You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/crypto/msm/qcrypto.c

5590 lines
148 KiB

/*
* QTI Crypto driver
*
* Copyright (c) 2010-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/llist.h>
#include <linux/debugfs.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/cache.h>
#include <linux/platform_data/qcom_crypto_device.h>
#include <linux/msm-bus.h>
#include <linux/hardirq.h>
#include <linux/qcrypto.h>
#include <crypto/ctr.h>
#include <crypto/des.h>
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/hash.h>
#include <crypto/algapi.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <crypto/skcipher.h>
#include <crypto/internal/skcipher.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/aead.h>
#include <linux/fips_status.h>
#include "qce.h"
#define DEBUG_MAX_FNAME 16
#define DEBUG_MAX_RW_BUF 4096
#define QCRYPTO_BIG_NUMBER 9999999 /* a big number */
/*
* For crypto 5.0 which has burst size alignment requirement.
*/
#define MAX_ALIGN_SIZE 0x40
#define QCRYPTO_HIGH_BANDWIDTH_TIMEOUT 1000
/* Status of response workq */
enum resp_workq_sts {
NOT_SCHEDULED = 0,
IS_SCHEDULED = 1,
SCHEDULE_AGAIN = 2
};
/* Status of req processing by CEs */
enum req_processing_sts {
STOPPED = 0,
IN_PROGRESS = 1
};
enum qcrypto_bus_state {
BUS_NO_BANDWIDTH = 0,
BUS_HAS_BANDWIDTH,
BUS_BANDWIDTH_RELEASING,
BUS_BANDWIDTH_ALLOCATING,
BUS_SUSPENDED,
BUS_SUSPENDING,
};
struct crypto_stat {
u64 aead_sha1_aes_enc;
u64 aead_sha1_aes_dec;
u64 aead_sha1_des_enc;
u64 aead_sha1_des_dec;
u64 aead_sha1_3des_enc;
u64 aead_sha1_3des_dec;
u64 aead_sha256_aes_enc;
u64 aead_sha256_aes_dec;
u64 aead_sha256_des_enc;
u64 aead_sha256_des_dec;
u64 aead_sha256_3des_enc;
u64 aead_sha256_3des_dec;
u64 aead_ccm_aes_enc;
u64 aead_ccm_aes_dec;
u64 aead_rfc4309_ccm_aes_enc;
u64 aead_rfc4309_ccm_aes_dec;
u64 aead_op_success;
u64 aead_op_fail;
u64 aead_bad_msg;
u64 ablk_cipher_aes_enc;
u64 ablk_cipher_aes_dec;
u64 ablk_cipher_des_enc;
u64 ablk_cipher_des_dec;
u64 ablk_cipher_3des_enc;
u64 ablk_cipher_3des_dec;
u64 ablk_cipher_op_success;
u64 ablk_cipher_op_fail;
u64 sha1_digest;
u64 sha256_digest;
u64 sha1_hmac_digest;
u64 sha256_hmac_digest;
u64 ahash_op_success;
u64 ahash_op_fail;
};
static struct crypto_stat _qcrypto_stat;
static struct dentry *_debug_dent;
static char _debug_read_buf[DEBUG_MAX_RW_BUF];
static bool _qcrypto_init_assign;
struct crypto_priv;
struct qcrypto_req_control {
unsigned int index;
bool in_use;
struct crypto_engine *pce;
struct crypto_async_request *req;
struct qcrypto_resp_ctx *arsp;
int res; /* execution result */
};
struct crypto_engine {
struct list_head elist;
void *qce; /* qce handle */
struct platform_device *pdev; /* platform device */
struct crypto_priv *pcp;
uint32_t bus_scale_handle;
struct crypto_queue req_queue; /*
* request queue for those requests
* that have this engine assigned
* waiting to be executed
*/
u64 total_req;
u64 err_req;
u32 unit;
u32 ce_device;
u32 ce_hw_instance;
unsigned int signature;
enum qcrypto_bus_state bw_state;
bool high_bw_req;
struct timer_list bw_reaper_timer;
struct work_struct bw_reaper_ws;
struct work_struct bw_allocate_ws;
/* engine execution sequence number */
u32 active_seq;
/* last QCRYPTO_HIGH_BANDWIDTH_TIMEOUT active_seq */
u32 last_active_seq;
bool check_flag;
/*Added to support multi-requests*/
unsigned int max_req;
struct qcrypto_req_control *preq_pool;
atomic_t req_count;
bool issue_req; /* an request is being issued to qce */
bool first_engine; /* this engine is the first engine or not */
unsigned int irq_cpu; /* the cpu running the irq of this engine */
unsigned int max_req_used; /* debug stats */
};
#define MAX_SMP_CPU 8
struct crypto_priv {
/* CE features supported by target device*/
struct msm_ce_hw_support platform_support;
/* CE features/algorithms supported by HW engine*/
struct ce_hw_support ce_support;
/* the lock protects crypto queue and req */
spinlock_t lock;
/* list of registered algorithms */
struct list_head alg_list;
/* current active request */
struct crypto_async_request *req;
struct work_struct unlock_ce_ws;
struct list_head engine_list; /* list of qcrypto engines */
int32_t total_units; /* total units of engines */
struct mutex engine_lock;
struct crypto_engine *next_engine; /* next assign engine */
struct crypto_queue req_queue; /*
* request queue for those requests
* that waiting for an available
* engine.
*/
struct llist_head ordered_resp_list; /* Queue to maintain
* responses in sequence.
*/
atomic_t resp_cnt;
struct workqueue_struct *resp_wq;
struct work_struct resp_work; /*
* Workq to send responses
* in sequence.
*/
enum resp_workq_sts sched_resp_workq_status;
enum req_processing_sts ce_req_proc_sts;
int cpu_getting_irqs_frm_first_ce;
struct crypto_engine *first_engine;
struct crypto_engine *scheduled_eng; /* last engine scheduled */
/* debug stats */
unsigned int no_avail;
unsigned int resp_stop;
unsigned int resp_start;
unsigned int max_qlen;
unsigned int queue_work_eng3;
unsigned int queue_work_not_eng3;
unsigned int queue_work_not_eng3_nz;
unsigned int max_resp_qlen;
unsigned int max_reorder_cnt;
unsigned int cpu_req[MAX_SMP_CPU+1];
};
static struct crypto_priv qcrypto_dev;
static struct crypto_engine *_qcrypto_static_assign_engine(
struct crypto_priv *cp);
static struct crypto_engine *_avail_eng(struct crypto_priv *cp);
static struct qcrypto_req_control *qcrypto_alloc_req_control(
struct crypto_engine *pce)
{
int i;
struct qcrypto_req_control *pqcrypto_req_control = pce->preq_pool;
unsigned int req_count;
for (i = 0; i < pce->max_req; i++) {
if (xchg(&pqcrypto_req_control->in_use, true) == false) {
req_count = atomic_inc_return(&pce->req_count);
if (req_count > pce->max_req_used)
pce->max_req_used = req_count;
return pqcrypto_req_control;
}
pqcrypto_req_control++;
}
return NULL;
}
static void qcrypto_free_req_control(struct crypto_engine *pce,
struct qcrypto_req_control *preq)
{
/* do this before free req */
preq->req = NULL;
preq->arsp = NULL;
/* free req */
if (xchg(&preq->in_use, false) == false)
pr_warn("request info %pK free already\n", preq);
else
atomic_dec(&pce->req_count);
}
static struct qcrypto_req_control *find_req_control_for_areq(
struct crypto_engine *pce,
struct crypto_async_request *areq)
{
int i;
struct qcrypto_req_control *pqcrypto_req_control = pce->preq_pool;
for (i = 0; i < pce->max_req; i++) {
if (pqcrypto_req_control->req == areq)
return pqcrypto_req_control;
pqcrypto_req_control++;
}
return NULL;
}
static void qcrypto_init_req_control(struct crypto_engine *pce,
struct qcrypto_req_control *pqcrypto_req_control)
{
int i;
pce->preq_pool = pqcrypto_req_control;
atomic_set(&pce->req_count, 0);
for (i = 0; i < pce->max_req; i++) {
pqcrypto_req_control->index = i;
pqcrypto_req_control->in_use = false;
pqcrypto_req_control->pce = pce;
pqcrypto_req_control++;
}
}
static struct crypto_engine *_qrypto_find_pengine_device(struct crypto_priv *cp,
unsigned int device)
{
struct crypto_engine *entry = NULL;
unsigned long flags;
spin_lock_irqsave(&cp->lock, flags);
list_for_each_entry(entry, &cp->engine_list, elist) {
if (entry->ce_device == device)
break;
}
spin_unlock_irqrestore(&cp->lock, flags);
if (((entry != NULL) && (entry->ce_device != device)) ||
(entry == NULL)) {
pr_err("Device node for CE device %d NOT FOUND!!\n",
device);
return NULL;
}
return entry;
}
static struct crypto_engine *_qrypto_find_pengine_device_hw
(struct crypto_priv *cp,
u32 device,
u32 hw_instance)
{
struct crypto_engine *entry = NULL;
unsigned long flags;
spin_lock_irqsave(&cp->lock, flags);
list_for_each_entry(entry, &cp->engine_list, elist) {
if ((entry->ce_device == device) &&
(entry->ce_hw_instance == hw_instance))
break;
}
spin_unlock_irqrestore(&cp->lock, flags);
if (((entry != NULL) &&
((entry->ce_device != device)
|| (entry->ce_hw_instance != hw_instance)))
|| (entry == NULL)) {
pr_err("Device node for CE device %d NOT FOUND!!\n",
device);
return NULL;
}
return entry;
}
int qcrypto_get_num_engines(void)
{
struct crypto_priv *cp = &qcrypto_dev;
struct crypto_engine *entry = NULL;
int count = 0;
list_for_each_entry(entry, &cp->engine_list, elist) {
count++;
}
return count;
}
EXPORT_SYMBOL(qcrypto_get_num_engines);
void qcrypto_get_engine_list(size_t num_engines,
struct crypto_engine_entry *arr)
{
struct crypto_priv *cp = &qcrypto_dev;
struct crypto_engine *entry = NULL;
size_t arr_index = 0;
list_for_each_entry(entry, &cp->engine_list, elist) {
arr[arr_index].ce_device = entry->ce_device;
arr[arr_index].hw_instance = entry->ce_hw_instance;
arr_index++;
if (arr_index >= num_engines)
break;
}
}
EXPORT_SYMBOL(qcrypto_get_engine_list);
enum qcrypto_alg_type {
QCRYPTO_ALG_CIPHER = 0,
QCRYPTO_ALG_SHA = 1,
QCRYPTO_ALG_AEAD = 2,
QCRYPTO_ALG_LAST
};
struct qcrypto_alg {
struct list_head entry;
struct crypto_alg cipher_alg;
struct ahash_alg sha_alg;
struct aead_alg aead_alg;
enum qcrypto_alg_type alg_type;
struct crypto_priv *cp;
};
#define QCRYPTO_MAX_KEY_SIZE 64
/* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
#define QCRYPTO_MAX_IV_LENGTH 16
#define QCRYPTO_CCM4309_NONCE_LEN 3
struct qcrypto_cipher_ctx {
struct list_head rsp_queue; /* response queue */
struct crypto_engine *pengine; /* fixed engine assigned to this tfm */
struct crypto_priv *cp;
unsigned int flags;
enum qce_hash_alg_enum auth_alg; /* for aead */
u8 auth_key[QCRYPTO_MAX_KEY_SIZE];
u8 iv[QCRYPTO_MAX_IV_LENGTH];
u8 enc_key[QCRYPTO_MAX_KEY_SIZE];
unsigned int enc_key_len;
unsigned int authsize;
unsigned int auth_key_len;
u8 ccm4309_nonce[QCRYPTO_CCM4309_NONCE_LEN];
struct crypto_skcipher *cipher_aes192_fb;
struct crypto_ahash *ahash_aead_aes192_fb;
};
struct qcrypto_resp_ctx {
struct list_head list;
struct llist_node llist;
struct crypto_async_request *async_req; /* async req */
int res; /* execution result */
};
struct qcrypto_cipher_req_ctx {
struct qcrypto_resp_ctx rsp_entry;/* rsp entry. */
struct crypto_engine *pengine; /* engine assigned to this request */
u8 *iv;
u8 rfc4309_iv[QCRYPTO_MAX_IV_LENGTH];
unsigned int ivsize;
int aead;
int ccmtype; /* default: 0, rfc4309: 1 */
struct scatterlist asg; /* Formatted associated data sg */
unsigned char *adata; /* Pointer to formatted assoc data */
enum qce_cipher_alg_enum alg;
enum qce_cipher_dir_enum dir;
enum qce_cipher_mode_enum mode;
struct scatterlist *orig_src; /* Original src sg ptr */
struct scatterlist *orig_dst; /* Original dst sg ptr */
struct scatterlist dsg; /* Dest Data sg */
struct scatterlist ssg; /* Source Data sg */
unsigned char *data; /* Incoming data pointer*/
struct aead_request *aead_req;
struct ahash_request *fb_hash_req;
uint8_t fb_ahash_digest[SHA256_DIGEST_SIZE];
struct scatterlist fb_ablkcipher_src_sg[2];
struct scatterlist fb_ablkcipher_dst_sg[2];
char *fb_aes_iv;
unsigned int fb_ahash_length;
struct skcipher_request *fb_aes_req;
struct scatterlist *fb_aes_src;
struct scatterlist *fb_aes_dst;
unsigned int fb_aes_cryptlen;
};
#define SHA_MAX_BLOCK_SIZE SHA256_BLOCK_SIZE
#define SHA_MAX_STATE_SIZE (SHA256_DIGEST_SIZE / sizeof(u32))
#define SHA_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE
#define MSM_QCRYPTO_REQ_QUEUE_LENGTH 768
#define COMPLETION_CB_BACKLOG_LENGTH_STOP 400
#define COMPLETION_CB_BACKLOG_LENGTH_START \
(COMPLETION_CB_BACKLOG_LENGTH_STOP / 2)
static uint8_t _std_init_vector_sha1_uint8[] = {
0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, 0x89,
0x98, 0xBA, 0xDC, 0xFE, 0x10, 0x32, 0x54, 0x76,
0xC3, 0xD2, 0xE1, 0xF0
};
/* standard initialization vector for SHA-256, source: FIPS 180-2 */
static uint8_t _std_init_vector_sha256_uint8[] = {
0x6A, 0x09, 0xE6, 0x67, 0xBB, 0x67, 0xAE, 0x85,
0x3C, 0x6E, 0xF3, 0x72, 0xA5, 0x4F, 0xF5, 0x3A,
0x51, 0x0E, 0x52, 0x7F, 0x9B, 0x05, 0x68, 0x8C,
0x1F, 0x83, 0xD9, 0xAB, 0x5B, 0xE0, 0xCD, 0x19
};
struct qcrypto_sha_ctx {
struct list_head rsp_queue; /* response queue */
struct crypto_engine *pengine; /* fixed engine assigned to this tfm */
struct crypto_priv *cp;
unsigned int flags;
enum qce_hash_alg_enum alg;
uint32_t diglen;
uint32_t authkey_in_len;
uint8_t authkey[SHA_MAX_BLOCK_SIZE];
struct ahash_request *ahash_req;
struct completion ahash_req_complete;
};
struct qcrypto_sha_req_ctx {
struct qcrypto_resp_ctx rsp_entry;/* rsp entry. */
struct crypto_engine *pengine; /* engine assigned to this request */
struct scatterlist *src;
uint32_t nbytes;
struct scatterlist *orig_src; /* Original src sg ptr */
struct scatterlist dsg; /* Data sg */
unsigned char *data; /* Incoming data pointer*/
unsigned char *data2; /* Updated data pointer*/
uint32_t byte_count[4];
u64 count;
uint8_t first_blk;
uint8_t last_blk;
uint8_t trailing_buf[SHA_MAX_BLOCK_SIZE];
uint32_t trailing_buf_len;
/* dma buffer, Internal use */
uint8_t staging_dmabuf
[SHA_MAX_BLOCK_SIZE+SHA_MAX_DIGEST_SIZE+MAX_ALIGN_SIZE];
uint8_t digest[SHA_MAX_DIGEST_SIZE];
struct scatterlist sg[2];
};
static void _byte_stream_to_words(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned int n;
n = len / sizeof(uint32_t);
for (; n > 0; n--) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00) |
(*(b+3) & 0xff);
b += sizeof(uint32_t);
iv++;
}
n = len % sizeof(uint32_t);
if (n == 3) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00);
} else if (n == 2) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000);
} else if (n == 1) {
*iv = ((*b << 24) & 0xff000000);
}
}
static void _words_to_byte_stream(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned int n = len / sizeof(uint32_t);
for (; n > 0; n--) {
*b++ = (unsigned char) ((*iv >> 24) & 0xff);
