
tzdbg_ptr++;
}
} else {
tzdbg_ptr_tz40 = ptr;
for (i = 0; i < (*num_int); i++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" Interrupt Number : 0x%x\n"
" Type of Interrupt : 0x%x\n"
" Description of interrupt : %s\n",
tzdbg_ptr_tz40->int_num,
(uint32_t)tzdbg_ptr_tz40->int_info,
(uint8_t *)tzdbg_ptr_tz40->int_desc);
for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" int_count on CPU # %d : %u\n",
(uint32_t)j,
(uint32_t)tzdbg_ptr_tz40->int_count[j]);
}
len += scnprintf(tzdbg.disp_buf + len,
debug_rw_buf_size - 1, "\n");
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into buf\n",
__func__);
break;
}
tzdbg_ptr_tz40++;
}
}
tzdbg.stat[TZDBG_INTERRUPT].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_log_stats_legacy(void)
{
int len = 0;
unsigned char *ptr;
ptr = (unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->ring_off;
len += scnprintf(tzdbg.disp_buf, (debug_rw_buf_size - 1) - len,
"%s\n", ptr);
tzdbg.stat[TZDBG_LOG].data = tzdbg.disp_buf;
return len;
}
static int _disp_log_stats(struct tzdbg_log_t *log,
struct tzdbg_log_pos_t *log_start, uint32_t log_len,
size_t count, uint32_t buf_idx)
{
uint32_t wrap_start;
uint32_t wrap_end;
uint32_t wrap_cnt;
int max_len;
int len = 0;
int i = 0;
wrap_start = log_start->wrap;
wrap_end = log->log_pos.wrap;
/* Calculate difference in # of buffer wrap-arounds */
if (wrap_end >= wrap_start) {
wrap_cnt = wrap_end - wrap_start;
} else {
/* wrap counter has wrapped around, invalidate start position */
wrap_cnt = 2;
}
if (wrap_cnt > 1) {
/* end position has wrapped around more than once, */
/* current start no longer valid */
log_start->wrap = log->log_pos.wrap - 1;
log_start->offset = (log->log_pos.offset + 1) % log_len;
} else if ((wrap_cnt == 1) &&
(log->log_pos.offset > log_start->offset)) {
/* end position has overwritten start */
log_start->offset = (log->log_pos.offset + 1) % log_len;
}
while (log_start->offset == log->log_pos.offset) {
/*
* No data in ring buffer,
* so we'll hang around until something happens
*/
unsigned long t = msleep_interruptible(50);
if (t != 0) {
/* Some event woke us up, so let's quit */
return 0;
}
if (buf_idx == TZDBG_LOG)
memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase,
debug_rw_buf_size);
}
max_len = (count > debug_rw_buf_size) ? debug_rw_buf_size : count;
/*
* Read from ring buff while there is data and space in return buff
*/
while ((log_start->offset != log->log_pos.offset) && (len < max_len)) {
tzdbg.disp_buf[i++] = log->log_buf[log_start->offset];
log_start->offset = (log_start->offset + 1) % log_len;
if (log_start->offset == 0)
++log_start->wrap;
++len;
}
/*
* return buffer to caller
*/
tzdbg.stat[buf_idx].data = tzdbg.disp_buf;
return len;
}
static int __disp_hyp_log_stats(uint8_t *log,
struct hypdbg_log_pos_t *log_start, uint32_t log_len,
size_t count, uint32_t buf_idx)
{
struct hypdbg_t *hyp = tzdbg.hyp_diag_buf;
unsigned long t = 0;
uint32_t wrap_start;
uint32_t wrap_end;
uint32_t wrap_cnt;
int max_len;
int len = 0;
int i = 0;
wrap_start = log_start->wrap;
wrap_end = hyp->log_pos.wrap;
/* Calculate difference in # of buffer wrap-arounds */
if (wrap_end >= wrap_start) {
wrap_cnt = wrap_end - wrap_start;
} else {
/* wrap counter has wrapped around, invalidate start position */
wrap_cnt = 2;
}
if (wrap_cnt > 1) {
/* end position has wrapped around more than once, */
/* current start no longer valid */
log_start->wrap = hyp->log_pos.wrap - 1;
log_start->offset = (hyp->log_pos.offset + 1) % log_len;
} else if ((wrap_cnt == 1) &&
(hyp->log_pos.offset > log_start->offset)) {
/* end position has overwritten start */
log_start->offset = (hyp->log_pos.offset + 1) % log_len;
}
while (log_start->offset == hyp->log_pos.offset) {
/*
* No data in ring buffer,
* so we'll hang around until something happens
*/
t = msleep_interruptible(50);
if (t != 0) {
/* Some event woke us up, so let's quit */
return 0;
}
/* TZDBG_HYP_LOG */
memcpy_fromio((void *)tzdbg.hyp_diag_buf, tzdbg.hyp_virt_iobase,
tzdbg.hyp_debug_rw_buf_size);
}
max_len = (count > tzdbg.hyp_debug_rw_buf_size) ?
