/* * QTI Crypto driver * * Copyright (c) 2010-2020, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qce.h" #define DEBUG_MAX_FNAME 16 #define DEBUG_MAX_RW_BUF 4096 #define QCRYPTO_BIG_NUMBER 9999999 /* a big number */ /* * For crypto 5.0 which has burst size alignment requirement. */ #define MAX_ALIGN_SIZE 0x40 #define QCRYPTO_HIGH_BANDWIDTH_TIMEOUT 1000 /* Status of response workq */ enum resp_workq_sts { NOT_SCHEDULED = 0, IS_SCHEDULED = 1, SCHEDULE_AGAIN = 2 }; /* Status of req processing by CEs */ enum req_processing_sts { STOPPED = 0, IN_PROGRESS = 1 }; enum qcrypto_bus_state { BUS_NO_BANDWIDTH = 0, BUS_HAS_BANDWIDTH, BUS_BANDWIDTH_RELEASING, BUS_BANDWIDTH_ALLOCATING, BUS_SUSPENDED, BUS_SUSPENDING, }; struct crypto_stat { u64 aead_sha1_aes_enc; u64 aead_sha1_aes_dec; u64 aead_sha1_des_enc; u64 aead_sha1_des_dec; u64 aead_sha1_3des_enc; u64 aead_sha1_3des_dec; u64 aead_sha256_aes_enc; u64 aead_sha256_aes_dec; u64 aead_sha256_des_enc; u64 aead_sha256_des_dec; u64 aead_sha256_3des_enc; u64 aead_sha256_3des_dec; u64 aead_ccm_aes_enc; u64 aead_ccm_aes_dec; u64 aead_rfc4309_ccm_aes_enc; u64 aead_rfc4309_ccm_aes_dec; u64 aead_op_success; u64 aead_op_fail; u64 aead_bad_msg; u64 ablk_cipher_aes_enc; u64 ablk_cipher_aes_dec; u64 ablk_cipher_des_enc; u64 ablk_cipher_des_dec; u64 ablk_cipher_3des_enc; u64 ablk_cipher_3des_dec; u64 ablk_cipher_op_success; u64 ablk_cipher_op_fail; u64 sha1_digest; u64 sha256_digest; u64 sha1_hmac_digest; u64 sha256_hmac_digest; u64 ahash_op_success; u64 ahash_op_fail; }; static struct crypto_stat _qcrypto_stat; static struct dentry *_debug_dent; static char _debug_read_buf[DEBUG_MAX_RW_BUF]; static bool _qcrypto_init_assign; struct crypto_priv; struct qcrypto_req_control { unsigned int index; bool in_use; struct crypto_engine *pce; struct crypto_async_request *req; struct qcrypto_resp_ctx *arsp; int res; /* execution result */ }; struct crypto_engine { struct list_head elist; void *qce; /* qce handle */ struct platform_device *pdev; /* platform device */ struct crypto_priv *pcp; uint32_t bus_scale_handle; struct crypto_queue req_queue; /* * request queue for those requests * that have this engine assigned * waiting to be executed */ u64 total_req; u64 err_req; u32 unit; u32 ce_device; u32 ce_hw_instance; unsigned int signature; enum qcrypto_bus_state bw_state; bool high_bw_req; struct timer_list bw_reaper_timer; struct work_struct bw_reaper_ws; struct work_struct bw_allocate_ws; /* engine execution sequence number */ u32 active_seq; /* last QCRYPTO_HIGH_BANDWIDTH_TIMEOUT active_seq */ u32 last_active_seq; bool check_flag; /*Added to support multi-requests*/ unsigned int max_req; struct qcrypto_req_control *preq_pool; atomic_t req_count; bool issue_req; /* an request is being issued to qce */ bool first_engine; /* this engine is the first engine or not */ unsigned int irq_cpu; /* the cpu running the irq of this engine */ unsigned int max_req_used; /* debug stats */ }; #define MAX_SMP_CPU 8 struct crypto_priv { /* CE features supported by target device*/ struct msm_ce_hw_support platform_support; /* CE features/algorithms supported by HW engine*/ struct ce_hw_support ce_support; /* the lock protects crypto queue and req */ spinlock_t