/* Copyright (c) 2011-2020, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* QSEE_LOG_BUF_SIZE = 32K */ #define QSEE_LOG_BUF_SIZE 0x8000 /* TZ Diagnostic Area legacy version number */ #define TZBSP_DIAG_MAJOR_VERSION_LEGACY 2 /* * Preprocessor Definitions and Constants */ #define TZBSP_MAX_CPU_COUNT 0x08 /* * Number of VMID Tables */ #define TZBSP_DIAG_NUM_OF_VMID 16 /* * VMID Description length */ #define TZBSP_DIAG_VMID_DESC_LEN 7 /* * Number of Interrupts */ #define TZBSP_DIAG_INT_NUM 32 /* * Length of descriptive name associated with Interrupt */ #define TZBSP_MAX_INT_DESC 16 /* * TZ 3.X version info */ #define QSEE_VERSION_TZ_3_X 0x800000 /* * TZ 4.X version info */ #define QSEE_VERSION_TZ_4_X 0x1000000 #define TZBSP_AES_256_ENCRYPTED_KEY_SIZE 256 #define TZBSP_NONCE_LEN 12 #define TZBSP_TAG_LEN 16 /* * VMID Table */ struct tzdbg_vmid_t { uint8_t vmid; /* Virtual Machine Identifier */ uint8_t desc[TZBSP_DIAG_VMID_DESC_LEN]; /* ASCII Text */ }; /* * Boot Info Table */ struct tzdbg_boot_info_t { uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */ uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */ uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */ uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */ uint32_t warm_jmp_addr; /* Last Warmboot Jump Address */ uint32_t spare; /* Reserved for future use. */ }; /* * Boot Info Table for 64-bit */ struct tzdbg_boot_info64_t { uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */ uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */ uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */ uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */ uint32_t psci_entry_cnt;/* PSCI syscall entry CPU Counter */ uint32_t psci_exit_cnt; /* PSCI syscall exit CPU Counter */ uint64_t warm_jmp_addr; /* Last Warmboot Jump Address */ uint32_t warm_jmp_instr; /* Last Warmboot Jump Address Instruction */ }; /* * Reset Info Table */ struct tzdbg_reset_info_t { uint32_t reset_type; /* Reset Reason */ uint32_t reset_cnt; /* Number of resets occurred/CPU */ }; /* * Interrupt Info Table */ struct tzdbg_int_t { /* * Type of Interrupt/exception */ uint16_t int_info; /* * Availability of the slot */ uint8_t avail; /* * Reserved for future use */ uint8_t spare; /* * Interrupt # for IRQ and FIQ */ uint32_t int_num; /* * ASCII text describing type of interrupt e.g: * Secure Timer, EBI XPU. This string is always null terminated, * supporting at most TZBSP_MAX_INT_DESC characters. * Any additional characters are truncated. */ uint8_t int_desc[TZBSP_MAX_INT_DESC]; uint64_t int_count[TZBSP_MAX_CPU_COUNT]; /* # of times seen per CPU */ }; /* * Interrupt Info Table used in tz version >=4.X */ struct tzdbg_int_t_tz40 { uint16_t int_info; uint8_t avail; uint8_t spare; uint32_t int_num; uint8_t int_desc[TZBSP_MAX_INT_DESC]; uint32_t int_count[TZBSP_MAX_CPU_COUNT]; /* uint32_t in TZ ver >= 4.x*/ }; /* warm boot reason for cores */ struct tzbsp_diag_wakeup_info_t { /* Wake source info : APCS_GICC_HPPIR */ uint32_t HPPIR; /* Wake source info : APCS_GICC_AHPPIR */ uint32_t AHPPIR; }; /* * Log ring buffer position */ struct tzdbg_log_pos_t { uint16_t wrap; uint16_t offset; }; /* * Log ring buffer */ struct tzdbg_log_t { struct tzdbg_log_pos_t log_pos; /* open ended array to the end of the 4K IMEM buffer */ uint8_t log_buf[]; }; /* * Diagnostic Table * Note: This is the reference data structure for tz diagnostic table * supporting TZBSP_MAX_CPU_COUNT, the real diagnostic data is directly * copied into buffer from i/o memory. */ struct tzdbg_t { uint32_t magic_num; uint32_t version; /* * Number of CPU's */ uint32_t cpu_count; /* * Offset of VMID Table */ uint32_t vmid_info_off; /* * Offset of Boot Table */ uint32_t boot_info_off; /* * Offset of Reset info Table */ uint32_t reset_info_off; /* * Offset of Interrupt info Table */ uint32_t int_info_off; /* * Ring Buffer Offset */ uint32_t ring_off; /* * Ring Buffer Length */ uint32_t ring_len; /* Offset for Wakeup info */ uint32_t wakeup_info_off; /* * VMID to EE Mapping */ struct tzdbg_vmid_t vmid_info[TZBSP_DIAG_NUM_OF_VMID]; /* * Boot Info */ struct tzdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT]; /* * Reset Info */ struct tzdbg_reset_info_t reset_info[TZBSP_MAX_CPU_COUNT]; uint32_t num_interrupts; struct tzdbg_int_t int_info[TZBSP_DIAG_INT_NUM]; /* Wake up info */ struct tzbsp_diag_wakeup_info_t wakeup_info[TZBSP_MAX_CPU_COUNT]; uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE]; uint8_t nonce[TZBSP_NONCE_LEN]; uint8_t tag[TZBSP_TAG_LEN]; /* * We need at least 2K for the ring buffer */ struct tzdbg_log_t ring_buffer; /* TZ Ring Buffer */ }; struct hypdbg_log_pos_t { uint16_t wrap; uint16_t offset; }; struct hypdbg_boot_info_t { uint32_t warm_entry_cnt; uint32_t warm_exit_cnt; }; struct hypdbg_t { /* Magic Number */ uint32_t magic_num; /* Number of CPU's */ uint32_t cpu_count; /* Ring Buffer Offset */ uint32_t ring_off; /* Ring buffer position mgmt */ struct hypdbg_log_pos_t log_pos; uint32_t log_len; /* S2 fault numbers */ uint32_t s2_fault_counter; /* Boot Info */ struct hypdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT]; /* Ring buffer pointer */ uint8_t log_buf_p[]; }; /* * Enumeration order for VMID's */ enum tzdbg_stats_type { TZDBG_BOOT = 0, TZDBG_RESET, TZDBG_INTERRUPT, TZDBG_VMID, TZDBG_GENERAL, TZDBG_LOG, TZDBG_QSEE_LOG, TZDBG_HYP_GENERAL, TZDBG_HYP_LOG, TZDBG_STATS_MAX }; struct tzdbg_stat { char *name; char *data; }; struct tzdbg { void __iomem *virt_iobase; void __iomem *hyp_virt_iobase; struct tzdbg_t *diag_buf; struct hypdbg_t *hyp_diag_buf; char *disp_buf; int debug_tz[TZDBG_STATS_MAX]; struct tzdbg_stat stat[TZDBG_STATS_MAX]; uint32_t hyp_debug_rw_buf_size; bool is_hyplog_enabled; uint32_t tz_version; }; static struct tzdbg tzdbg = { .stat[TZDBG_BOOT].name = "boot", .stat[TZDBG_RESET].name = "reset", .stat[TZDBG_INTERRUPT].name = "interrupt", .stat[TZDBG_VMID].name = "vmid", .stat[TZDBG_GENERAL].name = "general", .stat[TZDBG_LOG].name = "log", .stat[TZDBG_QSEE_LOG].name = "qsee_log", .stat[TZDBG_HYP_GENERAL].name = "hyp_general", .stat[TZDBG_HYP_LOG].name = "hyp_log", }; static struct tzdbg_log_t *g_qsee_log; static dma_addr_t coh_pmem; static uint32_t debug_rw_buf_size; static bool restore_from_hibernation; /* * Debugfs data structure and functions */ static int _disp_tz_general_stats(void) { int len = 0; len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1, " Version : 0x%x\n" " Magic Number : 0x%x\n" " Number of CPU : %d\n", tzdbg.diag_buf->version, tzdbg.diag_buf->magic_num, tzdbg.diag_buf->cpu_count); tzdbg.stat[TZDBG_GENERAL].data = tzdbg.disp_buf; return len; } static int _disp_tz_vmid_stats(void) { int i, num_vmid; int len = 0; struct tzdbg_vmid_t *ptr; ptr = (struct tzdbg_vmid_t *)((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->vmid_info_off); num_vmid = ((tzdbg.diag_buf->boot_info_off - tzdbg.diag_buf->vmid_info_off)/ (sizeof(struct tzdbg_vmid_t))); for (i = 0; i < num_vmid; i++) { if (ptr->vmid < 0xFF) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " 0x%x %s\n", (uint32_t)ptr->vmid, (uint8_t *)ptr->desc); } if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } tzdbg.stat[TZDBG_VMID].data = tzdbg.disp_buf; return len; } static int _disp_tz_boot_stats(void) { int i; int len = 0; struct tzdbg_boot_info_t *ptr = NULL; struct tzdbg_boot_info64_t *ptr_64 = NULL; pr_info("qsee_version = 0x%x\n", tzdbg.tz_version); if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) { ptr_64 = (struct tzdbg_boot_info64_t *)((unsigned char *) tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off); } else { ptr = (struct tzdbg_boot_info_t *)((unsigned char *) tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off); } for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) { if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Warmboot jump address : 0x%llx\n" " Warmboot entry CPU counter : 0x%x\n" " Warmboot exit CPU counter : 0x%x\n" " Power Collapse entry CPU counter : 0x%x\n" " Power Collapse exit CPU counter : 0x%x\n" " Psci entry CPU counter : 0x%x\n" " Psci exit CPU counter : 0x%x\n" " Warmboot Jump Address Instruction : 0x%x\n", i, (uint64_t)ptr_64->warm_jmp_addr, ptr_64->wb_entry_cnt, ptr_64->wb_exit_cnt, ptr_64->pc_entry_cnt, ptr_64->pc_exit_cnt, ptr_64->psci_entry_cnt, ptr_64->psci_exit_cnt, ptr_64->warm_jmp_instr); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr_64++; } else { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Warmboot jump address : 0x%x\n" " Warmboot entry CPU counter: 0x%x\n" " Warmboot exit CPU counter : 0x%x\n" " Power Collapse entry CPU counter: 0x%x\n" " Power Collapse exit CPU counter : 0x%x\n", i, ptr->warm_jmp_addr, ptr->wb_entry_cnt, ptr->wb_exit_cnt, ptr->pc_entry_cnt, ptr->pc_exit_cnt); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } } tzdbg.stat[TZDBG_BOOT].data = tzdbg.disp_buf; return len; } static int _disp_tz_reset_stats(void) { int i; int len = 0; struct tzdbg_reset_info_t *ptr; ptr = (struct tzdbg_reset_info_t *)((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->reset_info_off); for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Reset Type (reason) : 0x%x\n" " Reset counter : 0x%x\n", i, ptr->reset_type, ptr->reset_cnt); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } tzdbg.stat[TZDBG_RESET].data = tzdbg.disp_buf; return len; } static int _disp_tz_interrupt_stats(void) { int i, j; int len = 0; int *num_int; void *ptr; struct tzdbg_int_t *tzdbg_ptr; struct tzdbg_int_t_tz40 *tzdbg_ptr_tz40; num_int = (uint32_t *)((unsigned char *)tzdbg.diag_buf + (tzdbg.diag_buf->int_info_off - sizeof(uint32_t))); ptr = ((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->int_info_off); pr_info("qsee_version = 0x%x\n", tzdbg.tz_version); if (tzdbg.tz_version < QSEE_VERSION_TZ_4_X) { tzdbg_ptr = ptr; for (i = 0; i < (*num_int); i++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " Interrupt Number : 0x%x\n" " Type of Interrupt : 0x%x\n" " Description of interrupt : %s\n", tzdbg_ptr->int_num, (uint32_t)tzdbg_ptr->int_info, (uint8_t *)tzdbg_ptr->int_desc); for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " int_count on CPU # %d : %u\n", (uint32_t)j, (uint32_t)tzdbg_ptr->int_count[j]); } len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1, "\n"); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into buf\n", __func__); break; } tzdbg_ptr++; } } else { tzdbg_ptr_tz40 = ptr; for (i = 0; i < (*num_int); i++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " Interrupt Number : 0x%x\n" " Type of Interrupt : 0x%x\n" " Description of interrupt : %s\n", tzdbg_ptr_tz40->int_num, (uint32_t)tzdbg_ptr_tz40->int_info, (uint8_t *)tzdbg_ptr_tz40->int_desc); for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " int_count on CPU # %d : %u\n", (uint32_t)j, (uint32_t)tzdbg_ptr_tz40->int_count[j]); } len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1, "\n"); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into buf\n", __func__); break; } tzdbg_ptr_tz40++; } } tzdbg.stat[TZDBG_INTERRUPT].data = tzdbg.disp_buf; return len; } static int _disp_tz_log_stats_legacy(void) { int len = 0; unsigned char *ptr; ptr = (unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->ring_off; len += scnprintf(tzdbg.disp_buf, (debug_rw_buf_size - 1) - len, "%s\n", ptr); tzdbg.stat[TZDBG_LOG].data = tzdbg.disp_buf; return len; } static int _disp_log_stats(struct tzdbg_log_t *log, struct tzdbg_log_pos_t *log_start, uint32_t log_len, size_t count, uint32_t buf_idx) { uint32_t wrap_start; uint32_t wrap_end; uint32_t wrap_cnt; int max_len; int len = 0; int i = 0; wrap_start = log_start->wrap; wrap_end = log->log_pos.wrap; /* Calculate difference in # of buffer wrap-arounds */ if (wrap_end >= wrap_start) { wrap_cnt = wrap_end - wrap_start; } else { /* wrap counter has wrapped around, invalidate start position */ wrap_cnt = 2; } if (wrap_cnt > 1) { /* end position has wrapped around more than once, */ /* current start no longer valid */ log_start->wrap = log->log_pos.wrap - 1; log_start->offset = (log->log_pos.offset + 1) % log_len; } else if ((wrap_cnt == 1) && (log->log_pos.offset > log_start->offset)) { /* end position has overwritten start */ log_start->offset = (log->log_pos.offset + 1) % log_len; } while (log_start->offset == log->log_pos.offset) { /* * No data in ring buffer, * so we'll hang around until something happens */ unsigned long t = msleep_interruptible(50); if (t != 0) { /* Some event woke us up, so let's quit */ return 0; } if (buf_idx == TZDBG_LOG) memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase, debug_rw_buf_size); } max_len = (count > debug_rw_buf_size) ? debug_rw_buf_size : count; /* * Read from ring buff while there is data and space in return buff */ while ((log_start->offset != log->log_pos.offset) && (len < max_len)) { tzdbg.disp_buf[i++] = log->log_buf[log_start->offset]; log_start->offset = (log_start->offset + 1) % log_len; if (log_start->offset == 0) ++log_start->wrap; ++len; } /* * return buffer to caller */ tzdbg.stat[buf_idx].data = tzdbg.disp_buf; return len; } static int __disp_hyp_log_stats(uint8_t *log, struct hypdbg_log_pos_t *log_start, uint32_t log_len, size_t count, uint32_t buf_idx) { struct hypdbg_t *hyp = tzdbg.hyp_diag_buf; unsigned long t = 0; uint32_t wrap_start; uint32_t wrap_end; uint32_t wrap_cnt; int max_len; int len = 0; int i = 0; wrap_start = log_start->wrap; wrap_end = hyp->log_pos.wrap; /* Calculate