*b++ = (unsigned char) ((*iv >> 16) & 0xff);
*b++ = (unsigned char) ((*iv >> 8) & 0xff);
*b++ = (unsigned char) (*iv & 0xff);
iv++;
}
n = len % sizeof(uint32_t);
if (n == 3) {
*b++ = (unsigned char) ((*iv >> 24) & 0xff);
*b++ = (unsigned char) ((*iv >> 16) & 0xff);
*b = (unsigned char) ((*iv >> 8) & 0xff);
} else if (n == 2) {
*b++ = (unsigned char) ((*iv >> 24) & 0xff);
*b = (unsigned char) ((*iv >> 16) & 0xff);
} else if (n == 1) {
*b = (unsigned char) ((*iv >> 24) & 0xff);
}
}
static void qcrypto_ce_set_bus(struct crypto_engine *pengine,
bool high_bw_req)
{
struct crypto_priv *cp = pengine->pcp;
unsigned int control_flag;
int ret = 0;
if (cp->ce_support.req_bw_before_clk) {
if (high_bw_req)
control_flag = QCE_BW_REQUEST_FIRST;
else
control_flag = QCE_CLK_DISABLE_FIRST;
} else {
if (high_bw_req)
control_flag = QCE_CLK_ENABLE_FIRST;
else
control_flag = QCE_BW_REQUEST_RESET_FIRST;
}
switch (control_flag) {
case QCE_CLK_ENABLE_FIRST:
ret = qce_enable_clk(pengine->qce);
if (ret) {
pr_err("%s Unable enable clk\n", __func__);
return;
}
ret = msm_bus_scale_client_update_request(
pengine->bus_scale_handle, 1);
if (ret) {
pr_err("%s Unable to set high bw\n", __func__);
ret = qce_disable_clk(pengine->qce);
if (ret)
pr_err("%s Unable disable clk\n", __func__);
return;
}
break;
case QCE_BW_REQUEST_FIRST:
ret = msm_bus_scale_client_update_request(
pengine->bus_scale_handle, 1);
if (ret) {
pr_err("%s Unable to set high bw\n", __func__);
return;
}
ret = qce_enable_clk(pengine->qce);
if (ret) {
pr_err("%s Unable enable clk\n", __func__);
ret = msm_bus_scale_client_update_request(
pengine->bus_scale_handle, 0);
if (ret)
pr_err("%s Unable to set low bw\n", __func__);
return;
}
break;
case QCE_CLK_DISABLE_FIRST:
ret = qce_disable_clk(pengine->qce);
if (ret) {
pr_err("%s Unable to disable clk\n", __func__);
return;
}
ret = msm_bus_scale_client_update_request(
pengine->bus_scale_handle, 0);
if (ret) {
pr_err("%s Unable to set low bw\n", __func__);
ret = qce_enable_clk(pengine->qce);
if (ret)
pr_err("%s Unable enable clk\n", __func__);
return;
}
break;
case QCE_BW_REQUEST_RESET_FIRST:
ret = msm_bus_scale_client_update_request(
pengine->bus_scale_handle, 0);
if (ret) {
pr_err("%s Unable to set low bw\n", __func__);
return;
}
ret = qce_disable_clk(pengine->qce);
if (ret) {
pr_err("%s Unable to disable clk\n", __func__);
ret = msm_bus_scale_client_update_request(
pengine->bus_scale_handle, 1);
if (ret)
pr_err("%s Unable to set high bw\n", __func__);
return;
}
break;
default:
return;
}
}
static void qcrypto_bw_reaper_timer_callback(unsigned long data)
{
struct crypto_engine *pengine = (struct crypto_engine *)data;
schedule_work(&pengine->bw_reaper_ws);
}
static void qcrypto_bw_set_timeout(struct crypto_engine *pengine)
{
pengine->bw_reaper_timer.data =
(unsigned long)(pengine);
pengine->bw_reaper_timer.expires = jiffies +
msecs_to_jiffies(QCRYPTO_HIGH_BANDWIDTH_TIMEOUT);
mod_timer(&(pengine->bw_reaper_timer),
pengine->bw_reaper_timer.expires);
}
static void qcrypto_ce_bw_allocate_req(struct crypto_engine *pengine)
{
schedule_work(&pengine->bw_allocate_ws);
}
static int _start_qcrypto_process(struct crypto_priv *cp,
struct crypto_engine *pengine);
static void qcrypto_bw_allocate_work(struct work_struct *work)
{
struct crypto_engine *pengine = container_of(work,
struct crypto_engine, bw_allocate_ws);
unsigned long flags;
struct crypto_priv *cp = pengine->pcp;
spin_lock_irqsave(&cp->lock, flags);
pengine->bw_state = BUS_BANDWIDTH_ALLOCATING;
spin_unlock_irqrestore(&cp->lock, flags);
qcrypto_ce_set_bus(pengine, true);
qcrypto_bw_set_timeout(pengine);
spin_lock_irqsave(&cp->lock, flags);
pengine->bw_state = BUS_HAS_BANDWIDTH;
pengine->high_bw_req = false;
pengine->active_seq++;
pengine->check_flag = true;
spin_unlock_irqrestore(&cp->lock, flags);
_start_qcrypto_process(cp, pengine);
};
static void qcrypto_bw_reaper_work(struct work_struct *work)
{
struct crypto_engine *pengine = container_of(work,
struct crypto_engine, bw_reaper_ws);
struct crypto_priv *cp = pengine->pcp;
unsigned long flags;
u32 active_seq;
bool restart = false;
spin_lock_irqsave(&cp->lock, flags);
active_seq = pengine->active_seq;
if (pengine->bw_state == BUS_HAS_BANDWIDTH &&
(active_seq == pengine->last_active_seq)) {
/* check if engine is stuck */
if (atomic_read(&pengine->req_count) > 0) {
if (pengine->check_flag)
dev_warn(&pengine->pdev->dev,
"The engine appears to be stuck seq %d.\n",
active_seq);
pengine->check_flag = false;
goto ret;
}
if (cp->platform_support.bus_scale_table == NULL)
goto ret;
pengine->bw_state = BUS_BANDWIDTH_RELEASING;
spin_unlock_irqrestore(&cp->lock, flags);
qcrypto_ce_set_bus(pengine, false);
spin_lock_irqsave(&cp->lock, flags);
if (pengine->high_bw_req == true) {
/* we got request while we are disabling clock */
pengine->bw_state = BUS_BANDWIDTH_ALLOCATING;
spin_unlock_irqrestore(&cp->lock, flags);
qcrypto_ce_set_bus(pengine, true);
spin_lock_irqsave(&cp->lock, flags);
pengine->bw_state = BUS_HAS_BANDWIDTH;
pengine->high_bw_req = false;
restart = true;
} else
pengine->bw_state = BUS_NO_BANDWIDTH;
}
ret:
pengine->last_active_seq = active_seq;
spin_unlock_irqrestore(&cp->lock, flags);
if (restart)
_start_qcrypto_process(cp, pengine);
if (pengine->bw_state != BUS_NO_BANDWIDTH)
qcrypto_bw_set_timeout(pengine);
}
static int qcrypto_count_sg(struct scatterlist *sg, int nbytes)
{
int i;
for (i = 0; nbytes > 0 && sg != NULL; i++, sg = sg_next(sg))
nbytes -= sg->length;
return i;
}
static size_t qcrypto_sg_copy_from_buffer(struct scatterlist *sgl,
unsigned int nents, void *buf, size_t buflen)
{
int i;
size_t offset, len;
for (i = 0, offset = 0; i < nents; ++i) {
len = sg_copy_from_buffer(sgl, 1, buf, buflen);
buf += len;
buflen -= len;
offset += len;
sgl = sg_next(sgl);
}
return offset;
}
static size_t qcrypto_sg_copy_to_buffer(struct scatterlist *sgl,
unsigned int nents, void *buf, size_t buflen)
{
int i;
size_t offset, len;
for (i = 0, offset = 0; i < nents; ++i) {
len = sg_copy_to_buffer(sgl, 1, buf, buflen);
buf += len;
buflen -= len;
offset += len;
sgl = sg_next(sgl);
}
return offset;
}
static struct qcrypto_alg *_qcrypto_sha_alg_alloc(struct crypto_priv *cp,
struct ahash_alg *template)
{
struct qcrypto_alg *q_alg;
q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL);
if (!q_alg)
return ERR_PTR(-ENOMEM);
q_alg->alg_type = QCRYPTO_ALG_SHA;
q_alg->sha_alg = *template;
q_alg->cp = cp;
return q_alg;
};
static struct qcrypto_alg *_qcrypto_cipher_alg_alloc(struct crypto_priv *cp,
struct crypto_alg *template)
{
struct qcrypto_alg *q_alg;
q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL);
if (!q_alg)
return ERR_PTR(-ENOMEM);
q_alg->alg_type = QCRYPTO_ALG_CIPHER;
q_alg->cipher_alg = *template;
q_alg->cp = cp;
return q_alg;
};
static struct qcrypto_alg *_qcrypto_aead_alg_alloc(struct crypto_priv *cp,
struct aead_alg *template)
{
struct qcrypto_alg *q_alg;
q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL);
if (!q_alg)
return ERR_PTR(-ENOMEM);
q_alg->alg_type = QCRYPTO_ALG_AEAD;
q_alg->aead_alg = *template;
q_alg->cp = cp;
return q_alg;
};
static int _qcrypto_cipher_ctx_init(struct qcrypto_cipher_ctx *ctx,
struct qcrypto_alg *q_alg)
{
if (!ctx || !q_alg) {
pr_err("ctx or q_alg is NULL\n");
return -EINVAL;
}
ctx->flags = 0;
/* update context with ptr to cp */
ctx->cp = q_alg->cp;
/* random first IV */
get_random_bytes(ctx->iv, QCRYPTO_MAX_IV_LENGTH);
if (_qcrypto_init_assign) {
ctx->pengine = _qcrypto_static_assign_engine(ctx->cp);
if (ctx->pengine == NULL)
return -ENODEV;
} else
ctx->pengine = NULL;
INIT_LIST_HEAD(&ctx->rsp_queue);
ctx->auth_alg = QCE_HASH_LAST;
return 0;
}
static int _qcrypto_cipher_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct qcrypto_alg *q_alg;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
q_alg = container_of(alg, struct qcrypto_alg, cipher_alg);
return _qcrypto_cipher_ctx_init(ctx, q_alg);
};
static int _qcrypto_ahash_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm);
struct ahash_alg *alg = container_of(crypto_hash_alg_common(ahash),
struct ahash_alg, halg);
struct qcrypto_alg *q_alg = container_of(alg, struct qcrypto_alg,
sha_alg);
crypto_ahash_set_reqsize(ahash, sizeof(struct qcrypto_sha_req_ctx));
/* update context with ptr to cp */
sha_ctx->cp = q_alg->cp;
sha_ctx->flags = 0;
sha_ctx->ahash_req = NULL;
if (_qcrypto_init_assign) {
sha_ctx->pengine = _qcrypto_static_assign_engine(sha_ctx->cp);
if (sha_ctx->pengine == NULL)
return -ENODEV;
} else
sha_ctx->pengine = NULL;
INIT_LIST_HEAD(&sha_ctx->rsp_queue);
return 0;
};
static void _qcrypto_ahash_cra_exit(struct crypto_tfm *tfm)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm);
if (!list_empty(&sha_ctx->rsp_queue))
pr_err("%s: requests still outstanding\n", __func__);
if (sha_ctx->ahash_req != NULL) {
ahash_request_free(sha_ctx->ahash_req);
sha_ctx->ahash_req = NULL;
}
};
static void _crypto_sha_hmac_ahash_req_complete(
struct crypto_async_request *req, int err);
static int _qcrypto_ahash_hmac_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm);
int ret = 0;
ret = _qcrypto_ahash_cra_init(tfm);
if (ret)
return ret;
sha_ctx->ahash_req = ahash_request_alloc(ahash, GFP_KERNEL);
if (sha_ctx->ahash_req == NULL) {
_qcrypto_ahash_cra_exit(tfm);
return -ENOMEM;
}
init_completion(&sha_ctx->ahash_req_complete);
ahash_request_set_callback(sha_ctx->ahash_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
_crypto_sha_hmac_ahash_req_complete,
&sha_ctx->ahash_req_complete);
crypto_ahash_clear_flags(ahash, ~0);
return 0;
};
static int _qcrypto_cra_ablkcipher_init(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct qcrypto_cipher_req_ctx);
return _qcrypto_cipher_cra_init(tfm);
};
static int _qcrypto_cra_aes_ablkcipher_init(struct crypto_tfm *tfm)
{
const char *name = tfm->__crt_alg->cra_name;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
int ret;
struct crypto_priv *cp = &qcrypto_dev;
if (cp->ce_support.use_sw_aes_cbc_ecb_ctr_algo) {
ctx->cipher_aes192_fb = NULL;
return _qcrypto_cra_ablkcipher_init(tfm);
}
ctx->cipher_aes192_fb = crypto_alloc_skcipher(name, 0,
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->cipher_aes192_fb)) {
pr_err("Error allocating fallback algo %s\n", name);
ret = PTR_ERR(ctx->cipher_aes192_fb);
ctx->cipher_aes192_fb = NULL;
return ret;
}
return _qcrypto_cra_ablkcipher_init(tfm);
};
static int _qcrypto_aead_cra_init(struct crypto_aead *tfm)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_alg *aeadalg = crypto_aead_alg(tfm);
struct qcrypto_alg *q_alg = container_of(aeadalg, struct qcrypto_alg,
aead_alg);
return _qcrypto_cipher_ctx_init(ctx, q_alg);
};
static int _qcrypto_cra_aead_sha1_init(struct crypto_aead *tfm)
{
int rc;
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx));
rc = _qcrypto_aead_cra_init(tfm);
ctx->auth_alg = QCE_HASH_SHA1_HMAC;
return rc;
}
static int _qcrypto_cra_aead_sha256_init(struct crypto_aead *tfm)
{
int rc;
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx));
rc = _qcrypto_aead_cra_init(tfm);
ctx->auth_alg = QCE_HASH_SHA256_HMAC;
return rc;
}
static int _qcrypto_cra_aead_ccm_init(struct crypto_aead *tfm)
{
int rc;
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx));
rc = _qcrypto_aead_cra_init(tfm);
ctx->auth_alg = QCE_HASH_AES_CMAC;
return rc;
}
static int _qcrypto_cra_aead_rfc4309_ccm_init(struct crypto_aead *tfm)
{
int rc;
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx));
rc = _qcrypto_aead_cra_init(tfm);
ctx->auth_alg = QCE_HASH_AES_CMAC;
return rc;
}
static int _qcrypto_cra_aead_aes_sha1_init(struct crypto_aead *tfm)
{
int rc;
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_priv *cp = &qcrypto_dev;
crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx));
rc = _qcrypto_aead_cra_init(tfm);
if (rc)
return rc;
ctx->cipher_aes192_fb = NULL;
ctx->ahash_aead_aes192_fb = NULL;
if (!cp->ce_support.aes_key_192) {
ctx->cipher_aes192_fb = crypto_alloc_skcipher(
"cbc(aes)", 0, 0);
if (IS_ERR(ctx->cipher_aes192_fb)) {
ctx->cipher_aes192_fb = NULL;
} else {
ctx->ahash_aead_aes192_fb = crypto_alloc_ahash(
"hmac(sha1)", 0, 0);
if (IS_ERR(ctx->ahash_aead_aes192_fb)) {
ctx->ahash_aead_aes192_fb = NULL;
crypto_free_skcipher(ctx->cipher_aes192_fb);
ctx->cipher_aes192_fb = NULL;
}
}
}
ctx->auth_alg = QCE_HASH_SHA1_HMAC;
return 0;
}
static int _qcrypto_cra_aead_aes_sha256_init(struct crypto_aead *tfm)
{
int rc;
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_priv *cp = &qcrypto_dev;
crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx));
rc = _qcrypto_aead_cra_init(tfm);
if (rc)
return rc;
ctx->cipher_aes192_fb = NULL;
ctx->ahash_aead_aes192_fb = NULL;
if (!cp->ce_support.aes_key_192) {
ctx->cipher_aes192_fb = crypto_alloc_skcipher(
"cbc(aes)", 0, 0);
if (IS_ERR(ctx->cipher_aes192_fb)) {
ctx->cipher_aes192_fb = NULL;
} else {
ctx->ahash_aead_aes192_fb = crypto_alloc_ahash(
"hmac(sha256)", 0, 0);
if (IS_ERR(ctx->ahash_aead_aes192_fb)) {
ctx->ahash_aead_aes192_fb = NULL;
crypto_free_skcipher(ctx->cipher_aes192_fb);
ctx->cipher_aes192_fb = NULL;
}
}
}
ctx->auth_alg = QCE_HASH_SHA256_HMAC;
return 0;
}
static void _qcrypto_cra_ablkcipher_exit(struct crypto_tfm *tfm)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
if (!list_empty(&ctx->rsp_queue))
pr_err("_qcrypto__cra_ablkcipher_exit: requests still outstanding");
};
static void _qcrypto_cra_aes_ablkcipher_exit(struct crypto_tfm *tfm)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
_qcrypto_cra_ablkcipher_exit(tfm);
if (ctx->cipher_aes192_fb)
crypto_free_skcipher(ctx->cipher_aes192_fb);