lock; /* list of registered algorithms */ struct list_head alg_list; /* current active request */ struct crypto_async_request *req; struct work_struct unlock_ce_ws; struct list_head engine_list; /* list of qcrypto engines */ int32_t total_units; /* total units of engines */ struct mutex engine_lock; struct crypto_engine *next_engine; /* next assign engine */ struct crypto_queue req_queue; /* * request queue for those requests * that waiting for an available * engine. */ struct llist_head ordered_resp_list; /* Queue to maintain * responses in sequence. */ atomic_t resp_cnt; struct workqueue_struct *resp_wq; struct work_struct resp_work; /* * Workq to send responses * in sequence. */ enum resp_workq_sts sched_resp_workq_status; enum req_processing_sts ce_req_proc_sts; int cpu_getting_irqs_frm_first_ce; struct crypto_engine *first_engine; struct crypto_engine *scheduled_eng; /* last engine scheduled */ /* debug stats */ unsigned int no_avail; unsigned int resp_stop; unsigned int resp_start; unsigned int max_qlen; unsigned int queue_work_eng3; unsigned int queue_work_not_eng3; unsigned int queue_work_not_eng3_nz; unsigned int max_resp_qlen; unsigned int max_reorder_cnt; unsigned int cpu_req[MAX_SMP_CPU+1]; }; static struct crypto_priv qcrypto_dev; static struct crypto_engine *_qcrypto_static_assign_engine( struct crypto_priv *cp); static struct crypto_engine *_avail_eng(struct crypto_priv *cp); static struct qcrypto_req_control *qcrypto_alloc_req_control( struct crypto_engine *pce) { int i; struct qcrypto_req_control *pqcrypto_req_control = pce->preq_pool; unsigned int req_count; for (i = 0; i < pce->max_req; i++) { if (xchg(&pqcrypto_req_control->in_use, true) == false) { req_count = atomic_inc_return(&pce->req_count); if (req_count > pce->max_req_used) pce->max_req_used = req_count; return pqcrypto_req_control; } pqcrypto_req_control++; } return NULL; } static void qcrypto_free_req_control(struct crypto_engine *pce, struct qcrypto_req_control *preq) { /* do this before free req */ preq->req = NULL; preq->arsp = NULL; /* free req */ if (xchg(&preq->in_use, false) == false) pr_warn("request info %pK free already\n", preq); else atomic_dec(&pce->req_count); } static struct qcrypto_req_control *find_req_control_for_areq( struct crypto_engine *pce, struct crypto_async_request *areq) { int i; struct qcrypto_req_control *pqcrypto_req_control = pce->preq_pool; for (i = 0; i < pce->max_req; i++) { if (pqcrypto_req_control->req == areq) return pqcrypto_req_control; pqcrypto_req_control++; } return NULL; } static void qcrypto_init_req_control(struct crypto_engine *pce, struct qcrypto_req_control *pqcrypto_req_control) { int i; pce->preq_pool = pqcrypto_req_control; atomic_set(&pce->req_count, 0); for (i = 0; i < pce->max_req; i++) { pqcrypto_req_control->index = i; pqcrypto_req_control->in_use = false; pqcrypto_req_control->pce = pce; pqcrypto_req_control++; } } static struct crypto_engine *_qrypto_find_pengine_device(struct crypto_priv *cp, unsigned int device) { struct crypto_engine *entry = NULL; unsigned long flags; spin_lock_irqsave(&cp->lock, flags); list_for_each_entry(entry, &cp->engine_list, elist) { if (entry->ce_device == device) break; } spin_unlock_irqrestore(&cp->lock, flags); if (((entry != NULL) && (entry->ce_device != device)) || (entry == NULL)) { pr_err("Device node for CE device %d NOT FOUND!!