tzdbg.hyp_debug_rw_buf_size : count;
/*
* Read from ring buff while there is data and space in return buff
*/
while ((log_start->offset != hyp->log_pos.offset) && (len < max_len)) {
tzdbg.disp_buf[i++] = log[log_start->offset];
log_start->offset = (log_start->offset + 1) % log_len;
if (log_start->offset == 0)
++log_start->wrap;
++len;
}
/*
* return buffer to caller
*/
tzdbg.stat[buf_idx].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_log_stats(size_t count)
{
static struct tzdbg_log_pos_t log_start = {0};
struct tzdbg_log_t *log_ptr;
/* wrap and offset are initialized to zero since tz is coldboot
* during restoration from hibernation.the reason to initialise
* the wrap and offset to zero since it contains previous boot
* values and which are invalid now.
*/
if (restore_from_hibernation) {
log_start.wrap = log_start.offset = 0;
return 0;
}
log_ptr = (struct tzdbg_log_t *)((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->ring_off -
offsetof(struct tzdbg_log_t, log_buf));
return _disp_log_stats(log_ptr, &log_start,
tzdbg.diag_buf->ring_len, count, TZDBG_LOG);
}
static int _disp_hyp_log_stats(size_t count)
{
static struct hypdbg_log_pos_t log_start = {0};
uint8_t *log_ptr;
log_ptr = (uint8_t *)((unsigned char *)tzdbg.hyp_diag_buf +
tzdbg.hyp_diag_buf->ring_off);
return __disp_hyp_log_stats(log_ptr, &log_start,
tzdbg.hyp_debug_rw_buf_size, count, TZDBG_HYP_LOG);
}
static int _disp_qsee_log_stats(size_t count)
{
static struct tzdbg_log_pos_t log_start = {0};
/* wrap and offset are initialized to zero since tz is coldboot
* during restoration from hibernation. The reason to initialise
* the wrap and offset to zero since it contains previous values
* and which are invalid now.
*/
if (restore_from_hibernation) {
log_start.wrap = log_start.offset = 0;
return 0;
}
return _disp_log_stats(g_qsee_log, &log_start,
QSEE_LOG_BUF_SIZE - sizeof(struct tzdbg_log_pos_t),
count, TZDBG_QSEE_LOG);
}
static int _disp_hyp_general_stats(size_t count)
{
int len = 0;
int i;
struct hypdbg_boot_info_t *ptr = NULL;
len += scnprintf((unsigned char *)tzdbg.disp_buf + len,
tzdbg.hyp_debug_rw_buf_size - 1,
" Magic Number : 0x%x\n"
" CPU Count : 0x%x\n"
" S2 Fault Counter: 0x%x\n",
tzdbg.hyp_diag_buf->magic_num,
tzdbg.hyp_diag_buf->cpu_count,
tzdbg.hyp_diag_buf->s2_fault_counter);
ptr = tzdbg.hyp_diag_buf->boot_info;
for (i = 0; i < tzdbg.hyp_diag_buf->cpu_count; i++) {
len += scnprintf((unsigned char *)tzdbg.disp_buf + len,
(tzdbg.hyp_debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Warmboot entry CPU counter: 0x%x\n"
" Warmboot exit CPU counter : 0x%x\n",
i, ptr->warm_entry_cnt, ptr->warm_exit_cnt);
if (len > (tzdbg.hyp_debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
tzdbg.stat[TZDBG_HYP_GENERAL].data = (char *)tzdbg.disp_buf;
return len;
}
static ssize_t tzdbgfs_read(struct file *file, char __user *buf,
size_t count, loff_t *offp)
{
int len = 0;
int *tz_id = file->private_data;
if (*tz_id == TZDBG_BOOT || *tz_id == TZDBG_RESET ||
*tz_id == TZDBG_INTERRUPT || *tz_id == TZDBG_GENERAL ||
*tz_id == TZDBG_VMID || *tz_id == TZDBG_LOG)
memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase,
debug_rw_buf_size);
if (*tz_id == TZDBG_HYP_GENERAL || *tz_id == TZDBG_HYP_LOG)
memcpy_fromio((void *)tzdbg.hyp_diag_buf, tzdbg.hyp_virt_iobase,
tzdbg.hyp_debug_rw_buf_size);
switch (*tz_id) {
case TZDBG_BOOT:
len = _disp_tz_boot_stats();
break;
case TZDBG_RESET:
len = _disp_tz_reset_stats();
break;
case TZDBG_INTERRUPT:
len = _disp_tz_interrupt_stats();
break;
case TZDBG_GENERAL:
len = _disp_tz_general_stats();
break;
case TZDBG_VMID:
len = _disp_tz_vmid_stats();
break;
case TZDBG_LOG:
if (TZBSP_DIAG_MAJOR_VERSION_LEGACY <
(tzdbg.diag_buf->version >> 16)) {
len = _disp_tz_log_stats(count);
*offp = 0;
} else {
len = _disp_tz_log_stats_legacy();
}
break;
case TZDBG_QSEE_LOG:
len = _disp_qsee_log_stats(count);
*offp = 0;
break;
case TZDBG_HYP_GENERAL:
len = _disp_hyp_general_stats(count);
break;
case TZDBG_HYP_LOG:
len = _disp_hyp_log_stats(count);
*offp = 0;
break;
default:
break;
}
if (len > count)
len = count;
return simple_read_from_buffer(buf, len, offp,
tzdbg.stat[(*tz_id)].data, len);
}
static int tzdbgfs_open(struct inode *inode, struct file *pfile)
{
pfile->private_data = inode->i_private;
return 0;
}
const struct file_operations tzdbg_fops = {
.owner = THIS_MODULE,
.read = tzdbgfs_read,
.open = tzdbgfs_open,
};
/*
* Allocates log buffer from ION, registers the buffer at TZ
*/
static void tzdbg_register_qsee_log_buf(struct platform_device *pdev)
{
/* register log buffer scm request */
struct qseecom_reg_log_buf_ireq req = {};
/* scm response */
struct qseecom_command_scm_resp resp = {};
size_t len;
int ret = 0;
struct scm_desc desc = {0};
void *buf = NULL;
len = QSEE_LOG_BUF_SIZE;
buf = dma_alloc_coherent(&pdev->dev, len, &coh_pmem, GFP_KERNEL);
if (buf == NULL) {
pr_err("Failed to alloc memory for size %zu\n", len);
return;
}
g_qsee_log = (struct tzdbg_log_t *)buf;
if (!is_scm_armv8()) {
req.qsee_cmd_id = QSEOS_REGISTER_LOG_BUF_COMMAND;
req.phy_addr = (uint32_t)coh_pmem;
req.len = len;
/* SCM_CALL to register the log buffer */
ret = scm_call(SCM_SVC_TZSCHEDULER, 1, &req, sizeof(req),
&resp, sizeof(resp));
} else {
desc.args[0] = coh_pmem;
desc.args[1] = len;
desc.arginfo = 0x22;
ret = scm_call2(SCM_QSEEOS_FNID(1, 6), &desc);
resp.result = desc.ret[0];
}
if (ret) {
pr_err("%s: scm_call to register log buffer failed\n",
__func__);
goto err;
}
if (resp.result != QSEOS_RESULT_SUCCESS) {
pr_err(
"%s: scm_call to register log buf failed, resp result =%llu\n",
__func__, resp.result);
goto err;
}
g_qsee_log->log_pos.wrap = g_qsee_log->log_pos.offset = 0;
return;
err:
dma_free_coherent(&pdev->dev, len, (void *)g_qsee_log, coh_pmem);
return;
}
static int tzdbgfs_init(struct platform_device *pdev)
{
int rc = 0;
int i;
struct dentry *dent_dir;
struct dentry *dent;
dent_dir = debugfs_create_dir("tzdbg", NULL);
if (dent_dir == NULL) {
dev_err(&pdev->dev, "tzdbg debugfs_create_dir failed\n");
return -ENOMEM;
}
for (i = 0; i < TZDBG_STATS_MAX; i++) {
tzdbg.debug_tz[i] = i;
dent = debugfs_create_file_unsafe(tzdbg.stat[i].name,
0444, dent_dir,
&tzdbg.debug_tz[i], &tzdbg_fops);
if (dent == NULL) {