ctx->cipher_aes192_fb = NULL;
}
static void _qcrypto_cra_aead_exit(struct crypto_aead *tfm)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
if (!list_empty(&ctx->rsp_queue))
pr_err("_qcrypto__cra_aead_exit: requests still outstanding");
}
static void _qcrypto_cra_aead_aes_exit(struct crypto_aead *tfm)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
if (!list_empty(&ctx->rsp_queue))
pr_err("_qcrypto__cra_aead_exit: requests still outstanding");
if (ctx->cipher_aes192_fb)
crypto_free_skcipher(ctx->cipher_aes192_fb);
if (ctx->ahash_aead_aes192_fb)
crypto_free_ahash(ctx->ahash_aead_aes192_fb);
ctx->cipher_aes192_fb = NULL;
ctx->ahash_aead_aes192_fb = NULL;
}
static int _disp_stats(int id)
{
struct crypto_stat *pstat;
int len = 0;
unsigned long flags;
struct crypto_priv *cp = &qcrypto_dev;
struct crypto_engine *pe;
int i;
pstat = &_qcrypto_stat;
len = scnprintf(_debug_read_buf, DEBUG_MAX_RW_BUF - 1,
"\nQTI crypto accelerator %d Statistics\n",
id + 1);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER AES encryption : %llu\n",
pstat->ablk_cipher_aes_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER AES decryption : %llu\n",
pstat->ablk_cipher_aes_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER DES encryption : %llu\n",
pstat->ablk_cipher_des_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER DES decryption : %llu\n",
pstat->ablk_cipher_des_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER 3DES encryption : %llu\n",
pstat->ablk_cipher_3des_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER 3DES decryption : %llu\n",
pstat->ablk_cipher_3des_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER operation success : %llu\n",
pstat->ablk_cipher_op_success);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER operation fail : %llu\n",
pstat->ablk_cipher_op_fail);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
"\n");
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-AES encryption : %llu\n",
pstat->aead_sha1_aes_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-AES decryption : %llu\n",
pstat->aead_sha1_aes_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-DES encryption : %llu\n",
pstat->aead_sha1_des_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-DES decryption : %llu\n",
pstat->aead_sha1_des_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-3DES encryption : %llu\n",
pstat->aead_sha1_3des_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-3DES decryption : %llu\n",
pstat->aead_sha1_3des_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA256-AES encryption : %llu\n",
pstat->aead_sha256_aes_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA256-AES decryption : %llu\n",
pstat->aead_sha256_aes_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA256-DES encryption : %llu\n",
pstat->aead_sha256_des_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA256-DES decryption : %llu\n",
pstat->aead_sha256_des_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA256-3DES encryption : %llu\n",
pstat->aead_sha256_3des_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA256-3DES decryption : %llu\n",
pstat->aead_sha256_3des_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD CCM-AES encryption : %llu\n",
pstat->aead_ccm_aes_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD CCM-AES decryption : %llu\n",
pstat->aead_ccm_aes_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD RFC4309-CCM-AES encryption : %llu\n",
pstat->aead_rfc4309_ccm_aes_enc);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD RFC4309-CCM-AES decryption : %llu\n",
pstat->aead_rfc4309_ccm_aes_dec);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD operation success : %llu\n",
pstat->aead_op_success);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD operation fail : %llu\n",
pstat->aead_op_fail);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD bad message : %llu\n",
pstat->aead_bad_msg);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
"\n");
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AHASH SHA1 digest : %llu\n",
pstat->sha1_digest);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AHASH SHA256 digest : %llu\n",
pstat->sha256_digest);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AHASH SHA1 HMAC digest : %llu\n",
pstat->sha1_hmac_digest);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AHASH SHA256 HMAC digest : %llu\n",
pstat->sha256_hmac_digest);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AHASH operation success : %llu\n",
pstat->ahash_op_success);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AHASH operation fail : %llu\n",
pstat->ahash_op_fail);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" resp start, resp stop, max rsp queue reorder-cnt : %u %u %u %u\n",
cp->resp_start, cp->resp_stop,
cp->max_resp_qlen, cp->max_reorder_cnt);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" max queue legnth, no avail : %u %u\n",
cp->max_qlen, cp->no_avail);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" work queue : %u %u %u\n",
cp->queue_work_eng3,
cp->queue_work_not_eng3,
cp->queue_work_not_eng3_nz);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
"\n");
spin_lock_irqsave(&cp->lock, flags);
list_for_each_entry(pe, &cp->engine_list, elist) {
len += scnprintf(
_debug_read_buf + len,
DEBUG_MAX_RW_BUF - len - 1,
" Engine %4d Req max %d : %llu\n",
pe->unit,
pe->max_req_used,
pe->total_req
);
len += scnprintf(
_debug_read_buf + len,
DEBUG_MAX_RW_BUF - len - 1,
" Engine %4d Req Error : %llu\n",
pe->unit,
pe->err_req
);
qce_get_driver_stats(pe->qce);
}
spin_unlock_irqrestore(&cp->lock, flags);
for (i = 0; i < MAX_SMP_CPU+1; i++)
if (cp->cpu_req[i])
len += scnprintf(
_debug_read_buf + len,
DEBUG_MAX_RW_BUF - len - 1,
"CPU %d Issue Req : %d\n",
i, cp->cpu_req[i]);
return len;
}
static void _qcrypto_remove_engine(struct crypto_engine *pengine)
{
struct crypto_priv *cp;
struct qcrypto_alg *q_alg;
struct qcrypto_alg *n;
unsigned long flags;
struct crypto_engine *pe;
cp = pengine->pcp;
spin_lock_irqsave(&cp->lock, flags);
list_del(&pengine->elist);
if (pengine->first_engine) {
cp->first_engine = NULL;
pe = list_first_entry(&cp->engine_list, struct crypto_engine,
elist);
if (pe) {
pe->first_engine = true;
cp->first_engine = pe;
}
}
if (cp->next_engine == pengine)
cp->next_engine = NULL;
if (cp->scheduled_eng == pengine)
cp->scheduled_eng = NULL;
spin_unlock_irqrestore(&cp->lock, flags);
cp->total_units--;
cancel_work_sync(&pengine->bw_reaper_ws);
cancel_work_sync(&pengine->bw_allocate_ws);
del_timer_sync(&pengine->bw_reaper_timer);
kzfree(pengine->preq_pool);
if (cp->total_units)
return;
list_for_each_entry_safe(q_alg, n, &cp->alg_list, entry) {
if (q_alg->alg_type == QCRYPTO_ALG_CIPHER)
crypto_unregister_alg(&q_alg->cipher_alg);
if (q_alg->alg_type == QCRYPTO_ALG_SHA)
crypto_unregister_ahash(&q_alg->sha_alg);
if (q_alg->alg_type == QCRYPTO_ALG_AEAD)
crypto_unregister_aead(&q_alg->aead_alg);
list_del(&q_alg->entry);
kzfree(q_alg);
}
}
static int _qcrypto_remove(struct platform_device *pdev)
{
struct crypto_engine *pengine;
struct crypto_priv *cp;
pengine = platform_get_drvdata(pdev);
if (!pengine)
return 0;
cp = pengine->pcp;
mutex_lock(&cp->engine_lock);
_qcrypto_remove_engine(pengine);
mutex_unlock(&cp->engine_lock);
if (msm_bus_scale_client_update_request(pengine->bus_scale_handle, 1))
pr_err("%s Unable to set high bandwidth\n", __func__);
if (pengine->qce)
qce_close(pengine->qce);
if (msm_bus_scale_client_update_request(pengine->bus_scale_handle, 0))
pr_err("%s Unable to set low bandwidth\n", __func__);
msm_bus_scale_unregister_client(pengine->bus_scale_handle);
pengine->bus_scale_handle = 0;
kzfree(pengine);
return 0;
}
static int _qcrypto_check_aes_keylen(struct crypto_ablkcipher *cipher,
struct crypto_priv *cp, unsigned int len)
{
switch (len) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_256:
break;
case AES_KEYSIZE_192:
if (cp->ce_support.aes_key_192)
break;
default:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
return 0;
}
static int _qcrypto_setkey_aes_192_fallback(struct crypto_ablkcipher *cipher,
const u8 *key)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
int ret;
ctx->enc_key_len = AES_KEYSIZE_192;
ctx->cipher_aes192_fb->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
ctx->cipher_aes192_fb->base.crt_flags |=
(cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK);
ret = crypto_skcipher_setkey(ctx->cipher_aes192_fb, key,
AES_KEYSIZE_192);
if (ret) {
tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm->crt_flags |=
(cipher->base.crt_flags & CRYPTO_TFM_RES_MASK);
}
return ret;
}
static int _qcrypto_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_priv *cp = ctx->cp;
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY)
return 0;
if ((len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192)
&& ctx->cipher_aes192_fb)
return _qcrypto_setkey_aes_192_fallback(cipher, key);
if (_qcrypto_check_aes_keylen(cipher, cp, len))
return -EINVAL;
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) {
if (key != NULL) {
memcpy(ctx->enc_key, key, len);
} else {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
}
return 0;
};
static int _qcrypto_setkey_aes_xts(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_priv *cp = ctx->cp;
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY)
return 0;
if (_qcrypto_check_aes_keylen(cipher, cp, len/2))
return -EINVAL;
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) {
if (key != NULL) {
memcpy(ctx->enc_key, key, len);
} else {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
}
return 0;
};
static int _qcrypto_setkey_des(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
u32 tmp[DES_EXPKEY_WORDS];
int ret;
if (!key) {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
ret = des_ekey(tmp, key);
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
pr_err("%s HW KEY usage not supported for DES algorithm\n",
__func__);
return 0;
};
if (len != DES_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY))
memcpy(ctx->enc_key, key, len);
return 0;
};
static int _qcrypto_setkey_3des(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
pr_err("%s HW KEY usage not supported for 3DES algorithm\n",
__func__);
return 0;
};
if (len != DES3_EDE_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) {
if (key != NULL) {
memcpy(ctx->enc_key, key, len);
} else {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
}
return 0;
};
static void seq_response(struct work_struct *work)
{
struct crypto_priv *cp = container_of(work, struct crypto_priv,
resp_work);
struct llist_node *list;
struct llist_node *rev = NULL;
struct crypto_engine *pengine;
unsigned long flags;
int total_unit;
again:
list = llist_del_all(&cp->ordered_resp_list);
if (!list)
goto end;
while (list) {
struct llist_node *t = list;
list = llist_next(list);
t->next = rev;
rev = t;
}
while (rev) {
struct qcrypto_resp_ctx *arsp;
struct crypto_async_request *areq;
arsp = container_of(rev, struct qcrypto_resp_ctx, llist);
rev = llist_next(rev);
areq = arsp->async_req;
local_bh_disable();
areq->complete(areq, arsp->res);
local_bh_enable();
atomic_dec(&cp->resp_cnt);
}
if (atomic_read(&cp->resp_cnt) < COMPLETION_CB_BACKLOG_LENGTH_START &&
(cmpxchg(&cp->ce_req_proc_sts, STOPPED, IN_PROGRESS)
== STOPPED)) {
cp->resp_start++;
for (total_unit = cp->total_units; total_unit-- > 0;) {
spin_lock_irqsave(&cp->lock, flags);
pengine = _avail_eng(cp);
spin_unlock_irqrestore(&cp->lock, flags);
if (pengine)
_start_qcrypto_process(cp, pengine);
else
break;
}
}
end:
if (cmpxchg(&cp->sched_resp_workq_status, SCHEDULE_AGAIN,
IS_SCHEDULED) == SCHEDULE_AGAIN)
goto again;
else if (cmpxchg(&cp->sched_resp_workq_status, IS_SCHEDULED,
NOT_SCHEDULED) == SCHEDULE_AGAIN)
goto end;
}
#define SCHEUDLE_RSP_QLEN_THRESHOLD 64
static void _qcrypto_tfm_complete(struct crypto_engine *pengine, u32 type,
void *tfm_ctx,
struct qcrypto_resp_ctx *cur_arsp,
int res)
{
struct crypto_priv *cp = pengine->pcp;
unsigned long flags;
struct qcrypto_resp_ctx *arsp;
struct list_head *plist;
unsigned int resp_qlen;
unsigned int cnt = 0;
switch (type) {
case CRYPTO_ALG_TYPE_AHASH:
plist = &((struct qcrypto_sha_ctx *) tfm_ctx)->rsp_queue;
break;
case CRYPTO_ALG_TYPE_ABLKCIPHER:
case CRYPTO_ALG_TYPE_AEAD:
default:
plist = &((struct qcrypto_cipher_ctx *) tfm_ctx)->rsp_queue;
break;
}
spin_lock_irqsave(&cp->lock, flags);
cur_arsp->res = res;
while (!list_empty(plist)) {
arsp = list_first_entry(plist,
struct qcrypto_resp_ctx, list);
if (arsp->res == -EINPROGRESS)
break;
list_del(&arsp->list);
llist_add(&arsp->llist, &cp->ordered_resp_list);
atomic_inc(&cp->resp_cnt);
cnt++;
}
resp_qlen = atomic_read(&cp->resp_cnt);
if (resp_qlen > cp->max_resp_qlen)
cp->max_resp_qlen = resp_qlen;
if (cnt > cp->max_reorder_cnt)
cp->max_reorder_cnt = cnt;
if ((resp_qlen >= COMPLETION_CB_BACKLOG_LENGTH_STOP) &&
cmpxchg(&cp->ce_req_proc_sts, IN_PROGRESS,
STOPPED) == IN_PROGRESS) {
cp->resp_stop++;
}
spin_unlock_irqrestore(&cp->lock, flags);
retry:
if (!llist_empty(&cp->ordered_resp_list)) {
unsigned int cpu;
if (pengine->first_engine) {
cpu = WORK_CPU_UNBOUND;
cp->queue_work_eng3++;
} else {
cp->queue_work_not_eng3++;
cpu = cp->cpu_getting_irqs_frm_first_ce;
/*
* If source not the first engine, and there
* are outstanding requests going on first engine,
* skip scheduling of work queue to anticipate
* more may be coming. If the response queue
* length exceeds threshold, to avoid further
* delay, schedule work queue immediately.