\n", device); return NULL; } return entry; } static struct crypto_engine *_qrypto_find_pengine_device_hw (struct crypto_priv *cp, u32 device, u32 hw_instance) { struct crypto_engine *entry = NULL; unsigned long flags; spin_lock_irqsave(&cp->lock, flags); list_for_each_entry(entry, &cp->engine_list, elist) { if ((entry->ce_device == device) && (entry->ce_hw_instance == hw_instance)) break; } spin_unlock_irqrestore(&cp->lock, flags); if (((entry != NULL) && ((entry->ce_device != device) || (entry->ce_hw_instance != hw_instance))) || (entry == NULL)) { pr_err("Device node for CE device %d NOT FOUND!!\n", device); return NULL; } return entry; } int qcrypto_get_num_engines(void) { struct crypto_priv *cp = &qcrypto_dev; struct crypto_engine *entry = NULL; int count = 0; list_for_each_entry(entry, &cp->engine_list, elist) { count++; } return count; } EXPORT_SYMBOL(qcrypto_get_num_engines); void qcrypto_get_engine_list(size_t num_engines, struct crypto_engine_entry *arr) { struct crypto_priv *cp = &qcrypto_dev; struct crypto_engine *entry = NULL; size_t arr_index = 0; list_for_each_entry(entry, &cp->engine_list, elist) { arr[arr_index].ce_device = entry->ce_device; arr[arr_index].hw_instance = entry->ce_hw_instance; arr_index++; if (arr_index >= num_engines) break; } } EXPORT_SYMBOL(qcrypto_get_engine_list); enum qcrypto_alg_type { QCRYPTO_ALG_CIPHER = 0, QCRYPTO_ALG_SHA = 1, QCRYPTO_ALG_AEAD = 2, QCRYPTO_ALG_LAST }; struct qcrypto_alg { struct list_head entry; struct crypto_alg cipher_alg; struct ahash_alg sha_alg; struct aead_alg aead_alg; enum qcrypto_alg_type alg_type; struct crypto_priv *cp; }; #define QCRYPTO_MAX_KEY_SIZE 64 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ #define QCRYPTO_MAX_IV_LENGTH 16 #define QCRYPTO_CCM4309_NONCE_LEN 3 struct qcrypto_cipher_ctx { struct list_head rsp_queue; /* response queue */ struct crypto_engine *pengine; /* fixed engine assigned to this tfm */ struct crypto_priv *cp; unsigned int flags; enum qce_hash_alg_enum auth_alg; /* for aead */ u8 auth_key[QCRYPTO_MAX_KEY_SIZE]; u8 iv[QCRYPTO_MAX_IV_LENGTH]; u8 enc_key[QCRYPTO_MAX_KEY_SIZE]; unsigned int enc_key_len; unsigned int authsize; unsigned int auth_key_len; u8 ccm4309_nonce[QCRYPTO_CCM4309_NONCE_LEN]; struct crypto_skcipher *cipher_aes192_fb; struct crypto_ahash *ahash_aead_aes192_fb; }; struct qcrypto_resp_ctx { struct list_head list; struct llist_node llist; struct crypto_async_request *async_req; /* async req */ int res; /* execution result */ }; struct qcrypto_cipher_req_ctx { struct qcrypto_resp_ctx rsp_entry;/* rsp entry. */ struct crypto_engine *pengine; /* engine assigned to this request */ u8 *iv; u8 rfc4309_iv[QCRYPTO_MAX_IV_LENGTH]; unsigned int ivsize; int aead; int ccmtype; /* default: 0, rfc4309: 1 */ struct scatterlist asg; /* Formatted associated data sg */ unsigned char *adata; /* Pointer to formatted assoc data */ enum qce_cipher_alg_enum alg; enum qce_cipher_dir_enum dir; enum qce_cipher_mode_enum mode; struct scatterlist *orig_src; /* Original src sg ptr */ struct scatterlist *orig_dst; /* Original