difference in # of buffer wrap-arounds */ if (wrap_end >= wrap_start) { wrap_cnt = wrap_end - wrap_start; } else { /* wrap counter has wrapped around, invalidate start position */ wrap_cnt = 2; } if (wrap_cnt > 1) { /* end position has wrapped around more than once, */ /* current start no longer valid */ log_start->wrap = hyp->log_pos.wrap - 1; log_start->offset = (hyp->log_pos.offset + 1) % log_len; } else if ((wrap_cnt == 1) && (hyp->log_pos.offset > log_start->offset)) { /* end position has overwritten start */ log_start->offset = (hyp->log_pos.offset + 1) % log_len; } while (log_start->offset == hyp->log_pos.offset) { /* * No data in ring buffer, * so we'll hang around until something happens */ t = msleep_interruptible(50); if (t != 0) { /* Some event woke us up, so let's quit */ return 0; } /* TZDBG_HYP_LOG */ memcpy_fromio((void *)tzdbg.hyp_diag_buf, tzdbg.hyp_virt_iobase, tzdbg.hyp_debug_rw_buf_size); } max_len = (count > tzdbg.hyp_debug_rw_buf_size) ? tzdbg.hyp_debug_rw_buf_size : count; /* * Read from ring buff while there is data and space in return buff */ while ((log_start->offset != hyp->log_pos.offset) && (len < max_len)) { tzdbg.disp_buf[i++] = log[log_start->offset]; log_start->offset = (log_start->offset + 1) % log_len; if (log_start->offset == 0) ++log_start->wrap; ++len; } /* * return buffer to caller */ tzdbg.stat[buf_idx].data = tzdbg.disp_buf; return len; } static int _disp_tz_log_stats(size_t count) { static struct tzdbg_log_pos_t log_start = {0}; struct tzdbg_log_t *log_ptr; /* wrap and offset are initialized to zero since tz is coldboot * during restoration from hibernation.the reason to initialise * the wrap and offset to zero since it contains previous boot * values and which are invalid now. */ if (restore_from_hibernation) { log_start.wrap = log_start.offset = 0; return 0; } log_ptr = (struct tzdbg_log_t *)((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->ring_off - offsetof(struct tzdbg_log_t, log_buf)); return _disp_log_stats(log_ptr, &log_start, tzdbg.diag_buf->ring_len, count, TZDBG_LOG); } static int _disp_hyp_log_stats(size_t count) { static struct hypdbg_log_pos_t log_start = {0}; uint8_t *log_ptr; log_ptr = (uint8_t *)((unsigned char *)tzdbg.hyp_diag_buf + tzdbg.hyp_diag_buf->ring_off); return __disp_hyp_log_stats(log_ptr, &log_start, tzdbg.hyp_debug_rw_buf_size, count, TZDBG_HYP_LOG); } static int _disp_qsee_log_stats(size_t count) { static struct tzdbg_log_pos_t log_start = {0}; /* wrap and offset are initialized to zero since tz is coldboot * during restoration from hibernation. The reason to initialise * the wrap and offset to zero since it contains previous values * and which are invalid now. */ if (restore_from_hibernation) { log_start.wrap = log_start.offset = 0; return 0; } return _disp_log_stats(g_qsee_log, &log_start, QSEE_LOG_BUF_SIZE - sizeof(struct tzdbg_log_pos_t), count, TZDBG_QSEE_LOG); } static int _disp_hyp_general_stats(size_t count) { int len = 0; int i; struct hypdbg_boot_info_t *ptr = NULL; len += scnprintf((unsigned char *)tzdbg.disp_buf + len, tzdbg.hyp_debug_rw_buf_size - 1, " Magic Number : 0x%x\n" " CPU Count : 0x%x\n" " S2 Fault Counter: 0x%x\n", tzdbg.hyp_diag_buf->magic_num, tzdbg.hyp_diag_buf->cpu_count, tzdbg.hyp_diag_buf->s2_fault_counter); ptr = tzdbg.hyp_diag_buf->boot_info; for (i = 0; i < tzdbg.hyp_diag_buf->cpu_count; i++) { len += scnprintf((unsigned char *)tzdbg.disp_buf + len, (tzdbg.hyp_debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Warmboot entry CPU counter: 0x%x\n" " Warmboot exit CPU counter : 0x%x\n", i, ptr->warm_entry_cnt, ptr->warm_exit_cnt); if (len > (tzdbg.hyp_debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } tzdbg.stat[TZDBG_HYP_GENERAL].data = (char *)tzdbg.disp_buf; return len; } static ssize_t tzdbgfs_read(struct file *file, char __user *buf, size_t count, loff_t *offp) { int len = 0; int *tz_id = file->private_data; if (*tz_id == TZDBG_BOOT || *tz_id == TZDBG_RESET || *tz_id == TZDBG_INTERRUPT || *tz_id == TZDBG_GENERAL || *tz_id == TZDBG_VMID || *tz_id == TZDBG_LOG) memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase, debug_rw_buf_size); if (*tz_id == TZDBG_HYP_GENERAL || *tz_id == TZDBG_HYP_LOG) memcpy_fromio((void *)tzdbg.hyp_diag_buf, tzdbg.hyp_virt_iobase, tzdbg.hyp_debug_rw_buf_size); switch (*tz_id) { case TZDBG_BOOT: len = _disp_tz_boot_stats(); break; case TZDBG_RESET: len = _disp_tz_reset_stats(); break; case TZDBG_INTERRUPT: len = _disp_tz_interrupt_stats(); break; case TZDBG_GENERAL: len = _disp_tz_general_stats(); break; case TZDBG_VMID: len = _disp_tz_vmid_stats(); break; case TZDBG_LOG: if (TZBSP_DIAG_MAJOR_VERSION_LEGACY < (tzdbg.diag_buf->version >> 16)) { len = _disp_tz_log_stats(count); *offp = 0; } else { len = _disp_tz_log_stats_legacy(); } break; case TZDBG_QSEE_LOG: len = _disp_qsee_log_stats(count); *offp = 0; break; case TZDBG_HYP_GENERAL: len = _disp_hyp_general_stats(count); break; case TZDBG_HYP_LOG: len = _disp_hyp_log_stats(count); *offp = 0; break; default: break; } if (len > count) len = count; return simple_read_from_buffer(buf, len, offp, tzdbg.stat[(*tz_id)].data, len); } static int tzdbgfs_open(struct inode *inode, struct file *pfile) { pfile->private_data = inode->i_private; return 0; } const struct file_operations tzdbg_fops = { .owner = THIS_MODULE, .read = tzdbgfs_read, .open = tzdbgfs_open, }; /* * Allocates log buffer from ION, registers the buffer at TZ */ static void tzdbg_register_qsee_log_buf(struct platform_device *pdev) { /* register log buffer scm request */ struct qseecom_reg_log_buf_ireq req = {}; /* scm response */ struct qseecom_command_scm_resp resp = {}; size_t len; int ret = 0; struct scm_desc desc = {0}; void *buf = NULL; len = QSEE_LOG_BUF_SIZE; buf = dma_alloc_coherent(&pdev->dev, len, &coh_pmem, GFP_KERNEL); if (buf == NULL) { pr_err("Failed to alloc memory for size %zu\n", len); return; } g_qsee_log = (struct tzdbg_log_t *)buf; if (!is_scm_armv8()) { req.qsee_cmd_id = QSEOS_REGISTER_LOG_BUF_COMMAND; req.phy_addr = (uint32_t)coh_pmem; req.len = len; /* SCM_CALL to register the log buffer */ ret = scm_call(SCM_SVC_TZSCHEDULER, 1, &req, sizeof(req), &resp, sizeof(resp)); } else { desc.args[0] = coh_pmem; desc.args[1] = len; desc.arginfo = 0x22; ret = scm_call2(SCM_QSEEOS_FNID(1, 6), &desc); resp.result = desc.ret[0]; } if (ret) { pr_err("%s: scm_call to register log buffer failed\n", __func__); goto err; } if (resp.result != QSEOS_RESULT_SUCCESS) { pr_err( "%s: scm_call to register log buf failed, resp result =%llu\n", __func__, resp.result); goto err; } g_qsee_log->log_pos.wrap = g_qsee_log->log_pos.offset = 0; return; err: dma_free_coherent(&pdev->dev, len, (void *)g_qsee_log, coh_pmem); return; } static