*/
if (cp->first_engine && atomic_read(
&cp->first_engine->req_count)) {
if (resp_qlen < SCHEUDLE_RSP_QLEN_THRESHOLD)
return;
cp->queue_work_not_eng3_nz++;
}
}
if (cmpxchg(&cp->sched_resp_workq_status, NOT_SCHEDULED,
IS_SCHEDULED) == NOT_SCHEDULED)
queue_work_on(cpu, cp->resp_wq, &cp->resp_work);
else if (cmpxchg(&cp->sched_resp_workq_status, IS_SCHEDULED,
SCHEDULE_AGAIN) == NOT_SCHEDULED)
goto retry;
}
}
static void req_done(struct qcrypto_req_control *pqcrypto_req_control)
{
struct crypto_engine *pengine;
struct crypto_async_request *areq;
struct crypto_priv *cp;
struct qcrypto_resp_ctx *arsp;
u32 type = 0;
void *tfm_ctx = NULL;
unsigned int cpu;
int res;
pengine = pqcrypto_req_control->pce;
cp = pengine->pcp;
areq = pqcrypto_req_control->req;
arsp = pqcrypto_req_control->arsp;
res = pqcrypto_req_control->res;
qcrypto_free_req_control(pengine, pqcrypto_req_control);
if (areq) {
type = crypto_tfm_alg_type(areq->tfm);
tfm_ctx = crypto_tfm_ctx(areq->tfm);
}
cpu = smp_processor_id();
pengine->irq_cpu = cpu;
if (pengine->first_engine) {
if (cpu != cp->cpu_getting_irqs_frm_first_ce)
cp->cpu_getting_irqs_frm_first_ce = cpu;
}
if (areq)
_qcrypto_tfm_complete(pengine, type, tfm_ctx, arsp, res);
if (READ_ONCE(cp->ce_req_proc_sts) == IN_PROGRESS)
_start_qcrypto_process(cp, pengine);
}
static void _qce_ahash_complete(void *cookie, unsigned char *digest,
unsigned char *authdata, int ret)
{
struct ahash_request *areq = (struct ahash_request *) cookie;
struct crypto_async_request *async_req;
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(areq->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(areq);
struct crypto_priv *cp = sha_ctx->cp;
struct crypto_stat *pstat;
uint32_t diglen = crypto_ahash_digestsize(ahash);
uint32_t *auth32 = (uint32_t *)authdata;
struct crypto_engine *pengine;
struct qcrypto_req_control *pqcrypto_req_control;
async_req = &areq->base;
pstat = &_qcrypto_stat;
pengine = rctx->pengine;
pqcrypto_req_control = find_req_control_for_areq(pengine,
async_req);
if (pqcrypto_req_control == NULL) {
pr_err("async request not found\n");
return;
}
#ifdef QCRYPTO_DEBUG
dev_info(&pengine->pdev->dev, "%s: %pK ret %d\n",
__func__, areq, ret);
#endif
if (digest) {
memcpy(rctx->digest, digest, diglen);
if (rctx->last_blk)
memcpy(areq->result, digest, diglen);
}
if (authdata) {
rctx->byte_count[0] = auth32[0];
rctx->byte_count[1] = auth32[1];
rctx->byte_count[2] = auth32[2];
rctx->byte_count[3] = auth32[3];
}
areq->src = rctx->src;
areq->nbytes = rctx->nbytes;
rctx->last_blk = 0;
rctx->first_blk = 0;
if (ret) {
pqcrypto_req_control->res = -ENXIO;
pstat->ahash_op_fail++;
} else {
pqcrypto_req_control->res = 0;
pstat->ahash_op_success++;
}
if (cp->ce_support.aligned_only) {
areq->src = rctx->orig_src;
kfree(rctx->data);
}
req_done(pqcrypto_req_control);
};
static void _qce_ablk_cipher_complete(void *cookie, unsigned char *icb,
unsigned char *iv, int ret)
{
struct ablkcipher_request *areq = (struct ablkcipher_request *) cookie;
struct crypto_async_request *async_req;
struct crypto_ablkcipher *ablk = crypto_ablkcipher_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
struct qcrypto_cipher_req_ctx *rctx;
struct crypto_engine *pengine;
struct qcrypto_req_control *pqcrypto_req_control;
async_req = &areq->base;
pstat = &_qcrypto_stat;
rctx = ablkcipher_request_ctx(areq);
pengine = rctx->pengine;
pqcrypto_req_control = find_req_control_for_areq(pengine,
async_req);
if (pqcrypto_req_control == NULL) {
pr_err("async request not found\n");
return;
}
#ifdef QCRYPTO_DEBUG
dev_info(&pengine->pdev->dev, "%s: %pK ret %d\n",
__func__, areq, ret);
#endif
if (iv)
memcpy(ctx->iv, iv, crypto_ablkcipher_ivsize(ablk));
if (ret) {
pqcrypto_req_control->res = -ENXIO;
pstat->ablk_cipher_op_fail++;
} else {
pqcrypto_req_control->res = 0;
pstat->ablk_cipher_op_success++;
}
if (cp->ce_support.aligned_only) {
struct qcrypto_cipher_req_ctx *rctx;
uint32_t num_sg = 0;
uint32_t bytes = 0;
rctx = ablkcipher_request_ctx(areq);
areq->src = rctx->orig_src;
areq->dst = rctx->orig_dst;
num_sg = qcrypto_count_sg(areq->dst, areq->nbytes);
bytes = qcrypto_sg_copy_from_buffer(areq->dst, num_sg,
rctx->data, areq->nbytes);
if (bytes != areq->nbytes)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes,
areq->nbytes);
kzfree(rctx->data);
}
req_done(pqcrypto_req_control);
};
static void _qce_aead_complete(void *cookie, unsigned char *icv,
unsigned char *iv, int ret)
{
struct aead_request *areq = (struct aead_request *) cookie;
struct crypto_async_request *async_req;
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct qcrypto_cipher_req_ctx *rctx;
struct crypto_stat *pstat;
struct crypto_engine *pengine;
struct qcrypto_req_control *pqcrypto_req_control;
async_req = &areq->base;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(areq);
pengine = rctx->pengine;
pqcrypto_req_control = find_req_control_for_areq(pengine,
async_req);
if (pqcrypto_req_control == NULL) {
pr_err("async request not found\n");
return;
}
if (rctx->mode == QCE_MODE_CCM) {
kzfree(rctx->adata);
} else {
uint32_t ivsize = crypto_aead_ivsize(aead);
if (ret == 0) {
if (rctx->dir == QCE_ENCRYPT) {
/* copy the icv to dst */
scatterwalk_map_and_copy(icv, areq->dst,
areq->cryptlen + areq->assoclen,
ctx->authsize, 1);
} else {
unsigned char tmp[SHA256_DIGESTSIZE] = {0};
/* compare icv from src */
scatterwalk_map_and_copy(tmp,
areq->src, areq->assoclen +
areq->cryptlen - ctx->authsize,
ctx->authsize, 0);
ret = memcmp(icv, tmp, ctx->authsize);
if (ret != 0)
ret = -EBADMSG;
}
} else {
ret = -ENXIO;
}
if (iv)
memcpy(ctx->iv, iv, ivsize);
}
if (ret == (-EBADMSG))
pstat->aead_bad_msg++;
else if (ret)
pstat->aead_op_fail++;
else
pstat->aead_op_success++;
pqcrypto_req_control->res = ret;
req_done(pqcrypto_req_control);
}
static int aead_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize)
{
__be32 data;
memset(block, 0, csize);
block += csize;
if (csize >= 4)
csize = 4;
else if (msglen > (1 << (8 * csize)))
return -EOVERFLOW;
data = cpu_to_be32(msglen);
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
return 0;
}
static int qccrypto_set_aead_ccm_nonce(struct qce_req *qreq, uint32_t assoclen)
{
unsigned int i = ((unsigned int)qreq->iv[0]) + 1;
memcpy(&qreq->nonce[0], qreq->iv, qreq->ivsize);
/*
* Format control info per RFC 3610 and
* NIST Special Publication 800-38C
*/
qreq->nonce[0] |= (8 * ((qreq->authsize - 2) / 2));
if (assoclen)
qreq->nonce[0] |= 64;
if (i > MAX_NONCE)
return -EINVAL;
return aead_ccm_set_msg_len(qreq->nonce + 16 - i, qreq->cryptlen, i);
}
static int qcrypto_aead_ccm_format_adata(struct qce_req *qreq, uint32_t alen,
struct scatterlist *sg, unsigned char *adata)
{
uint32_t len;
uint32_t bytes = 0;
uint32_t num_sg = 0;
/*
* Add control info for associated data
* RFC 3610 and NIST Special Publication 800-38C
*/
if (alen < 65280) {
*(__be16 *)adata = cpu_to_be16(alen);
len = 2;
} else {
if ((alen >= 65280) && (alen <= 0xffffffff)) {
*(__be16 *)adata = cpu_to_be16(0xfffe);
*(__be32 *)&adata[2] = cpu_to_be32(alen);
len = 6;
} else {
*(__be16 *)adata = cpu_to_be16(0xffff);
*(__be32 *)&adata[6] = cpu_to_be32(alen);
len = 10;
}
}
adata += len;
qreq->assoclen = ALIGN((alen + len), 16);
num_sg = qcrypto_count_sg(sg, alen);
bytes = qcrypto_sg_copy_to_buffer(sg, num_sg, adata, alen);
if (bytes != alen)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, alen);
return 0;
}
static int _qcrypto_process_ablkcipher(struct crypto_engine *pengine,
struct qcrypto_req_control *pqcrypto_req_control)
{
struct crypto_async_request *async_req;
struct qce_req qreq;
int ret;
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *cipher_ctx;
struct ablkcipher_request *req;
struct crypto_ablkcipher *tfm;
async_req = pqcrypto_req_control->req;
req = container_of(async_req, struct ablkcipher_request, base);
cipher_ctx = crypto_tfm_ctx(async_req->tfm);
rctx = ablkcipher_request_ctx(req);
rctx->pengine = pengine;
tfm = crypto_ablkcipher_reqtfm(req);
if (pengine->pcp->ce_support.aligned_only) {
uint32_t bytes = 0;
uint32_t num_sg = 0;
rctx->orig_src = req->src;
rctx->orig_dst = req->dst;
rctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC);
if (rctx->data == NULL)
return -ENOMEM;
num_sg = qcrypto_count_sg(req->src, req->nbytes);
bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, rctx->data,
req->nbytes);
if (bytes != req->nbytes)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes,
req->nbytes);
sg_set_buf(&rctx->dsg, rctx->data, req->nbytes);
sg_mark_end(&rctx->dsg);
rctx->iv = req->info;
req->src = &rctx->dsg;
req->dst = &rctx->dsg;
}
qreq.op = QCE_REQ_ABLK_CIPHER;
qreq.qce_cb = _qce_ablk_cipher_complete;
qreq.areq = req;
qreq.alg = rctx->alg;
qreq.dir = rctx->dir;
qreq.mode = rctx->mode;
qreq.enckey = cipher_ctx->enc_key;
qreq.encklen = cipher_ctx->enc_key_len;
qreq.iv = req->info;
qreq.ivsize = crypto_ablkcipher_ivsize(tfm);
qreq.cryptlen = req->nbytes;
qreq.use_pmem = 0;
qreq.flags = cipher_ctx->flags;
if ((cipher_ctx->enc_key_len == 0) &&
(pengine->pcp->platform_support.hw_key_support == 0))
ret = -EINVAL;
else
ret = qce_ablk_cipher_req(pengine->qce, &qreq);
return ret;
}
static int _qcrypto_process_ahash(struct crypto_engine *pengine,
struct qcrypto_req_control *pqcrypto_req_control)
{
struct crypto_async_request *async_req;
struct ahash_request *req;
struct qce_sha_req sreq;
struct qcrypto_sha_req_ctx *rctx;
struct qcrypto_sha_ctx *sha_ctx;
int ret = 0;
async_req = pqcrypto_req_control->req;
req = container_of(async_req,
struct ahash_request, base);
rctx = ahash_request_ctx(req);
sha_ctx = crypto_tfm_ctx(async_req->tfm);
rctx->pengine = pengine;
sreq.qce_cb = _qce_ahash_complete;
sreq.digest = &rctx->digest[0];
sreq.src = req->src;
sreq.auth_data[0] = rctx->byte_count[0];
sreq.auth_data[1] = rctx->byte_count[1];
sreq.auth_data[2] = rctx->byte_count[2];
sreq.auth_data[3] = rctx->byte_count[3];
sreq.first_blk = rctx->first_blk;
sreq.last_blk = rctx->last_blk;
sreq.size = req->nbytes;
sreq.areq = req;
sreq.flags = sha_ctx->flags;
switch (sha_ctx->alg) {
case QCE_HASH_SHA1:
sreq.alg = QCE_HASH_SHA1;
sreq.authkey = NULL;
break;
case QCE_HASH_SHA256:
sreq.alg = QCE_HASH_SHA256;
sreq.authkey = NULL;
break;
case QCE_HASH_SHA1_HMAC:
sreq.alg = QCE_HASH_SHA1_HMAC;
sreq.authkey = &sha_ctx->authkey[0];
sreq.authklen = SHA_HMAC_KEY_SIZE;
break;
case QCE_HASH_SHA256_HMAC:
sreq.alg = QCE_HASH_SHA256_HMAC;
sreq.authkey = &sha_ctx->authkey[0];
sreq.authklen = SHA_HMAC_KEY_SIZE;
break;
default:
pr_err("Algorithm %d not supported, exiting", sha_ctx->alg);
ret = -1;
break;
};
ret = qce_process_sha_req(pengine->qce, &sreq);
return ret;
}
static int _qcrypto_process_aead(struct crypto_engine *pengine,
struct qcrypto_req_control *pqcrypto_req_control)
{
struct crypto_async_request *async_req;
struct qce_req qreq;
int ret = 0;
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *cipher_ctx;
struct aead_request *req;
struct crypto_aead *aead;
async_req = pqcrypto_req_control->req;
req = container_of(async_req, struct aead_request, base);
aead = crypto_aead_reqtfm(req);
rctx = aead_request_ctx(req);
rctx->pengine = pengine;
cipher_ctx = crypto_tfm_ctx(async_req->tfm);
qreq.op = QCE_REQ_AEAD;
qreq.qce_cb = _qce_aead_complete;
qreq.areq = req;
qreq.alg = rctx->alg;
qreq.dir = rctx->dir;
qreq.mode = rctx->mode;
qreq.iv = rctx->iv;
qreq.enckey = cipher_ctx->enc_key;
qreq.encklen = cipher_ctx->enc_key_len;
qreq.authkey = cipher_ctx->auth_key;
qreq.authklen = cipher_ctx->auth_key_len;
qreq.authsize = crypto_aead_authsize(aead);
qreq.auth_alg = cipher_ctx->auth_alg;
if (qreq.mode == QCE_MODE_CCM)
qreq.ivsize = AES_BLOCK_SIZE;
else
qreq.ivsize = crypto_aead_ivsize(aead);
qreq.flags = cipher_ctx->flags;
if (qreq.mode == QCE_MODE_CCM) {
uint32_t assoclen;
if (qreq.dir == QCE_ENCRYPT)
qreq.cryptlen = req->cryptlen;
else
qreq.cryptlen = req->cryptlen -
qreq.authsize;
/* if rfc4309 ccm, adjust assoclen */
assoclen = req->assoclen;
if (rctx->ccmtype)
assoclen -= 8;
/* Get NONCE */
ret = qccrypto_set_aead_ccm_nonce(&qreq, assoclen);
if (ret)
return ret;
if (assoclen) {
rctx->adata = kzalloc((assoclen + 0x64),
GFP_ATOMIC);
if (!rctx->adata)
return -ENOMEM;
/* Format Associated data */
ret = qcrypto_aead_ccm_format_adata(&qreq,
assoclen,
req->src,
rctx->adata);
} else {
qreq.assoclen = 0;
rctx->adata = NULL;
}
if (ret) {
kzfree(rctx->adata);
return ret;
}
/*
* update req with new formatted associated
* data info
*/
qreq.asg = &rctx->asg;
if (rctx->adata)
sg_set_buf(qreq.asg, rctx->adata,
qreq.assoclen);
sg_mark_end(qreq.asg);
}
ret = qce_aead_req(pengine->qce, &qreq);
return ret;
}
static struct crypto_engine *_qcrypto_static_assign_engine(
struct crypto_priv *cp)
{
struct crypto_engine *pengine;
unsigned long flags;
spin_lock_irqsave(&cp->lock, flags);
if (cp->next_engine)
pengine = cp->next_engine;
else
pengine = list_first_entry(&cp->engine_list,
struct crypto_engine, elist);
if (list_is_last(&pengine->elist, &cp->engine_list))
cp->next_engine = list_first_entry(
&cp->engine_list, struct crypto_engine, elist);
else
cp->next_engine = list_next_entry(pengine, elist);
spin_unlock_irqrestore(&cp->lock, flags);
return pengine;
}
static int _start_qcrypto_process(struct crypto_priv *cp,
struct crypto_engine *pengine)
{
struct crypto_async_request *async_req = NULL;
struct crypto_async_request *backlog_eng = NULL;
struct crypto_async_request *backlog_cp = NULL;
unsigned long flags;
u32 type;
int ret = 0;
struct crypto_stat *pstat;
void *tfm_ctx;
struct qcrypto_cipher_req_ctx *cipher_rctx;
struct qcrypto_sha_req_ctx *ahash_rctx;
struct ablkcipher_request *ablkcipher_req;
struct ahash_request *ahash_req;
struct aead_request *aead_req;
struct qcrypto_resp_ctx *arsp;
struct qcrypto_req_control *pqcrypto_req_control;
unsigned int cpu = MAX_SMP_CPU;
if (READ_ONCE(cp->ce_req_proc_sts) == STOPPED)
return 0;
if (in_interrupt()) {
cpu = smp_processor_id();
if (cpu >= MAX_SMP_CPU)
cpu = MAX_SMP_CPU - 1;
} else
cpu = MAX_SMP_CPU;
pstat = &_qcrypto_stat;
again:
spin_lock_irqsave(&cp->lock, flags);
if (pengine->issue_req ||
atomic_read(&pengine->req_count) >= (pengine->max_req)) {
spin_unlock_irqrestore(&cp->lock, flags);
return 0;
}
backlog_eng = crypto_get_backlog(&pengine->req_queue);
/* make sure it is in high bandwidth state */
if (pengine->bw_state != BUS_HAS_BANDWIDTH) {
spin_unlock_irqrestore(&cp->lock, flags);
return 0;
}
/* try to get request from request queue of the engine first */
async_req = crypto_dequeue_request(&pengine->req_queue);
if (!async_req) {
/*
* if no request from the engine,
* try to get from request queue of driver
*/
backlog_cp = crypto_get_backlog(&cp->req_queue);
async_req = crypto_dequeue_request(&cp->req_queue);
if (!async_req) {
spin_unlock_irqrestore(&cp->lock, flags);
return 0;
}
}
pqcrypto_req_control = qcrypto_alloc_req_control(pengine);
if (pqcrypto_req_control == NULL) {
pr_err("Allocation of request failed\n");
spin_unlock_irqrestore(&cp->lock, flags);
return 0;
}
/* add associated rsp entry to tfm response queue */
type = crypto_tfm_alg_type(async_req->tfm);
tfm_ctx = crypto_tfm_ctx(async_req->tfm);