dst sg ptr */ struct scatterlist dsg; /* Dest Data sg */ struct scatterlist ssg; /* Source Data sg */ unsigned char *data; /* Incoming data pointer*/ struct aead_request *aead_req; struct ahash_request *fb_hash_req; uint8_t fb_ahash_digest[SHA256_DIGEST_SIZE]; struct scatterlist fb_ablkcipher_src_sg[2]; struct scatterlist fb_ablkcipher_dst_sg[2]; char *fb_aes_iv; unsigned int fb_ahash_length; struct skcipher_request *fb_aes_req; struct scatterlist *fb_aes_src; struct scatterlist *fb_aes_dst; unsigned int fb_aes_cryptlen; }; #define SHA_MAX_BLOCK_SIZE SHA256_BLOCK_SIZE #define SHA_MAX_STATE_SIZE (SHA256_DIGEST_SIZE / sizeof(u32)) #define SHA_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE #define MSM_QCRYPTO_REQ_QUEUE_LENGTH 768 #define COMPLETION_CB_BACKLOG_LENGTH_STOP 400 #define COMPLETION_CB_BACKLOG_LENGTH_START \ (COMPLETION_CB_BACKLOG_LENGTH_STOP / 2) static uint8_t _std_init_vector_sha1_uint8[] = { 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, 0x89, 0x98, 0xBA, 0xDC, 0xFE, 0x10, 0x32, 0x54, 0x76, 0xC3, 0xD2, 0xE1, 0xF0 }; /* standard initialization vector for SHA-256, source: FIPS 180-2 */ static uint8_t _std_init_vector_sha256_uint8[] = { 0x6A, 0x09, 0xE6, 0x67, 0xBB, 0x67, 0xAE, 0x85, 0x3C, 0x6E, 0xF3, 0x72, 0xA5, 0x4F, 0xF5, 0x3A, 0x51, 0x0E, 0x52, 0x7F, 0x9B, 0x05, 0x68, 0x8C, 0x1F, 0x83, 0xD9, 0xAB, 0x5B, 0xE0, 0xCD, 0x19 }; struct qcrypto_sha_ctx { struct list_head rsp_queue; /* response queue */ struct crypto_engine *pengine; /* fixed engine assigned to this tfm */ struct crypto_priv *cp; unsigned int flags; enum qce_hash_alg_enum alg; uint32_t diglen; uint32_t authkey_in_len; uint8_t authkey[SHA_MAX_BLOCK_SIZE]; struct ahash_request *ahash_req; struct completion ahash_req_complete; }; struct qcrypto_sha_req_ctx { struct qcrypto_resp_ctx rsp_entry;/* rsp entry. */ struct crypto_engine *pengine; /* engine assigned to this request */ struct scatterlist *src; uint32_t nbytes; struct scatterlist *orig_src; /* Original src sg ptr */ struct scatterlist dsg; /* Data sg */ unsigned char *data; /* Incoming data pointer*/ unsigned char *data2; /* Updated data pointer*/ uint32_t byte_count[4]; u64 count; uint8_t first_blk; uint8_t last_blk; uint8_t trailing_buf[SHA_MAX_BLOCK_SIZE]; uint32_t trailing_buf_len; /* dma buffer, Internal use */ uint8_t staging_dmabuf [SHA_MAX_BLOCK_SIZE+SHA_MAX_DIGEST_SIZE+MAX_ALIGN_SIZE]; uint8_t digest[SHA_MAX_DIGEST_SIZE]; struct scatterlist sg[2]; }; static void _byte_stream_to_words(uint32_t *iv, unsigned char *b, unsigned int len) { unsigned int n; n = len / sizeof(uint32_t); for (; n > 0; n--) { *iv = ((*b << 24) & 0xff000000) | (((*(b+1)) << 16) & 0xff0000) | (((*(b+2)) << 8) & 0xff00) | (*(b+3) & 0xff); b += sizeof(uint32_t); iv++; } n = len % sizeof(uint32_t); if (n == 3) { *iv = ((*b << 24) & 0xff000000) | (((*(b+1)) << 16) & 0xff0000) | (((*(b+2)) << 8) & 0xff00); } else if (n == 2) { *iv = ((*b << 24) & 0xff000000) | (((*(b+1)) << 16) & 0xff0000); } else if (n == 1) { *iv = ((*b << 24) & 0xff000000); } } static void _words_to_byte_stream(uint32_t *iv, unsigned char *b, unsigned int len) { unsigned int n = len / sizeof(uint32_t); for (; n > 0; n--) { *b++ = (unsigned char) ((*iv >> 24) & 0xff); *b++ = (unsigned char) ((*iv >> 16) & 0xff); *b++ = (unsigned char) ((*iv >> 8) & 0xff); *b++ = (unsigned char) (*iv & 0xff); iv++; } n = len % sizeof(uint32_t); if (n == 3) { *b++ = (unsigned char) ((*iv >> 24) & 0xff); *b++ = (unsigned char) ((*iv >> 16) & 0xff); *b = (unsigned char) ((*iv >> 8) & 0xff); } else if (n == 2) { *b++ = (unsigned char) ((*iv >> 24) & 0xff); *b = (unsigned char) ((*iv >> 16) & 0xff); } else if (n == 1) { *b = (unsigned char) ((*iv >> 24) & 0xff); } } static void qcrypto_ce_set_bus(struct crypto_engine *pengine, bool high_bw_req) { struct crypto_priv *cp = pengine->pcp; unsigned int control_flag; int ret = 0; if (cp->ce_support.req_bw_before_clk) { if (high_bw_req) control_flag = QCE_BW_REQUEST_FIRST; else control_flag = QCE_CLK_DISABLE_FIRST; } else { if (high_bw_req) control_flag = QCE_CLK_ENABLE_FIRST; else control_flag = QCE_BW_REQUEST_RESET_FIRST; } switch (control_flag) { case QCE_CLK_ENABLE_FIRST: ret = qce_enable_clk(pengine->qce); if (ret) { pr_err("%s Unable enable clk\n", __func__); return; } ret = msm_bus_scale_client_update_request( pengine->bus_scale_handle, 1); if (ret) { pr_err("%s Unable to set high bw\n", __func__); ret = qce_disable_clk(pengine->qce); if (ret) pr_err("%s Unable disable clk\n", __func__); return; } break; case QCE_BW_REQUEST_FIRST: ret = msm_bus_scale_client_update_request( pengine->bus_scale_handle, 1); if (ret) { pr_err("%s Unable to set high bw\n", __func__); return; } ret = qce_enable_clk(pengine->qce); if (ret) { pr_err("%s Unable enable clk\n", __func__); ret = msm_bus_scale_client_update_request( pengine->bus_scale_handle, 0); if (ret) pr_err("%s Unable to set low bw\n", __func__); return; } break; case QCE_CLK_DISABLE_FIRST: ret = qce_disable_clk(pengine->qce); if (ret) { pr_err("%s Unable to disable clk\n", __func__); return; } ret = msm_bus_scale_client_update_request( pengine->bus_scale_handle, 0); if (ret) { pr_err("%s Unable to set low bw\n", __func__); ret = qce_enable_clk(pengine->qce); if (ret) pr_err("%s Unable enable clk\n", __func__); return; } break; case QCE_BW_REQUEST_RESET_FIRST: ret = msm_bus_scale_client_update_request( pengine->bus_scale_handle, 0); if (ret) { pr_err("%s Unable to set low bw\n", __func__); return; } ret = qce_disable_clk(pengine->qce); if (ret) { pr_err("%s Unable to disable clk\n", __func__); ret = msm_bus_scale_client_update_request( pengine->bus_scale_handle, 1); if (ret) pr_err("%s Unable to set high bw\n", __func__); return; } break; default: return; } } static void qcrypto_bw_reaper_timer_callback(unsigned long data) { struct crypto_engine *pengine = (struct crypto_engine *)data; schedule_work(&pengine->bw_reaper_ws); } static void qcrypto_bw_set_timeout(struct crypto_engine *pengine) { pengine->bw_reaper_timer.data = (unsigned long)(pengine); pengine->bw_reaper_timer.expires = jiffies + msecs_to_jiffies(QCRYPTO_HIGH_BANDWIDTH_TIMEOUT); mod_timer(&(pengine->bw_reaper_timer), pengine->bw_reaper_timer.expires); } static void qcrypto_ce_bw_allocate_req(struct crypto_engine *pengine) { schedule_work(&pengine->bw_allocate_ws); } static int _start_qcrypto_process(struct crypto_priv *cp, struct crypto_engine *pengine); static void qcrypto_bw_allocate_work(struct