dev_err(&pdev->dev, "TZ debugfs_create_file failed\n");
rc = -ENOMEM;
goto err;
}
}
tzdbg.disp_buf = kzalloc(max(debug_rw_buf_size,
tzdbg.hyp_debug_rw_buf_size), GFP_KERNEL);
if (tzdbg.disp_buf == NULL)
goto err;
platform_set_drvdata(pdev, dent_dir);
return 0;
err:
debugfs_remove_recursive(dent_dir);
return rc;
}
static void tzdbgfs_exit(struct platform_device *pdev)
{
struct dentry *dent_dir;
kzfree(tzdbg.disp_buf);
dent_dir = platform_get_drvdata(pdev);
debugfs_remove_recursive(dent_dir);
if (g_qsee_log)
dma_free_coherent(&pdev->dev, QSEE_LOG_BUF_SIZE,
(void *)g_qsee_log, coh_pmem);
}
static int __update_hypdbg_base(struct platform_device *pdev,
void __iomem *virt_iobase)
{
phys_addr_t hypdiag_phy_iobase;
uint32_t hyp_address_offset;
uint32_t hyp_size_offset;
struct hypdbg_t *hyp;
uint32_t *ptr = NULL;
if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-address-offset",
&hyp_address_offset)) {
dev_err(&pdev->dev, "hyplog address offset is not defined\n");
return -EINVAL;
}
if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-size-offset",
&hyp_size_offset)) {
dev_err(&pdev->dev, "hyplog size offset is not defined\n");
return -EINVAL;
}
hypdiag_phy_iobase = readl_relaxed(virt_iobase + hyp_address_offset);
tzdbg.hyp_debug_rw_buf_size = readl_relaxed(virt_iobase +
hyp_size_offset);
tzdbg.hyp_virt_iobase = devm_ioremap_nocache(&pdev->dev,
hypdiag_phy_iobase,
tzdbg.hyp_debug_rw_buf_size);
if (!tzdbg.hyp_virt_iobase) {
dev_err(&pdev->dev, "ERROR could not ioremap: start=%pr, len=%u\n",
&hypdiag_phy_iobase, tzdbg.hyp_debug_rw_buf_size);
return -ENXIO;
}
ptr = kzalloc(tzdbg.hyp_debug_rw_buf_size, GFP_KERNEL);
if (!ptr)
return -ENOMEM;
tzdbg.hyp_diag_buf = (struct hypdbg_t *)ptr;
hyp = tzdbg.hyp_diag_buf;
hyp->log_pos.wrap = hyp->log_pos.offset = 0;
return 0;
}
static void tzdbg_get_tz_version(void)
{
uint32_t smc_id = 0;
uint32_t feature = 10;
struct qseecom_command_scm_resp resp = {0};
struct scm_desc desc = {0};
int ret = 0;
if (!is_scm_armv8()) {
ret = scm_call(SCM_SVC_INFO, SCM_SVC_UTIL, &feature,
sizeof(feature), &resp, sizeof(resp));
} else {
smc_id = TZ_INFO_GET_FEATURE_VERSION_ID;
desc.arginfo = TZ_INFO_GET_FEATURE_VERSION_ID_PARAM_ID;
desc.args[0] = feature;
ret = scm_call2(smc_id, &desc);
resp.result = desc.ret[0];
}
if (ret)
pr_err("%s: scm_call to get tz version failed\n",
__func__);
else
tzdbg.tz_version = resp.result;
}
/*
* Driver functions
*/
static int tz_log_probe(struct platform_device *pdev)
{
struct resource *resource;
void __iomem *virt_iobase;
phys_addr_t tzdiag_phy_iobase;
uint32_t *ptr = NULL;
int ret = 0;
/*
* Get address that stores the physical location diagnostic data
*/
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!resource) {
dev_err(&pdev->dev,
"%s: ERROR Missing MEM resource\n", __func__);
return -ENXIO;
};
/*
* Get the debug buffer size
*/
debug_rw_buf_size = resource->end - resource->start + 1;
/*
* Map address that stores the physical location diagnostic data
*/
virt_iobase = devm_ioremap_nocache(&pdev->dev, resource->start,
debug_rw_buf_size);
if (!virt_iobase) {
dev_err(&pdev->dev,
"%s: ERROR could not ioremap: start=%pr, len=%u\n",