switch (type) {
case CRYPTO_ALG_TYPE_AHASH:
ahash_req = container_of(async_req,
struct ahash_request, base);
ahash_rctx = ahash_request_ctx(ahash_req);
arsp = &ahash_rctx->rsp_entry;
list_add_tail(
&arsp->list,
&((struct qcrypto_sha_ctx *)tfm_ctx)
->rsp_queue);
break;
case CRYPTO_ALG_TYPE_ABLKCIPHER:
ablkcipher_req = container_of(async_req,
struct ablkcipher_request, base);
cipher_rctx = ablkcipher_request_ctx(ablkcipher_req);
arsp = &cipher_rctx->rsp_entry;
list_add_tail(
&arsp->list,
&((struct qcrypto_cipher_ctx *)tfm_ctx)
->rsp_queue);
break;
case CRYPTO_ALG_TYPE_AEAD:
default:
aead_req = container_of(async_req,
struct aead_request, base);
cipher_rctx = aead_request_ctx(aead_req);
arsp = &cipher_rctx->rsp_entry;
list_add_tail(
&arsp->list,
&((struct qcrypto_cipher_ctx *)tfm_ctx)
->rsp_queue);
break;
}
arsp->res = -EINPROGRESS;
arsp->async_req = async_req;
pqcrypto_req_control->pce = pengine;
pqcrypto_req_control->req = async_req;
pqcrypto_req_control->arsp = arsp;
pengine->active_seq++;
pengine->check_flag = true;
pengine->issue_req = true;
cp->cpu_req[cpu]++;
smp_mb(); /* make it visible */
spin_unlock_irqrestore(&cp->lock, flags);
if (backlog_eng)
backlog_eng->complete(backlog_eng, -EINPROGRESS);
if (backlog_cp)
backlog_cp->complete(backlog_cp, -EINPROGRESS);
switch (type) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
ret = _qcrypto_process_ablkcipher(pengine,
pqcrypto_req_control);
break;
case CRYPTO_ALG_TYPE_AHASH:
ret = _qcrypto_process_ahash(pengine, pqcrypto_req_control);
break;
case CRYPTO_ALG_TYPE_AEAD:
ret = _qcrypto_process_aead(pengine, pqcrypto_req_control);
break;
default:
ret = -EINVAL;
};
pengine->issue_req = false;
smp_mb(); /* make it visible */
pengine->total_req++;
if (ret) {
pengine->err_req++;
qcrypto_free_req_control(pengine, pqcrypto_req_control);
if (type == CRYPTO_ALG_TYPE_ABLKCIPHER)
pstat->ablk_cipher_op_fail++;
else
if (type == CRYPTO_ALG_TYPE_AHASH)
pstat->ahash_op_fail++;
else
pstat->aead_op_fail++;
_qcrypto_tfm_complete(pengine, type, tfm_ctx, arsp, ret);
goto again;
};
return ret;
}
static inline struct crypto_engine *_next_eng(struct crypto_priv *cp,
struct crypto_engine *p)
{
if (p == NULL || list_is_last(&p->elist, &cp->engine_list))
p = list_first_entry(&cp->engine_list, struct crypto_engine,
elist);
else
p = list_entry(p->elist.next, struct crypto_engine, elist);
return p;
}
static struct crypto_engine *_avail_eng(struct crypto_priv *cp)
{
/* call this function with spinlock set */
struct crypto_engine *q = NULL;
struct crypto_engine *p = cp->scheduled_eng;
struct crypto_engine *q1;
int eng_cnt = cp->total_units;
if (unlikely(list_empty(&cp->engine_list))) {
pr_err("%s: no valid ce to schedule\n", __func__);
return NULL;
}
p = _next_eng(cp, p);
q1 = p;
while (eng_cnt-- > 0) {
if (!p->issue_req && atomic_read(&p->req_count) < p->max_req) {
q = p;
break;
}
p = _next_eng(cp, p);
if (q1 == p)
break;
}
cp->scheduled_eng = q;
return q;
}
static int _qcrypto_queue_req(struct crypto_priv *cp,
struct crypto_engine *pengine,
struct crypto_async_request *req)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&cp->lock, flags);
if (pengine) {
ret = crypto_enqueue_request(&pengine->req_queue, req);
} else {
ret = crypto_enqueue_request(&cp->req_queue, req);
pengine = _avail_eng(cp);
if (cp->req_queue.qlen > cp->max_qlen)
cp->max_qlen = cp->req_queue.qlen;
}
if (pengine) {
switch (pengine->bw_state) {
case BUS_NO_BANDWIDTH:
if (pengine->high_bw_req == false) {
qcrypto_ce_bw_allocate_req(pengine);
pengine->high_bw_req = true;
}
pengine = NULL;
break;
case BUS_HAS_BANDWIDTH:
break;
case BUS_BANDWIDTH_RELEASING:
pengine->high_bw_req = true;
pengine = NULL;
break;
case BUS_BANDWIDTH_ALLOCATING:
pengine = NULL;
break;
case BUS_SUSPENDED:
case BUS_SUSPENDING:
default:
pengine = NULL;
break;
}
} else {
cp->no_avail++;
}
spin_unlock_irqrestore(&cp->lock, flags);
if (pengine && (READ_ONCE(cp->ce_req_proc_sts) == IN_PROGRESS))
_start_qcrypto_process(cp, pengine);
return ret;
}
static int _qcrypto_enc_aes_192_fallback(struct ablkcipher_request *req)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
int err;
SKCIPHER_REQUEST_ON_STACK(subreq, ctx->cipher_aes192_fb);
skcipher_request_set_tfm(subreq, ctx->cipher_aes192_fb);
skcipher_request_set_callback(subreq, req->base.flags,
NULL, NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->nbytes, req->info);
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static int _qcrypto_dec_aes_192_fallback(struct ablkcipher_request *req)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
int err;
SKCIPHER_REQUEST_ON_STACK(subreq, ctx->cipher_aes192_fb);
skcipher_request_set_tfm(subreq, ctx->cipher_aes192_fb);
skcipher_request_set_callback(subreq, req->base.flags,
NULL, NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->nbytes, req->info);
err = crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static int _qcrypto_enc_aes_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
if ((ctx->enc_key_len == AES_KEYSIZE_192) &&
(!cp->ce_support.aes_key_192) &&
ctx->cipher_aes192_fb)
return _qcrypto_enc_aes_192_fallback(req);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_enc_aes_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
if ((ctx->enc_key_len == AES_KEYSIZE_192) &&
(!cp->ce_support.aes_key_192) &&
ctx->cipher_aes192_fb)
return _qcrypto_enc_aes_192_fallback(req);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_enc_aes_ctr(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
if ((ctx->enc_key_len == AES_KEYSIZE_192) &&
(!cp->ce_support.aes_key_192) &&
ctx->cipher_aes192_fb)
return _qcrypto_enc_aes_192_fallback(req);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CTR;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_enc_aes_xts(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_XTS;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_aead_encrypt_aes_ccm(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1))
return -EINVAL;
if ((ctx->auth_key_len != AES_KEYSIZE_128) &&
(ctx->auth_key_len != AES_KEYSIZE_256))
return -EINVAL;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CCM;
rctx->iv = req->iv;
rctx->ccmtype = 0;
pstat->aead_ccm_aes_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_rfc4309_enc_aes_ccm(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
if (req->assoclen != 16 && req->assoclen != 20)
return -EINVAL;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CCM;
memset(rctx->rfc4309_iv, 0, sizeof(rctx->rfc4309_iv));
rctx->rfc4309_iv[0] = 3; /* L -1 */
memcpy(&rctx->rfc4309_iv[1], ctx->ccm4309_nonce, 3);
memcpy(&rctx->rfc4309_iv[4], req->iv, 8);
rctx->ccmtype = 1;
rctx->iv = rctx->rfc4309_iv;
pstat->aead_rfc4309_ccm_aes_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_enc_des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_des_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_enc_des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_des_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_enc_3des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_3des_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_enc_3des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_3des_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_aes_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
if ((ctx->enc_key_len == AES_KEYSIZE_192) &&
(!cp->ce_support.aes_key_192) &&
ctx->cipher_aes192_fb)
return _qcrypto_dec_aes_192_fallback(req);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_aes_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
if ((ctx->enc_key_len == AES_KEYSIZE_192) &&
(!cp->ce_support.aes_key_192) &&
ctx->cipher_aes192_fb)
return _qcrypto_dec_aes_192_fallback(req);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_aes_ctr(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
if ((ctx->enc_key_len == AES_KEYSIZE_192) &&
(!cp->ce_support.aes_key_192) &&
ctx->cipher_aes192_fb)
return _qcrypto_dec_aes_192_fallback(req);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->mode = QCE_MODE_CTR;
/* Note. There is no such thing as aes/counter mode, decrypt */
rctx->dir = QCE_ENCRYPT;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_des_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_des_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_3des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_3des_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_3des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_3des_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_dec_aes_xts(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
WARN_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->mode = QCE_MODE_XTS;
rctx->dir = QCE_DECRYPT;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
};
static int _qcrypto_aead_decrypt_aes_ccm(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1))
return -EINVAL;
if ((ctx->auth_key_len != AES_KEYSIZE_128) &&
(ctx->auth_key_len != AES_KEYSIZE_256))
return -EINVAL;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CCM;
rctx->iv = req->iv;
rctx->ccmtype = 0;
pstat->aead_ccm_aes_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_rfc4309_dec_aes_ccm(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
if (req->assoclen != 16 && req->assoclen != 20)
return -EINVAL;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CCM;
memset(rctx->rfc4309_iv, 0, sizeof(rctx->rfc4309_iv));
rctx->rfc4309_iv[0] = 3; /* L -1 */
memcpy(&rctx->rfc4309_iv[1], ctx->ccm4309_nonce, 3);
memcpy(&rctx->rfc4309_iv[4], req->iv, 8);
rctx->ccmtype = 1;
rctx->iv = rctx->rfc4309_iv;
pstat->aead_rfc4309_ccm_aes_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
return 0;
}
static int _qcrypto_aead_ccm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc);
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
ctx->authsize = authsize;
return 0;
}
static int _qcrypto_aead_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc);
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
ctx->authsize = authsize;
return 0;
}
static int _qcrypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
struct rtattr *rta = (struct rtattr *)key;
struct crypto_authenc_key_param *param;
int ret;
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
ctx->enc_key_len = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < ctx->enc_key_len)
goto badkey;
ctx->auth_key_len = keylen - ctx->enc_key_len;
if (ctx->enc_key_len >= QCRYPTO_MAX_KEY_SIZE ||
ctx->auth_key_len >= QCRYPTO_MAX_KEY_SIZE)
goto badkey;
memset(ctx->auth_key, 0, QCRYPTO_MAX_KEY_SIZE);
memcpy(ctx->enc_key, key + ctx->auth_key_len, ctx->enc_key_len);
memcpy(ctx->auth_key, key, ctx->auth_key_len);
if (ctx->enc_key_len == AES_KEYSIZE_192 && ctx->cipher_aes192_fb &&
ctx->ahash_aead_aes192_fb) {
crypto_ahash_clear_flags(ctx->ahash_aead_aes192_fb, ~0);
ret = crypto_ahash_setkey(ctx->ahash_aead_aes192_fb,
ctx->auth_key, ctx->auth_key_len);
if (ret)
goto badkey;
crypto_skcipher_clear_flags(ctx->cipher_aes192_fb, ~0);
ret = crypto_skcipher_setkey(ctx->cipher_aes192_fb,
ctx->enc_key, ctx->enc_key_len);
if (ret)
goto badkey;
}
return 0;
badkey:
ctx->enc_key_len = 0;
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int _qcrypto_aead_ccm_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_priv *cp = ctx->cp;
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_256:
break;
case AES_KEYSIZE_192:
if (cp->ce_support.aes_key_192)
break;
default:
ctx->enc_key_len = 0;
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
ctx->enc_key_len = keylen;
memcpy(ctx->enc_key, key, keylen);
ctx->auth_key_len = keylen;
memcpy(ctx->auth_key, key, keylen);
return 0;
}
static int _qcrypto_aead_rfc4309_ccm_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int key_len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
int ret;
if (key_len < QCRYPTO_CCM4309_NONCE_LEN)
return -EINVAL;
key_len -= QCRYPTO_CCM4309_NONCE_LEN;
memcpy(ctx->ccm4309_nonce, key + key_len, QCRYPTO_CCM4309_NONCE_LEN);
ret = _qcrypto_aead_ccm_setkey(aead, key, key_len);
return ret;
};
static void _qcrypto_aead_aes_192_fb_a_cb(struct qcrypto_cipher_req_ctx *rctx,
int res)
{
struct aead_request *req;
struct crypto_async_request *areq;
req = rctx->aead_req;
areq = &req->base;
if (rctx->fb_aes_req)
skcipher_request_free(rctx->fb_aes_req);
if (rctx->fb_hash_req)
ahash_request_free(rctx->fb_hash_req);
rctx->fb_aes_req = NULL;
rctx->fb_hash_req = NULL;
kfree(rctx->fb_aes_iv);
areq->complete(areq, res);
}
static void _aead_aes_fb_stage2_ahash_complete(
struct crypto_async_request *base, int err)
{
struct qcrypto_cipher_req_ctx *rctx;
struct aead_request *req;
struct qcrypto_cipher_ctx *ctx;
rctx = base->data;
req = rctx->aead_req;
ctx = crypto_tfm_ctx(req->base.tfm);
/* copy icv */
if (err == 0)
scatterwalk_map_and_copy(rctx->fb_ahash_digest,
rctx->fb_aes_dst,
req->cryptlen,
ctx->authsize, 1);
_qcrypto_aead_aes_192_fb_a_cb(rctx, err);
}
static int _start_aead_aes_fb_stage2_hmac(struct qcrypto_cipher_req_ctx *rctx)
{
struct ahash_request *ahash_req;
ahash_req = rctx->fb_hash_req;
ahash_request_set_callback(ahash_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
_aead_aes_fb_stage2_ahash_complete, rctx);
return crypto_ahash_digest(ahash_req);
}
static void _aead_aes_fb_stage2_decrypt_complete(
struct crypto_async_request *base, int err)
{
struct qcrypto_cipher_req_ctx *rctx;
rctx = base->data;
_qcrypto_aead_aes_192_fb_a_cb(rctx, err);
}
static int _start_aead_aes_fb_stage2_decrypt(
struct qcrypto_cipher_req_ctx *rctx)
{
struct skcipher_request *aes_req;
aes_req = rctx->fb_aes_req;
skcipher_request_set_callback(aes_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
_aead_aes_fb_stage2_decrypt_complete, rctx);
return crypto_skcipher_decrypt(aes_req);
}
static void _aead_aes_fb_stage1_ahash_complete(
struct crypto_async_request *base, int err)
{
struct qcrypto_cipher_req_ctx *rctx;
struct aead_request *req;
struct qcrypto_cipher_ctx *ctx;
rctx = base->data;
req = rctx->aead_req;
ctx = crypto_tfm_ctx(req->base.tfm);
/* compare icv */
if (err == 0) {
unsigned char tmp[ctx->authsize];
scatterwalk_map_and_copy(tmp, rctx->fb_aes_src,
req->cryptlen - ctx->authsize, ctx->authsize, 0);
if (memcmp(rctx->fb_ahash_digest, tmp, ctx->authsize) != 0)
err = -EBADMSG;
}
if (err)
_qcrypto_aead_aes_192_fb_a_cb(rctx, err);
else {
err = _start_aead_aes_fb_stage2_decrypt(rctx);
if (err != -EINPROGRESS && err != -EBUSY)
_qcrypto_aead_aes_192_fb_a_cb(rctx, err);
}
}
static void _aead_aes_fb_stage1_encrypt_complete(
struct crypto_async_request *base, int err)
{
struct qcrypto_cipher_req_ctx *rctx;
struct aead_request *req;
struct qcrypto_cipher_ctx *ctx;
rctx = base->data;
req = rctx->aead_req;
ctx = crypto_tfm_ctx(req->base.tfm);
memcpy(ctx->iv, rctx->fb_aes_iv, rctx->ivsize);
if (err) {
_qcrypto_aead_aes_192_fb_a_cb(rctx, err);
return;
}
err = _start_aead_aes_fb_stage2_hmac(rctx);
/* copy icv */
if (err == 0) {
scatterwalk_map_and_copy(rctx->fb_ahash_digest,
rctx->fb_aes_dst,
req->cryptlen,
ctx->authsize, 1);
}
if (err != -EINPROGRESS && err != -EBUSY)