int tzdbgfs_init(struct platform_device *pdev) { int rc = 0; int i; struct dentry *dent_dir; struct dentry *dent; dent_dir = debugfs_create_dir("tzdbg", NULL); if (dent_dir == NULL) { dev_err(&pdev->dev, "tzdbg debugfs_create_dir failed\n"); return -ENOMEM; } for (i = 0; i < TZDBG_STATS_MAX; i++) { tzdbg.debug_tz[i] = i; dent = debugfs_create_file_unsafe(tzdbg.stat[i].name, 0444, dent_dir, &tzdbg.debug_tz[i], &tzdbg_fops); if (dent == NULL) { dev_err(&pdev->dev, "TZ debugfs_create_file failed\n"); rc = -ENOMEM; goto err; } } tzdbg.disp_buf = kzalloc(max(debug_rw_buf_size, tzdbg.hyp_debug_rw_buf_size), GFP_KERNEL); if (tzdbg.disp_buf == NULL) goto err; platform_set_drvdata(pdev, dent_dir); return 0; err: debugfs_remove_recursive(dent_dir); return rc; } static void tzdbgfs_exit(struct platform_device *pdev) { struct dentry *dent_dir; kzfree(tzdbg.disp_buf); dent_dir = platform_get_drvdata(pdev); debugfs_remove_recursive(dent_dir); if (g_qsee_log) dma_free_coherent(&pdev->dev, QSEE_LOG_BUF_SIZE, (void *)g_qsee_log, coh_pmem); } static int __update_hypdbg_base(struct platform_device *pdev, void __iomem *virt_iobase) { phys_addr_t hypdiag_phy_iobase; uint32_t hyp_address_offset; uint32_t hyp_size_offset; struct hypdbg_t *hyp; uint32_t *ptr = NULL; if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-address-offset", &hyp_address_offset)) { dev_err(&pdev->dev, "hyplog address offset is not defined\n"); return -EINVAL; } if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-size-offset", &hyp_size_offset)) { dev_err(&pdev->dev, "hyplog size offset is not defined\n"); return -EINVAL; } hypdiag_phy_iobase = readl_relaxed(virt_iobase + hyp_address_offset); tzdbg.hyp_debug_rw_buf_size = readl_relaxed(virt_iobase + hyp_size_offset); tzdbg.hyp_virt_iobase = devm_ioremap_nocache(&pdev->dev, hypdiag_phy_iobase, tzdbg.hyp_debug_rw_buf_size); if (!tzdbg.hyp_virt_iobase) { dev_err(&pdev->dev, "ERROR could not ioremap: start=%pr, len=%u\n", &hypdiag_phy_iobase, tzdbg.hyp_debug_rw_buf_size); return -ENXIO; } ptr = kzalloc(tzdbg.hyp_debug_rw_buf_size, GFP_KERNEL); if (!ptr) return -ENOMEM; tzdbg.hyp_diag_buf = (struct hypdbg_t *)ptr; hyp = tzdbg.hyp_diag_buf; hyp->log_pos.wrap = hyp->log_pos.offset = 0; return 0; } static void tzdbg_get_tz_version(void) { uint32_t smc_id = 0; uint32_t feature = 10; struct qseecom_command_scm_resp resp = {0}; struct scm_desc desc = {0}; int ret = 0; if (!is_scm_armv8()) { ret = scm_call(SCM_SVC_INFO, SCM_SVC_UTIL, &feature, sizeof(feature), &resp, sizeof(resp)); } else { smc_id = TZ_INFO_GET_FEATURE_VERSION_ID; desc.arginfo = TZ_INFO_GET_FEATURE_VERSION_ID_PARAM_ID; desc.args[0] = feature; ret = scm_call2(smc_id, &desc); resp.result = desc.ret[0]; } if (ret) pr_err("%s: scm_call to get tz version failed\n", __func__); else tzdbg.tz_version = resp.result; } /* * Driver functions */ static int tz_log_probe(struct platform_device *pdev) { struct resource *resource; void __iomem *virt_iobase; phys_addr_t tzdiag_phy_iobase; uint32_t *ptr = NULL; int ret = 0; /* * Get address that stores the physical location diagnostic data */ resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!resource) { dev_err(&pdev->dev, "%s: ERROR Missing MEM resource\n", __func__); return -ENXIO; }; /* * Get the debug buffer size */ debug_rw_buf_size = resource->end - resource->start + 