__func__, &resource->start,
(unsigned int)(debug_rw_buf_size));
return -ENXIO;
}
if (pdev->dev.of_node) {
tzdbg.is_hyplog_enabled = of_property_read_bool(
(&pdev->dev)->of_node, "qcom,hyplog-enabled");
if (tzdbg.is_hyplog_enabled) {
ret = __update_hypdbg_base(pdev, virt_iobase);
if (ret) {
dev_err(&pdev->dev, "%s() failed to get device tree data ret = %d\n",
__func__, ret);
return -EINVAL;
}
} else {
dev_info(&pdev->dev, "Hyp log service is not supported\n");
}
} else {
dev_dbg(&pdev->dev, "Device tree data is not found\n");
}
/*
* Retrieve the address of diagnostic data
*/
tzdiag_phy_iobase = readl_relaxed(virt_iobase);
/*
* Map the diagnostic information area
*/
tzdbg.virt_iobase = devm_ioremap_nocache(&pdev->dev,
tzdiag_phy_iobase, debug_rw_buf_size);
if (!tzdbg.virt_iobase) {
dev_err(&pdev->dev,
"%s: ERROR could not ioremap: start=%pr, len=%u\n",
__func__, &tzdiag_phy_iobase,
debug_rw_buf_size);
return -ENXIO;
}
ptr = kzalloc(debug_rw_buf_size, GFP_KERNEL);
if (ptr == NULL)
return -ENXIO;
tzdbg.diag_buf = (struct tzdbg_t *)ptr;
if (tzdbgfs_init(pdev))
goto err;
tzdbg_register_qsee_log_buf(pdev);
tzdbg_get_tz_version();
return 0;
err:
kfree(tzdbg.diag_buf);
return -ENXIO;
}
static int tz_log_remove(struct platform_device *pdev)
{
kzfree(tzdbg.diag_buf);
if (tzdbg.hyp_diag_buf)
kzfree(tzdbg.hyp_diag_buf);
tzdbgfs_exit(pdev);
return 0;
}
#ifdef CONFIG_PM
static int tz_log_freeze(struct device *dev)
{
/* This Boolean variable is maintained to initialise the ring buffer
* log pointer to zero during restoration from hibernation
*/
restore_from_hibernation = 1;
if (g_qsee_log)
dma_free_coherent(dev, QSEE_LOG_BUF_SIZE, (void *)g_qsee_log,
coh_pmem);
return 0;
}
static int tz_log_restore(struct device *dev)
{
/* ring buffer log pointer needs to be re initialized
* during restoration from hibernation.
*/
if (restore_from_hibernation) {
_disp_tz_log_stats(0);
_disp_qsee_log_stats(0);
}
/* Register the log bugger at TZ during hibernation resume.
* After hibernation the log buffer is with HLOS as TZ encountered
* a coldboot sequence.
*/
tzdbg_register_qsee_log_buf(to_platform_device(dev));
/* This is set back to zero after successful restoration
* from hibernation.
*/
restore_from_hibernation = 0;
return 0;
}
static const struct dev_pm_ops tz_log_pmops = {
.freeze = tz_log_freeze,
.restore = tz_log_restore,
.thaw = tz_log_restore,
};
#define TZ_LOG_PMOPS (&tz_log_pmops)
#else
#define TZ_LOG_PMOPS NULL
#endif
static const struct of_device_id tzlog_match[] = {
{ .compatible = "qcom,tz-log",
},
{}
};
static struct platform_driver tz_log_driver = {
.probe = tz_log_probe,
.remove = tz_log_remove,
.driver = {
.name = "tz_log",
.owner = THIS_MODULE,
.of_match_table = tzlog_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = TZ_LOG_PMOPS,
},
};
static int __init tz_log_init(void)
{
return platform_driver_register(&tz_log_driver);
}
static void __exit tz_log_exit(void)
{
platform_driver_unregister(&tz_log_driver);
}
module_init(tz_log_init);
module_exit(tz_log_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TZ Log driver");
MODULE_ALIAS("platform:tz_log");