_qcrypto_aead_aes_192_fb_a_cb(rctx, err);
}
static int _qcrypto_aead_aes_192_fallback(struct aead_request *req,
bool is_encrypt)
{
int rc = -EINVAL;
struct qcrypto_cipher_req_ctx *rctx = aead_request_ctx(req);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_aead *aead_tfm = crypto_aead_reqtfm(req);
struct skcipher_request *aes_req = NULL;
struct ahash_request *ahash_req = NULL;
int nbytes;
struct scatterlist *src, *dst;
rctx->fb_aes_iv = NULL;
aes_req = skcipher_request_alloc(ctx->cipher_aes192_fb, GFP_KERNEL);
if (!aes_req)
return -ENOMEM;
ahash_req = ahash_request_alloc(ctx->ahash_aead_aes192_fb, GFP_KERNEL);
if (!ahash_req)
goto ret;
rctx->fb_aes_req = aes_req;
rctx->fb_hash_req = ahash_req;
rctx->aead_req = req;
/* assoc and iv are sitting in the beginning of src sg list */
/* Similarly, assoc and iv are sitting in the beginning of dst list */
src = scatterwalk_ffwd(rctx->fb_ablkcipher_src_sg, req->src,
req->assoclen);
dst = scatterwalk_ffwd(rctx->fb_ablkcipher_dst_sg, req->dst,
req->assoclen);
nbytes = req->cryptlen;
if (!is_encrypt)
nbytes -= ctx->authsize;
rctx->fb_ahash_length = nbytes + req->assoclen;
rctx->fb_aes_src = src;
rctx->fb_aes_dst = dst;
rctx->fb_aes_cryptlen = nbytes;
rctx->ivsize = crypto_aead_ivsize(aead_tfm);
rctx->fb_aes_iv = kzalloc(rctx->ivsize, GFP_ATOMIC);
if (!rctx->fb_aes_iv)
goto ret;
memcpy(rctx->fb_aes_iv, req->iv, rctx->ivsize);
skcipher_request_set_crypt(aes_req, rctx->fb_aes_src,
rctx->fb_aes_dst,
rctx->fb_aes_cryptlen, rctx->fb_aes_iv);
if (is_encrypt)
ahash_request_set_crypt(ahash_req, req->dst,
rctx->fb_ahash_digest,
rctx->fb_ahash_length);
else
ahash_request_set_crypt(ahash_req, req->src,
rctx->fb_ahash_digest,
rctx->fb_ahash_length);
if (is_encrypt) {
skcipher_request_set_callback(aes_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
_aead_aes_fb_stage1_encrypt_complete, rctx);
rc = crypto_skcipher_encrypt(aes_req);
if (rc == 0) {
memcpy(ctx->iv, rctx->fb_aes_iv, rctx->ivsize);
rc = _start_aead_aes_fb_stage2_hmac(rctx);
if (rc == 0) {
/* copy icv */
scatterwalk_map_and_copy(rctx->fb_ahash_digest,
dst,
req->cryptlen,
ctx->authsize, 1);
}
}
if (rc == -EINPROGRESS || rc == -EBUSY)
return rc;
goto ret;
} else {
ahash_request_set_callback(ahash_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
_aead_aes_fb_stage1_ahash_complete, rctx);
rc = crypto_ahash_digest(ahash_req);
if (rc == 0) {
unsigned char tmp[ctx->authsize];
/* compare icv */
scatterwalk_map_and_copy(tmp,
src, req->cryptlen - ctx->authsize,
ctx->authsize, 0);
if (memcmp(rctx->fb_ahash_digest, tmp,
ctx->authsize) != 0)
rc = -EBADMSG;
else
rc = _start_aead_aes_fb_stage2_decrypt(rctx);
}
if (rc == -EINPROGRESS || rc == -EBUSY)
return rc;
goto ret;
}
ret:
if (aes_req)
skcipher_request_free(aes_req);
if (ahash_req)
ahash_request_free(ahash_req);
kfree(rctx->fb_aes_iv);
return rc;
}
static int _qcrypto_aead_encrypt_aes_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
rctx->aead_req = req;
if (ctx->auth_alg == QCE_HASH_SHA1_HMAC)
pstat->aead_sha1_aes_enc++;
else
pstat->aead_sha256_aes_enc++;
if (ctx->enc_key_len == AES_KEYSIZE_192 && ctx->cipher_aes192_fb &&
ctx->ahash_aead_aes192_fb)
return _qcrypto_aead_aes_192_fallback(req, true);
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_decrypt_aes_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
#ifdef QCRYPTO_DEBUG
dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req);
#endif
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
rctx->aead_req = req;
if (ctx->auth_alg == QCE_HASH_SHA1_HMAC)
pstat->aead_sha1_aes_dec++;
else
pstat->aead_sha256_aes_dec++;
if (ctx->enc_key_len == AES_KEYSIZE_192 && ctx->cipher_aes192_fb &&
ctx->ahash_aead_aes192_fb)
return _qcrypto_aead_aes_192_fallback(req, false);
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_encrypt_des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
if (ctx->auth_alg == QCE_HASH_SHA1_HMAC)
pstat->aead_sha1_des_enc++;
else
pstat->aead_sha256_des_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_decrypt_des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
if (ctx->auth_alg == QCE_HASH_SHA1_HMAC)
pstat->aead_sha1_des_dec++;
else
pstat->aead_sha256_des_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_encrypt_3des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
if (ctx->auth_alg == QCE_HASH_SHA1_HMAC)
pstat->aead_sha1_3des_enc++;
else
pstat->aead_sha256_3des_enc++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _qcrypto_aead_decrypt_3des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
if (ctx->auth_alg == QCE_HASH_SHA1_HMAC)
pstat->aead_sha1_3des_dec++;
else
pstat->aead_sha256_3des_dec++;
return _qcrypto_queue_req(cp, ctx->pengine, &req->base);
}
static int _sha_init(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
rctx->first_blk = 1;
rctx->last_blk = 0;
rctx->byte_count[0] = 0;
rctx->byte_count[1] = 0;
rctx->byte_count[2] = 0;
rctx->byte_count[3] = 0;
rctx->trailing_buf_len = 0;
rctx->count = 0;
return 0;
};
static int _sha1_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
pstat = &_qcrypto_stat;
_sha_init(req);
sha_ctx->alg = QCE_HASH_SHA1;
memset(&rctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE);
memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
pstat->sha1_digest++;
return 0;
};
static int _sha256_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
pstat = &_qcrypto_stat;
_sha_init(req);
sha_ctx->alg = QCE_HASH_SHA256;
memset(&rctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE);
memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
pstat->sha256_digest++;
return 0;
};
static int _sha1_export(struct ahash_request *req, void *out)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha1_state *out_ctx = (struct sha1_state *)out;
out_ctx->count = rctx->count;
_byte_stream_to_words(out_ctx->state, rctx->digest, SHA1_DIGEST_SIZE);
memcpy(out_ctx->buffer, rctx->trailing_buf, SHA1_BLOCK_SIZE);
return 0;
};
static int _sha1_hmac_export(struct ahash_request *req, void *out)
{
return _sha1_export(req, out);
}
/* crypto hw padding constant for hmac first operation */
#define HMAC_PADDING 64
static int __sha1_import_common(struct ahash_request *req, const void *in,
bool hmac)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha1_state *in_ctx = (struct sha1_state *)in;
u64 hw_count = in_ctx->count;
rctx->count = in_ctx->count;
memcpy(rctx->trailing_buf, in_ctx->buffer, SHA1_BLOCK_SIZE);
if (in_ctx->count <= SHA1_BLOCK_SIZE) {
rctx->first_blk = 1;
} else {
rctx->first_blk = 0;
/*
* For hmac, there is a hardware padding done
* when first is set. So the byte_count will be
* incremened by 64 after the operstion of first
*/
if (hmac)
hw_count += HMAC_PADDING;
}
rctx->byte_count[0] = (uint32_t)(hw_count & 0xFFFFFFC0);
rctx->byte_count[1] = (uint32_t)(hw_count >> 32);
_words_to_byte_stream(in_ctx->state, rctx->digest, sha_ctx->diglen);
rctx->trailing_buf_len = (uint32_t)(in_ctx->count &
(SHA1_BLOCK_SIZE-1));
return 0;
}
static int _sha1_import(struct ahash_request *req, const void *in)
{
return __sha1_import_common(req, in, false);
}
static int _sha1_hmac_import(struct ahash_request *req, const void *in)
{
return __sha1_import_common(req, in, true);
}
static int _sha256_export(struct ahash_request *req, void *out)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha256_state *out_ctx = (struct sha256_state *)out;
out_ctx->count = rctx->count;
_byte_stream_to_words(out_ctx->state, rctx->digest, SHA256_DIGEST_SIZE);
memcpy(out_ctx->buf, rctx->trailing_buf, SHA256_BLOCK_SIZE);
return 0;
};
static int _sha256_hmac_export(struct ahash_request *req, void *out)
{
return _sha256_export(req, out);
}
static int __sha256_import_common(struct ahash_request *req, const void *in,
bool hmac)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha256_state *in_ctx = (struct sha256_state *)in;
u64 hw_count = in_ctx->count;
rctx->count = in_ctx->count;
memcpy(rctx->trailing_buf, in_ctx->buf, SHA256_BLOCK_SIZE);
if (in_ctx->count <= SHA256_BLOCK_SIZE) {
rctx->first_blk = 1;
} else {
rctx->first_blk = 0;
/*
* for hmac, there is a hardware padding done
* when first is set. So the byte_count will be
* incremened by 64 after the operstion of first
*/
if (hmac)
hw_count += HMAC_PADDING;
}
rctx->byte_count[0] = (uint32_t)(hw_count & 0xFFFFFFC0);
rctx->byte_count[1] = (uint32_t)(hw_count >> 32);
_words_to_byte_stream(in_ctx->state, rctx->digest, sha_ctx->diglen);
rctx->trailing_buf_len = (uint32_t)(in_ctx->count &
(SHA256_BLOCK_SIZE-1));
return 0;
}
static int _sha256_import(struct ahash_request *req, const void *in)
{
return __sha256_import_common(req, in, false);
}
static int _sha256_hmac_import(struct ahash_request *req, const void *in)
{
return __sha256_import_common(req, in, true);
}
static int _copy_source(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *srctx = NULL;
uint32_t bytes = 0;
uint32_t num_sg = 0;
srctx = ahash_request_ctx(req);
srctx->orig_src = req->src;
srctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC);
if (srctx->data == NULL) {
pr_err("Mem Alloc fail rctx->data, err %ld for 0x%x\n",
PTR_ERR(srctx->data), (req->nbytes + 64));
return -ENOMEM;
}
num_sg = qcrypto_count_sg(req->src, req->nbytes);
bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, srctx->data,
req->nbytes);
if (bytes != req->nbytes)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes,
req->nbytes);
sg_set_buf(&srctx->dsg, srctx->data,
req->nbytes);
sg_mark_end(&srctx->dsg);
req->src = &srctx->dsg;
return 0;
}
static int _sha_update(struct ahash_request *req, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
uint32_t total, len, num_sg;
struct scatterlist *sg_last;
uint8_t *k_src = NULL;
uint32_t sha_pad_len = 0;
uint32_t trailing_buf_len = 0;
uint32_t nbytes;
uint32_t offset = 0;
uint32_t bytes = 0;
uint8_t *staging;
int ret = 0;
/* check for trailing buffer from previous updates and append it */
total = req->nbytes + rctx->trailing_buf_len;
len = req->nbytes;
if (total <= sha_block_size) {
k_src = &rctx->trailing_buf[rctx->trailing_buf_len];
num_sg = qcrypto_count_sg(req->src, len);
bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, k_src, len);
rctx->trailing_buf_len = total;
return 0;
}
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf),
L1_CACHE_BYTES);
memcpy(staging, rctx->trailing_buf, rctx->trailing_buf_len);
k_src = &rctx->trailing_buf[0];
/* get new trailing buffer */
sha_pad_len = ALIGN(total, sha_block_size) - total;
trailing_buf_len = sha_block_size - sha_pad_len;
offset = req->nbytes - trailing_buf_len;
if (offset != req->nbytes)
scatterwalk_map_and_copy(k_src, req->src, offset,
trailing_buf_len, 0);
nbytes = total - trailing_buf_len;
num_sg = qcrypto_count_sg(req->src, req->nbytes);
len = rctx->trailing_buf_len;
sg_last = req->src;
while (len < nbytes) {
if ((len + sg_last->length) > nbytes)
break;
len += sg_last->length;
sg_last = sg_next(sg_last);
}
if (rctx->trailing_buf_len) {
if (cp->ce_support.aligned_only) {
rctx->data2 = kzalloc((req->nbytes + 64), GFP_ATOMIC);
if (rctx->data2 == NULL)
return -ENOMEM;
memcpy(rctx->data2, staging,
rctx->trailing_buf_len);
memcpy((rctx->data2 + rctx->trailing_buf_len),
rctx->data, req->src->length);
kzfree(rctx->data);
rctx->data = rctx->data2;
sg_set_buf(&rctx->sg[0], rctx->data,
(rctx->trailing_buf_len +
req->src->length));
req->src = rctx->sg;
sg_mark_end(&rctx->sg[0]);
} else {
sg_mark_end(sg_last);
memset(rctx->sg, 0, sizeof(rctx->sg));
sg_set_buf(&rctx->sg[0], staging,
rctx->trailing_buf_len);
sg_mark_end(&rctx->sg[1]);
sg_chain(rctx->sg, 2, req->src);
req->src = rctx->sg;
}
} else
sg_mark_end(sg_last);
req->nbytes = nbytes;
rctx->trailing_buf_len = trailing_buf_len;
ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base);
return ret;
};
static int _sha1_update(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
rctx->count += req->nbytes;
return _sha_update(req, SHA1_BLOCK_SIZE);
}
static int _sha256_update(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
rctx->count += req->nbytes;
return _sha_update(req, SHA256_BLOCK_SIZE);
}
static int _sha_final(struct ahash_request *req, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
int ret = 0;
uint8_t *staging;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
rctx->last_blk = 1;
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf),
L1_CACHE_BYTES);
memcpy(staging, rctx->trailing_buf, rctx->trailing_buf_len);
sg_set_buf(&rctx->sg[0], staging, rctx->trailing_buf_len);
sg_mark_end(&rctx->sg[0]);
req->src = &rctx->sg[0];
req->nbytes = rctx->trailing_buf_len;
ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base);
return ret;
};
static int _sha1_final(struct ahash_request *req)
{
return _sha_final(req, SHA1_BLOCK_SIZE);
}
static int _sha256_final(struct ahash_request *req)
{
return _sha_final(req, SHA256_BLOCK_SIZE);
}
static int _sha_digest(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
rctx->first_blk = 1;
rctx->last_blk = 1;
ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base);
return ret;
}
static int _sha1_digest(struct ahash_request *req)
{
_sha1_init(req);
return _sha_digest(req);
}
static int _sha256_digest(struct ahash_request *req)
{
_sha256_init(req);
return _sha_digest(req);
}
static void _crypto_sha_hmac_ahash_req_complete(
struct crypto_async_request *req, int err)
{
struct completion *ahash_req_complete = req->data;
if (err == -EINPROGRESS)
return;
complete(ahash_req_complete);
}
static int _sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base);
uint8_t *in_buf;
int ret = 0;
struct scatterlist sg = {0};
struct ahash_request *ahash_req;
struct completion ahash_req_complete;
ahash_req = ahash_request_alloc(tfm, GFP_KERNEL);
if (ahash_req == NULL)
return -ENOMEM;
init_completion(&ahash_req_complete);
ahash_request_set_callback(ahash_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
_crypto_sha_hmac_ahash_req_complete,
&ahash_req_complete);
crypto_ahash_clear_flags(tfm, ~0);
in_buf = kzalloc(len + 64, GFP_KERNEL);
if (in_buf == NULL) {
ahash_request_free(ahash_req);
return -ENOMEM;
}
memcpy(in_buf, key, len);
sg_set_buf(&sg, in_buf, len);
sg_mark_end(&sg);
ahash_request_set_crypt(ahash_req, &sg,
&sha_ctx->authkey[0], len);
if (sha_ctx->alg == QCE_HASH_SHA1)
ret = _sha1_digest(ahash_req);
else
ret = _sha256_digest(ahash_req);
if (ret == -EINPROGRESS || ret == -EBUSY) {
ret =
wait_for_completion_interruptible(
&ahash_req_complete);
reinit_completion(&sha_ctx->ahash_req_complete);
}
kzfree(in_buf);
ahash_request_free(ahash_req);
return ret;
}
static int _sha1_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base);
int ret = 0;
memset(&sha_ctx->authkey[0], 0, SHA1_BLOCK_SIZE);
if (len <= SHA1_BLOCK_SIZE) {
memcpy(&sha_ctx->authkey[0], key, len);
sha_ctx->authkey_in_len = len;
} else {
sha_ctx->alg = QCE_HASH_SHA1;
sha_ctx->diglen = SHA1_DIGEST_SIZE;
ret = _sha_hmac_setkey(tfm, key, len);
if (ret)
pr_err("SHA1 hmac setkey failed\n");
sha_ctx->authkey_in_len = SHA1_BLOCK_SIZE;
}
return ret;
}
static int _sha256_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base);
int ret = 0;