1; /* * Map address that stores the physical location diagnostic data */ virt_iobase = devm_ioremap_nocache(&pdev->dev, resource->start, debug_rw_buf_size); if (!virt_iobase) { dev_err(&pdev->dev, "%s: ERROR could not ioremap: start=%pr, len=%u\n", __func__, &resource->start, (unsigned int)(debug_rw_buf_size)); return -ENXIO; } if (pdev->dev.of_node) { tzdbg.is_hyplog_enabled = of_property_read_bool( (&pdev->dev)->of_node, "qcom,hyplog-enabled"); if (tzdbg.is_hyplog_enabled) { ret = __update_hypdbg_base(pdev, virt_iobase); if (ret) { dev_err(&pdev->dev, "%s() failed to get device tree data ret = %d\n", __func__, ret); return -EINVAL; } } else { dev_info(&pdev->dev, "Hyp log service is not supported\n"); } } else { dev_dbg(&pdev->dev, "Device tree data is not found\n"); } /* * Retrieve the address of diagnostic data */ tzdiag_phy_iobase = readl_relaxed(virt_iobase); /* * Map the diagnostic information area */ tzdbg.virt_iobase = devm_ioremap_nocache(&pdev->dev, tzdiag_phy_iobase, debug_rw_buf_size); if (!tzdbg.virt_iobase) { dev_err(&pdev->dev, "%s: ERROR could not ioremap: start=%pr, len=%u\n", __func__, &tzdiag_phy_iobase, debug_rw_buf_size); return -ENXIO; } ptr = kzalloc(debug_rw_buf_size, GFP_KERNEL); if (ptr == NULL) return -ENXIO; tzdbg.diag_buf = (struct tzdbg_t *)ptr; if (tzdbgfs_init(pdev)) goto err; tzdbg_register_qsee_log_buf(pdev); tzdbg_get_tz_version(); return 0; err: kfree(tzdbg.diag_buf); return -ENXIO; } static int tz_log_remove(struct platform_device *pdev) { kzfree(tzdbg.diag_buf); if (tzdbg.hyp_diag_buf) kzfree(tzdbg.hyp_diag_buf); tzdbgfs_exit(pdev); return 0; } #ifdef CONFIG_PM static int tz_log_freeze(struct device *dev) { /* This Boolean variable is maintained to initialise the ring buffer * log pointer to zero during restoration from hibernation */ restore_from_hibernation = 1; if (g_qsee_log) dma_free_coherent(dev, QSEE_LOG_BUF_SIZE, (void *)g_qsee_log, coh_pmem); return 0; } static int tz_log_restore(struct device *dev) { /* ring buffer log pointer needs to be re initialized * during restoration from hibernation. */ if (restore_from_hibernation) { _disp_tz_log_stats(0); _disp_qsee_log_stats(0); } /* Register the log bugger at TZ during hibernation resume. * After hibernation the log buffer is with HLOS as TZ encountered * a coldboot sequence. */ tzdbg_register_qsee_log_buf(to_platform_device(dev)); /* This is set back to zero after successful restoration * from hibernation. */ restore_from_hibernation = 0; return 0; } static const struct dev_pm_ops tz_log_pmops = { .freeze = tz_log_freeze, .restore = tz_log_restore, .thaw = tz_log_restore, }; #define TZ_LOG_PMOPS (&tz_log_pmops) #else #define TZ_LOG_PMOPS NULL #endif static const struct of_device_id tzlog_match[] = { { .compatible = "qcom,tz-log", }, {} }; static struct platform_driver tz_log_driver = { .probe = tz_log_probe, .remove = tz_log_remove, .driver = { .name = "tz_log", .owner = THIS_MODULE, .of_match_table = tzlog_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .pm = TZ_LOG_PMOPS, }, }; static int __init tz_log_init(void) { return platform_driver_register(&tz_log_driver); } static void __exit tz_log_exit(void) { platform_driver_unregister(&tz_log_driver); } module_init(tz_log_init); module_exit(tz_log_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TZ Log driver"); MODULE_ALIAS("platform:tz_log");