memset(&sha_ctx->authkey[0], 0, SHA256_BLOCK_SIZE);
if (len <= SHA256_BLOCK_SIZE) {
memcpy(&sha_ctx->authkey[0], key, len);
sha_ctx->authkey_in_len = len;
} else {
sha_ctx->alg = QCE_HASH_SHA256;
sha_ctx->diglen = SHA256_DIGEST_SIZE;
ret = _sha_hmac_setkey(tfm, key, len);
if (ret)
pr_err("SHA256 hmac setkey failed\n");
sha_ctx->authkey_in_len = SHA256_BLOCK_SIZE;
}
return ret;
}
static int _sha_hmac_init_ihash(struct ahash_request *req,
uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
int i;
for (i = 0; i < sha_block_size; i++)
rctx->trailing_buf[i] = sha_ctx->authkey[i] ^ 0x36;
rctx->trailing_buf_len = sha_block_size;
return 0;
}
static int _sha1_hmac_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct crypto_stat *pstat;
int ret = 0;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
pstat = &_qcrypto_stat;
pstat->sha1_hmac_digest++;
_sha_init(req);
memset(&rctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE);
memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
if (cp->ce_support.sha_hmac)
sha_ctx->alg = QCE_HASH_SHA1_HMAC;
else {
sha_ctx->alg = QCE_HASH_SHA1;
ret = _sha_hmac_init_ihash(req, SHA1_BLOCK_SIZE);
}
return ret;
}
static int _sha256_hmac_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct crypto_stat *pstat;
int ret = 0;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
pstat = &_qcrypto_stat;
pstat->sha256_hmac_digest++;
_sha_init(req);
memset(&rctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE);
memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
if (cp->ce_support.sha_hmac)
sha_ctx->alg = QCE_HASH_SHA256_HMAC;
else {
sha_ctx->alg = QCE_HASH_SHA256;
ret = _sha_hmac_init_ihash(req, SHA256_BLOCK_SIZE);
}
return ret;
}
static int _sha1_hmac_update(struct ahash_request *req)
{
return _sha1_update(req);
}
static int _sha256_hmac_update(struct ahash_request *req)
{
return _sha256_update(req);
}
static int _sha_hmac_outer_hash(struct ahash_request *req,
uint32_t sha_digest_size, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_priv *cp = sha_ctx->cp;
int i;
uint8_t *staging;
uint8_t *p;
staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf),
L1_CACHE_BYTES);
p = staging;
for (i = 0; i < sha_block_size; i++)
*p++ = sha_ctx->authkey[i] ^ 0x5c;
memcpy(p, &rctx->digest[0], sha_digest_size);
sg_set_buf(&rctx->sg[0], staging, sha_block_size +
sha_digest_size);
sg_mark_end(&rctx->sg[0]);
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
req->src = &rctx->sg[0];
req->nbytes = sha_block_size + sha_digest_size;
_sha_init(req);
if (sha_ctx->alg == QCE_HASH_SHA1) {
memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
} else {
memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
}
rctx->last_blk = 1;
return _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base);
}
static int _sha_hmac_inner_hash(struct ahash_request *req,
uint32_t sha_digest_size, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct ahash_request *areq = sha_ctx->ahash_req;
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
uint8_t *staging;
staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf),
L1_CACHE_BYTES);
memcpy(staging, rctx->trailing_buf, rctx->trailing_buf_len);
sg_set_buf(&rctx->sg[0], staging, rctx->trailing_buf_len);
sg_mark_end(&rctx->sg[0]);
ahash_request_set_crypt(areq, &rctx->sg[0], &rctx->digest[0],
rctx->trailing_buf_len);
rctx->last_blk = 1;
ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &areq->base);
if (ret == -EINPROGRESS || ret == -EBUSY) {
ret =
wait_for_completion_interruptible(&sha_ctx->ahash_req_complete);
reinit_completion(&sha_ctx->ahash_req_complete);
}
return ret;
}
static int _sha1_hmac_final(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
if (cp->ce_support.sha_hmac)
return _sha_final(req, SHA1_BLOCK_SIZE);
ret = _sha_hmac_inner_hash(req, SHA1_DIGEST_SIZE, SHA1_BLOCK_SIZE);
if (ret)
return ret;
return _sha_hmac_outer_hash(req, SHA1_DIGEST_SIZE, SHA1_BLOCK_SIZE);
}
static int _sha256_hmac_final(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
if (cp->ce_support.sha_hmac)
return _sha_final(req, SHA256_BLOCK_SIZE);
ret = _sha_hmac_inner_hash(req, SHA256_DIGEST_SIZE, SHA256_BLOCK_SIZE);
if (ret)
return ret;
return _sha_hmac_outer_hash(req, SHA256_DIGEST_SIZE, SHA256_BLOCK_SIZE);
}
static int _sha1_hmac_digest(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
pstat = &_qcrypto_stat;
pstat->sha1_hmac_digest++;
_sha_init(req);
memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
sha_ctx->alg = QCE_HASH_SHA1_HMAC;
return _sha_digest(req);
}
static int _sha256_hmac_digest(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
pstat = &_qcrypto_stat;
pstat->sha256_hmac_digest++;
_sha_init(req);
memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
sha_ctx->alg = QCE_HASH_SHA256_HMAC;
return _sha_digest(req);
}
static int _qcrypto_prefix_alg_cra_name(char cra_name[], unsigned int size)
{
char new_cra_name[CRYPTO_MAX_ALG_NAME] = "qcom-";
if (size >= CRYPTO_MAX_ALG_NAME - strlen("qcom-"))
return -EINVAL;
strlcat(new_cra_name, cra_name, CRYPTO_MAX_ALG_NAME);
strlcpy(cra_name, new_cra_name, CRYPTO_MAX_ALG_NAME);
return 0;
}
int qcrypto_cipher_set_device(struct ablkcipher_request *req, unsigned int dev)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_engine *pengine = NULL;
pengine = _qrypto_find_pengine_device(cp, dev);
if (pengine == NULL)
return -ENODEV;
ctx->pengine = pengine;
return 0;
};
EXPORT_SYMBOL(qcrypto_cipher_set_device);
int qcrypto_cipher_set_device_hw(struct skcipher_request *req, u32 dev,
u32 hw_inst)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_engine *pengine = NULL;
pengine = _qrypto_find_pengine_device_hw(cp, dev, hw_inst);
if (pengine == NULL)
return -ENODEV;
ctx->pengine = pengine;
return 0;
}
EXPORT_SYMBOL(qcrypto_cipher_set_device_hw);
int qcrypto_aead_set_device(struct aead_request *req, unsigned int dev)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_engine *pengine = NULL;
pengine = _qrypto_find_pengine_device(cp, dev);
if (pengine == NULL)
return -ENODEV;
ctx->pengine = pengine;
return 0;
};
EXPORT_SYMBOL(qcrypto_aead_set_device);
int qcrypto_ahash_set_device(struct ahash_request *req, unsigned int dev)
{
struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_engine *pengine = NULL;
pengine = _qrypto_find_pengine_device(cp, dev);
if (pengine == NULL)
return -ENODEV;
ctx->pengine = pengine;
return 0;
};
EXPORT_SYMBOL(qcrypto_ahash_set_device);
int qcrypto_cipher_set_flag(struct skcipher_request *req, unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
if ((flags & QCRYPTO_CTX_USE_HW_KEY) &&
(cp->platform_support.hw_key_support == false)) {
pr_err("%s HW key usage not supported\n", __func__);
return -EINVAL;
}
if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) ==
QCRYPTO_CTX_KEY_MASK) {
pr_err("%s Cannot set all key flags\n", __func__);
return -EINVAL;
}
ctx->flags |= flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_cipher_set_flag);
int qcrypto_aead_set_flag(struct aead_request *req, unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
if ((flags & QCRYPTO_CTX_USE_HW_KEY) &&
(cp->platform_support.hw_key_support == false)) {
pr_err("%s HW key usage not supported\n", __func__);
return -EINVAL;
}
if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) ==
QCRYPTO_CTX_KEY_MASK) {
pr_err("%s Cannot set all key flags\n", __func__);
return -EINVAL;
}
ctx->flags |= flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_aead_set_flag);
int qcrypto_ahash_set_flag(struct ahash_request *req, unsigned int flags)
{
struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
if ((flags & QCRYPTO_CTX_USE_HW_KEY) &&
(cp->platform_support.hw_key_support == false)) {
pr_err("%s HW key usage not supported\n", __func__);
return -EINVAL;
}
if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) ==
QCRYPTO_CTX_KEY_MASK) {
pr_err("%s Cannot set all key flags\n", __func__);
return -EINVAL;
}
ctx->flags |= flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_ahash_set_flag);
int qcrypto_cipher_clear_flag(struct ablkcipher_request *req,
unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
ctx->flags &= ~flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_cipher_clear_flag);
int qcrypto_aead_clear_flag(struct aead_request *req, unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
ctx->flags &= ~flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_aead_clear_flag);
int qcrypto_ahash_clear_flag(struct ahash_request *req, unsigned int flags)
{
struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
ctx->flags &= ~flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_ahash_clear_flag);
static struct ahash_alg _qcrypto_ahash_algos[] = {
{
.init = _sha1_init,
.update = _sha1_update,
.final = _sha1_final,
.export = _sha1_export,
.import = _sha1_import,
.digest = _sha1_digest,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "qcrypto-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
{
.init = _sha256_init,
.update = _sha256_update,
.final = _sha256_final,
.export = _sha256_export,
.import = _sha256_import,
.digest = _sha256_digest,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "qcrypto-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
};
static struct ahash_alg _qcrypto_sha_hmac_algos[] = {
{
.init = _sha1_hmac_init,
.update = _sha1_hmac_update,
.final = _sha1_hmac_final,
.export = _sha1_hmac_export,
.import = _sha1_hmac_import,
.digest = _sha1_hmac_digest,
.setkey = _sha1_hmac_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "qcrypto-hmac-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_hmac_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
{
.init = _sha256_hmac_init,
.update = _sha256_hmac_update,
.final = _sha256_hmac_final,
.export = _sha256_hmac_export,
.import = _sha256_hmac_import,
.digest = _sha256_hmac_digest,
.setkey = _sha256_hmac_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "qcrypto-hmac-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_hmac_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
};
static struct crypto_alg _qcrypto_ablk_cipher_algos[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "qcrypto-ecb-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aes_ablkcipher_init,
.cra_exit = _qcrypto_cra_aes_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes,
.encrypt = _qcrypto_enc_aes_ecb,
.decrypt = _qcrypto_dec_aes_ecb,
},
},
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "qcrypto-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aes_ablkcipher_init,
.cra_exit = _qcrypto_cra_aes_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes,
.encrypt = _qcrypto_enc_aes_cbc,
.decrypt = _qcrypto_dec_aes_cbc,
},
},
},
{
.cra_name = "ctr(aes)",
.cra_driver_name = "qcrypto-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aes_ablkcipher_init,
.cra_exit = _qcrypto_cra_aes_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes,
.encrypt = _qcrypto_enc_aes_ctr,
.decrypt = _qcrypto_dec_aes_ctr,
},
},
},
{
.cra_name = "ecb(des)",
.cra_driver_name = "qcrypto-ecb-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = _qcrypto_setkey_des,
.encrypt = _qcrypto_enc_des_ecb,
.decrypt = _qcrypto_dec_des_ecb,
},
},
},
{
.cra_name = "cbc(des)",
.cra_driver_name = "qcrypto-cbc-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = _qcrypto_setkey_des,
.encrypt = _qcrypto_enc_des_cbc,
.decrypt = _qcrypto_dec_des_cbc,
},
},
},
{
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "qcrypto-ecb-3des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = _qcrypto_setkey_3des,
.encrypt = _qcrypto_enc_3des_ecb,
.decrypt = _qcrypto_dec_3des_ecb,
},
},
},
{
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "qcrypto-cbc-3des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = DES3_EDE_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = _qcrypto_setkey_3des,
.encrypt = _qcrypto_enc_3des_cbc,
.decrypt = _qcrypto_dec_3des_cbc,
},
},
},
};
static struct crypto_alg _qcrypto_ablk_cipher_xts_algo = {
.cra_name = "xts(aes)",
.cra_driver_name = "qcrypto-xts-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes_xts,
.encrypt = _qcrypto_enc_aes_xts,
.decrypt = _qcrypto_dec_aes_xts,
},
},
};
static struct aead_alg _qcrypto_aead_sha1_hmac_algos[] = {
{
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_aes_cbc,
.decrypt = _qcrypto_aead_decrypt_aes_cbc,
.init = _qcrypto_cra_aead_aes_sha1_init,
.exit = _qcrypto_cra_aead_aes_exit,
},
{
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_des_cbc,
.decrypt = _qcrypto_aead_decrypt_des_cbc,
.init = _qcrypto_cra_aead_sha1_init,
.exit = _qcrypto_cra_aead_exit,
},
{
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-3des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_3des_cbc,
.decrypt = _qcrypto_aead_decrypt_3des_cbc,
.init = _qcrypto_cra_aead_sha1_init,
.exit = _qcrypto_cra_aead_exit,
},
};
static struct aead_alg _qcrypto_aead_sha256_hmac_algos[] = {
{
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "qcrypto-aead-hmac-sha256-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_aes_cbc,
.decrypt = _qcrypto_aead_decrypt_aes_cbc,
.init = _qcrypto_cra_aead_aes_sha256_init,
.exit = _qcrypto_cra_aead_aes_exit,
},
{
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des))",
.cra_driver_name = "qcrypto-aead-hmac-sha256-cbc-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_des_cbc,
.decrypt = _qcrypto_aead_decrypt_des_cbc,
.init = _qcrypto_cra_aead_sha256_init,
.exit = _qcrypto_cra_aead_exit,
},
{
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
.cra_driver_name = "qcrypto-aead-hmac-sha256-cbc-3des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_3des_cbc,
.decrypt = _qcrypto_aead_decrypt_3des_cbc,
.init = _qcrypto_cra_aead_sha256_init,
.exit = _qcrypto_cra_aead_exit,
},
};
static struct aead_alg _qcrypto_aead_ccm_algo = {
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "qcrypto-aes-ccm",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = _qcrypto_aead_ccm_setkey,
.setauthsize = _qcrypto_aead_ccm_setauthsize,
.encrypt = _qcrypto_aead_encrypt_aes_ccm,
.decrypt = _qcrypto_aead_decrypt_aes_ccm,
.init = _qcrypto_cra_aead_ccm_init,
.exit = _qcrypto_cra_aead_exit,
};
static struct aead_alg _qcrypto_aead_rfc4309_ccm_algo = {
.base = {
.cra_name = "rfc4309(ccm(aes))",
.cra_driver_name = "qcrypto-rfc4309-aes-ccm",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.ivsize = 8,
.maxauthsize = 16,
.setkey = _qcrypto_aead_rfc4309_ccm_setkey,
.setauthsize = _qcrypto_aead_rfc4309_ccm_setauthsize,
.encrypt = _qcrypto_aead_rfc4309_enc_aes_ccm,
.decrypt = _qcrypto_aead_rfc4309_dec_aes_ccm,
.init = _qcrypto_cra_aead_rfc4309_ccm_init,
.exit = _qcrypto_cra_aead_exit,
};
static int _qcrypto_probe(struct platform_device *pdev)
{
int rc = 0;
void *handle;
struct crypto_priv *cp = &qcrypto_dev;
int i;
struct msm_ce_hw_support *platform_support;
struct crypto_engine *pengine;
unsigned long flags;
struct qcrypto_req_control *pqcrypto_req_control = NULL;
pengine = kzalloc(sizeof(*pengine), GFP_KERNEL);
if (!pengine)
return -ENOMEM;
cp->platform_support.bus_scale_table = (struct msm_bus_scale_pdata *)
msm_bus_cl_get_pdata(pdev);
if (!cp->platform_support.bus_scale_table) {
dev_err(&pdev->dev, "bus_scale_table is NULL\n");
pengine->bw_state = BUS_HAS_BANDWIDTH;
} else {
pengine->bus_scale_handle = msm_bus_scale_register_client(
(struct msm_bus_scale_pdata *)
cp->platform_support.bus_scale_table);
if (!pengine->bus_scale_handle) {
dev_err(&pdev->dev, "failed to get bus scale handle\n");
rc = -ENOMEM;
goto exit_kzfree;
}
pengine->bw_state = BUS_NO_BANDWIDTH;
}
rc = msm_bus_scale_client_update_request(pengine->bus_scale_handle, 1);
if (rc) {
dev_err(&pdev->dev, "failed to set high bandwidth\n");
goto exit_kzfree;
}
handle = qce_open(pdev, &rc);
if (handle == NULL) {
rc = -ENODEV;
goto exit_free_pdata;
}
rc = msm_bus_scale_client_update_request(pengine->bus_scale_handle, 0);
if (rc) {
dev_err(&pdev->dev, "failed to set low bandwidth\n");
goto exit_qce_close;
}
platform_set_drvdata(pdev, pengine);
pengine->qce = handle;
pengine->pcp = cp;
pengine->pdev = pdev;
pengine->signature = 0xdeadbeef;
init_timer(&(pengine->bw_reaper_timer));
INIT_WORK(&pengine->bw_reaper_ws, qcrypto_bw_reaper_work);
pengine->bw_reaper_timer.function =
qcrypto_bw_reaper_timer_callback;
INIT_WORK(&pengine->bw_allocate_ws, qcrypto_bw_allocate_work);
pengine->high_bw_req = false;
pengine->active_seq = 0;
pengine->last_active_seq = 0;
pengine->check_flag = false;
pengine->max_req_used = 0;
pengine->issue_req = false;
crypto_init_queue(&pengine->req_queue, MSM_QCRYPTO_REQ_QUEUE_LENGTH);
mutex_lock(&cp->engine_lock);
cp->total_units++;
pengine->unit = cp->total_units;
spin_lock_irqsave(&cp->lock, flags);
pengine->first_engine = list_empty(&cp->engine_list);
if (pengine->first_engine)
cp->first_engine = pengine;
list_add_tail(&pengine->elist, &cp->engine_list);
cp->next_engine = pengine;
spin_unlock_irqrestore(&cp->lock, flags);
qce_hw_support(pengine->qce, &cp->ce_support);
pengine->ce_hw_instance = cp->ce_support.ce_hw_instance;
pengine->max_req = cp->ce_support.max_request;
pqcrypto_req_control = kcalloc(pengine->max_req,
sizeof(struct qcrypto_req_control),
GFP_KERNEL);
if (pqcrypto_req_control == NULL) {
rc = -ENOMEM;
goto exit_unlock_mutex;
}
qcrypto_init_req_control(pengine, pqcrypto_req_control);
if (cp->ce_support.bam) {
cp->platform_support.ce_shared = cp->ce_support.is_shared;
cp->platform_support.shared_ce_resource = 0;
cp->platform_support.hw_key_support = cp->ce_support.hw_key;
cp->platform_support.sha_hmac = 1;
pengine->ce_device = cp->ce_support.ce_device;
} else {
platform_support =
(struct msm_ce_hw_support *)pdev->dev.platform_data;
cp->platform_support.ce_shared = platform_support->ce_shared;
cp->platform_support.shared_ce_resource =
platform_support->shared_ce_resource;
cp->platform_support.hw_key_support =
platform_support->hw_key_support;
cp->platform_support.sha_hmac = platform_support->sha_hmac;
}
if (cp->total_units != 1)
goto exit_unlock_mutex;
/* register crypto cipher algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(_qcrypto_ablk_cipher_algos); i++) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_cipher_alg_alloc(cp,
&_qcrypto_ablk_cipher_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_aes_cbc_ecb_ctr_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->cipher_alg.cra_name,
strlen(q_alg->cipher_alg.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->cipher_alg.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_alg(&q_alg->cipher_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->cipher_alg.cra_driver_name);
kzfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->cipher_alg.cra_driver_name);
}
}
/* register crypto cipher algorithms the device supports */
if (cp->ce_support.aes_xts) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_cipher_alg_alloc(cp,
&_qcrypto_ablk_cipher_xts_algo);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_aes_xts_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->cipher_alg.cra_name,
strlen(q_alg->cipher_alg.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->cipher_alg.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_alg(&q_alg->cipher_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->cipher_alg.cra_driver_name);
kzfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->cipher_alg.cra_driver_name);
}
}
/*
* Register crypto hash (sha1 and sha256) algorithms the
* device supports
*/
for (i = 0; i < ARRAY_SIZE(_qcrypto_ahash_algos); i++) {
struct qcrypto_alg *q_alg = NULL;
q_alg = _qcrypto_sha_alg_alloc(cp, &_qcrypto_ahash_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_ahash_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->sha_alg.halg.base.cra_name,
strlen(q_alg->sha_alg.halg.base.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->sha_alg.halg.base.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_ahash(&q_alg->sha_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->sha_alg.halg.base.cra_driver_name);
kzfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->sha_alg.halg.base.cra_driver_name);
}
}
/* register crypto aead (hmac-sha1) algorithms the device supports */
if (cp->ce_support.sha1_hmac_20 || cp->ce_support.sha1_hmac
|| cp->ce_support.sha_hmac) {
for (i = 0; i < ARRAY_SIZE(_qcrypto_aead_sha1_hmac_algos);
i++) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_aead_alg_alloc(cp,
&_qcrypto_aead_sha1_hmac_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_aead_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->aead_alg.base.cra_name,
strlen(q_alg->aead_alg.base.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->aead_alg.base.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_aead(&q_alg->aead_alg);
if (rc) {
dev_err(&pdev->dev,
"%s alg registration failed\n",
q_alg->aead_alg.base.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->aead_alg.base.cra_driver_name);
}
}
}
/* register crypto aead (hmac-sha256) algorithms the device supports */
if (cp->ce_support.sha_hmac) {
for (i = 0; i < ARRAY_SIZE(_qcrypto_aead_sha256_hmac_algos);
i++) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_aead_alg_alloc(cp,
&_qcrypto_aead_sha256_hmac_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_aead_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->aead_alg.base.cra_name,
strlen(q_alg->aead_alg.base.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->aead_alg.base.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_aead(&q_alg->aead_alg);
if (rc) {
dev_err(&pdev->dev,
"%s alg registration failed\n",
q_alg->aead_alg.base.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->aead_alg.base.cra_driver_name);
}
}
}
if ((cp->ce_support.sha_hmac) || (cp->platform_support.sha_hmac)) {
/* register crypto hmac algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(_qcrypto_sha_hmac_algos); i++) {
struct qcrypto_alg *q_alg = NULL;
q_alg = _qcrypto_sha_alg_alloc(cp,
&_qcrypto_sha_hmac_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_hmac_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->sha_alg.halg.base.cra_name,
strlen(
q_alg->sha_alg.halg.base.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->sha_alg.halg.base.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_ahash(&q_alg->sha_alg);
if (rc) {
dev_err(&pdev->dev,
"%s alg registration failed\n",
q_alg->sha_alg.halg.base.cra_driver_name);
kzfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->sha_alg.halg.base.cra_driver_name);
}
}
}
/*
* Register crypto cipher (aes-ccm) algorithms the
* device supports
*/
if (cp->ce_support.aes_ccm) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_aead_alg_alloc(cp, &_qcrypto_aead_ccm_algo);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_aes_ccm_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->aead_alg.base.cra_name,
strlen(q_alg->aead_alg.base.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->aead_alg.base.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_aead(&q_alg->aead_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->aead_alg.base.cra_driver_name);
kzfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->aead_alg.base.cra_driver_name);
}
q_alg = _qcrypto_aead_alg_alloc(cp,
&_qcrypto_aead_rfc4309_ccm_algo);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
if (cp->ce_support.use_sw_aes_ccm_algo) {
rc = _qcrypto_prefix_alg_cra_name(
q_alg->aead_alg.base.cra_name,
strlen(q_alg->aead_alg.base.cra_name));
if (rc) {
dev_err(&pdev->dev,
"The algorithm name %s is too long.\n",
q_alg->aead_alg.base.cra_name);
kfree(q_alg);
goto err;
}
}
rc = crypto_register_aead(&q_alg->aead_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->aead_alg.base.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->aead_alg.base.cra_driver_name);
}
}
mutex_unlock(&cp->engine_lock);
return 0;
err:
_qcrypto_remove_engine(pengine);
kzfree(pqcrypto_req_control);
exit_unlock_mutex:
mutex_unlock(&cp->engine_lock);
exit_qce_close:
if (pengine->qce)
qce_close(pengine->qce);
exit_free_pdata:
if (msm_bus_scale_client_update_request(pengine->bus_scale_handle, 0))
pr_err("%s Unable to set low bandwidth\n", __func__);
platform_set_drvdata(pdev, NULL);
exit_kzfree:
kzfree(pengine);
return rc;
};
static int _qcrypto_engine_in_use(struct crypto_engine *pengine)
{
struct crypto_priv *cp = pengine->pcp;
if ((atomic_read(&pengine->req_count) > 0) || pengine->req_queue.qlen
|| cp->req_queue.qlen)
return 1;
return 0;
}
static void _qcrypto_do_suspending(struct crypto_engine *pengine)
{
struct crypto_priv *cp = pengine->pcp;
if (cp->platform_support.bus_scale_table == NULL)
return;
del_timer_sync(&pengine->bw_reaper_timer);
qcrypto_ce_set_bus(pengine, false);
}
static int _qcrypto_suspend(struct platform_device *pdev, pm_message_t state)
{
int ret = 0;
struct crypto_engine *pengine;
struct crypto_priv *cp;
unsigned long flags;
pengine = platform_get_drvdata(pdev);
if (!pengine)
return -EINVAL;
/*
* Check if this platform supports clock management in suspend/resume
* If not, just simply return 0.
*/
cp = pengine->pcp;
if (!cp->ce_support.clk_mgmt_sus_res)
return 0;
spin_lock_irqsave(&cp->lock, flags);
switch (pengine->bw_state) {
case BUS_NO_BANDWIDTH:
if (pengine->high_bw_req == false)
pengine->bw_state = BUS_SUSPENDED;
else
ret = -EBUSY;
break;
case BUS_HAS_BANDWIDTH:
if (_qcrypto_engine_in_use(pengine)) {
ret = -EBUSY;
} else {
pengine->bw_state = BUS_SUSPENDING;
spin_unlock_irqrestore(&cp->lock, flags);
_qcrypto_do_suspending(pengine);
spin_lock_irqsave(&cp->lock, flags);
pengine->bw_state = BUS_SUSPENDED;
}
break;
case BUS_BANDWIDTH_RELEASING:
case BUS_BANDWIDTH_ALLOCATING:
case BUS_SUSPENDED:
case BUS_SUSPENDING:
default:
ret = -EBUSY;
break;
}
spin_unlock_irqrestore(&cp->lock, flags);
if (ret)
return ret;
if (qce_pm_table.suspend) {
qcrypto_ce_set_bus(pengine, true);
qce_pm_table.suspend(pengine->qce);
qcrypto_ce_set_bus(pengine, false);
}
return 0;
}
static int _qcrypto_resume(struct platform_device *pdev)
{
struct crypto_engine *pengine;
struct crypto_priv *cp;
unsigned long flags;
int ret = 0;
pengine = platform_get_drvdata(pdev);
if (!pengine)
return -EINVAL;
cp = pengine->pcp;
if (!cp->ce_support.clk_mgmt_sus_res)
return 0;
spin_lock_irqsave(&cp->lock, flags);
if (pengine->bw_state == BUS_SUSPENDED) {
spin_unlock_irqrestore(&cp->lock, flags);
if (qce_pm_table.resume) {
qcrypto_ce_set_bus(pengine, true);
qce_pm_table.resume(pengine->qce);
qcrypto_ce_set_bus(pengine, false);
}
spin_lock_irqsave(&cp->lock, flags);
pengine->bw_state = BUS_NO_BANDWIDTH;
pengine->active_seq++;
pengine->check_flag = false;
if (cp->req_queue.qlen || pengine->req_queue.qlen) {
if (pengine->high_bw_req == false) {
qcrypto_ce_bw_allocate_req(pengine);
pengine->high_bw_req = true;
}
}
} else
ret = -EBUSY;
spin_unlock_irqrestore(&cp->lock, flags);
return ret;
}
static const struct of_device_id qcrypto_match[] = {
{ .compatible = "qcom,qcrypto",
},
{}
};
static struct platform_driver __qcrypto = {
.probe = _qcrypto_probe,
.remove = _qcrypto_remove,
.suspend = _qcrypto_suspend,
.resume = _qcrypto_resume,
.driver = {
.owner = THIS_MODULE,
.name = "qcrypto",
.of_match_table = qcrypto_match,
},
};
static int _debug_qcrypto;
static int _debug_stats_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t _debug_stats_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int rc = -EINVAL;
int qcrypto = *((int *) file->private_data);
int len;
len = _disp_stats(qcrypto);
if (len <= count)
rc = simple_read_from_buffer((void __user *) buf, len,
ppos, (void *) _debug_read_buf, len);
return rc;
}
static ssize_t _debug_stats_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long flags;
struct crypto_priv *cp = &qcrypto_dev;
struct crypto_engine *pe;
int i;
memset((char *)&_qcrypto_stat, 0, sizeof(struct crypto_stat));
spin_lock_irqsave(&cp->lock, flags);
list_for_each_entry(pe, &cp->engine_list, elist) {
pe->total_req = 0;
pe->err_req = 0;
qce_clear_driver_stats(pe->qce);
pe->max_req_used = 0;
}
cp->max_qlen = 0;
cp->resp_start = 0;
cp->resp_stop = 0;
cp->no_avail = 0;
cp->max_resp_qlen = 0;
cp->queue_work_eng3 = 0;
cp->queue_work_not_eng3 = 0;
cp->queue_work_not_eng3_nz = 0;
cp->max_reorder_cnt = 0;
for (i = 0; i < MAX_SMP_CPU + 1; i++)
cp->cpu_req[i] = 0;
spin_unlock_irqrestore(&cp->lock, flags);
return count;
}
static const struct file_operations _debug_stats_ops = {
.open = _debug_stats_open,
.read = _debug_stats_read,
.write = _debug_stats_write,
};
static int _qcrypto_debug_init(void)
{
int rc;
char name[DEBUG_MAX_FNAME];
struct dentry *dent;
_debug_dent = debugfs_create_dir("qcrypto", NULL);
if (IS_ERR(_debug_dent)) {
pr_debug("qcrypto debugfs_create_dir fail, error %ld\n",
PTR_ERR(_debug_dent));
return PTR_ERR(_debug_dent);
}
snprintf(name, DEBUG_MAX_FNAME-1, "stats-%d", 1);
_debug_qcrypto = 0;
dent = debugfs_create_file(name, 0644, _debug_dent,
&_debug_qcrypto, &_debug_stats_ops);
if (dent == NULL) {
pr_debug("qcrypto debugfs_create_file fail, error %ld\n",
PTR_ERR(dent));
rc = PTR_ERR(dent);
goto err;
}
return 0;
err:
debugfs_remove_recursive(_debug_dent);
return rc;
}
static int __init _qcrypto_init(void)
{
struct crypto_priv *pcp = &qcrypto_dev;
_qcrypto_debug_init();
INIT_LIST_HEAD(&pcp->alg_list);
INIT_LIST_HEAD(&pcp->engine_list);
init_llist_head(&pcp->ordered_resp_list);
spin_lock_init(&pcp->lock);
mutex_init(&pcp->engine_lock);
pcp->resp_wq = alloc_workqueue("qcrypto_seq_response_wq",
WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
if (!pcp->resp_wq) {
pr_err("Error allocating workqueue\n");
return -ENOMEM;
}
INIT_WORK(&pcp->resp_work, seq_response);
pcp->total_units = 0;
pcp->platform_support.bus_scale_table = NULL;
pcp->next_engine = NULL;
pcp->scheduled_eng = NULL;
pcp->ce_req_proc_sts = IN_PROGRESS;
crypto_init_queue(&pcp->req_queue, MSM_QCRYPTO_REQ_QUEUE_LENGTH);
return platform_driver_register(&__qcrypto);
}
static void __exit _qcrypto_exit(void)
{
pr_debug("%s Unregister QCRYPTO\n", __func__);
debugfs_remove_recursive(_debug_dent);
platform_driver_unregister(&__qcrypto);
}
module_init(_qcrypto_init);
module_exit(_qcrypto_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("QTI Crypto driver");