work_struct *work) { struct crypto_engine *pengine = container_of(work, struct crypto_engine, bw_allocate_ws); unsigned long flags; struct crypto_priv *cp = pengine->pcp; spin_lock_irqsave(&cp->lock, flags); pengine->bw_state = BUS_BANDWIDTH_ALLOCATING; spin_unlock_irqrestore(&cp->lock, flags); qcrypto_ce_set_bus(pengine, true); qcrypto_bw_set_timeout(pengine); spin_lock_irqsave(&cp->lock, flags); pengine->bw_state = BUS_HAS_BANDWIDTH; pengine->high_bw_req = false; pengine->active_seq++; pengine->check_flag = true; spin_unlock_irqrestore(&cp->lock, flags); _start_qcrypto_process(cp, pengine); }; static void qcrypto_bw_reaper_work(struct work_struct *work) { struct crypto_engine *pengine = container_of(work, struct crypto_engine, bw_reaper_ws); struct crypto_priv *cp = pengine->pcp; unsigned long flags; u32 active_seq; bool restart = false; spin_lock_irqsave(&cp->lock, flags); active_seq = pengine->active_seq; if (pengine->bw_state == BUS_HAS_BANDWIDTH && (active_seq == pengine->last_active_seq)) { /* check if engine is stuck */ if (atomic_read(&pengine->req_count) > 0) { if (pengine->check_flag) dev_warn(&pengine->pdev->dev, "The engine appears to be stuck seq %d.\n", active_seq); pengine->check_flag = false; goto ret; } if (cp->platform_support.bus_scale_table == NULL) goto ret; pengine->bw_state = BUS_BANDWIDTH_RELEASING; spin_unlock_irqrestore(&cp->lock, flags); qcrypto_ce_set_bus(pengine, false); spin_lock_irqsave(&cp->lock, flags); if (pengine->high_bw_req == true) { /* we got request while we are disabling clock */ pengine->bw_state = BUS_BANDWIDTH_ALLOCATING; spin_unlock_irqrestore(&cp->lock, flags); qcrypto_ce_set_bus(pengine, true); spin_lock_irqsave(&cp->lock, flags); pengine->bw_state = BUS_HAS_BANDWIDTH; pengine->high_bw_req = false; restart = true; } else pengine->bw_state = BUS_NO_BANDWIDTH; } ret: pengine->last_active_seq = active_seq; spin_unlock_irqrestore(&cp->lock, flags); if (restart) _start_qcrypto_process(cp, pengine); if (pengine->bw_state != BUS_NO_BANDWIDTH) qcrypto_bw_set_timeout(pengine); } static int qcrypto_count_sg(struct scatterlist *sg, int nbytes) { int i; for (i = 0; nbytes > 0 && sg != NULL; i++, sg = sg_next(sg)) nbytes -= sg->length; return i; } static size_t qcrypto_sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen) { int i; size_t offset, len; for (i = 0, offset = 0; i < nents; ++i) { len = sg_copy_from_buffer(sgl, 1, buf, buflen); buf += len; buflen -= len; offset += len; sgl = sg_next(sgl); } return offset; } static size_t qcrypto_sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen) { int i; size_t offset, len; for (i = 0, offset = 0; i < nents; ++i) { len = sg_copy_to_buffer(sgl, 1, buf, buflen); buf += len; buflen -= len; offset += len; sgl = sg_next(sgl); } return offset; } static struct qcrypto_alg *_qcrypto_sha_alg_alloc(struct crypto_priv *cp, struct ahash_alg *template) { struct qcrypto_alg *q_alg; q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL); if (!q_alg) return ERR_PTR(-ENOMEM); q_alg->alg_type = QCRYPTO_ALG_SHA; q_alg->sha_alg = *template; q_alg->cp = cp; return q_alg; }; static struct qcrypto_alg *_qcrypto_cipher_alg_alloc(struct crypto_priv *cp, struct crypto_alg *template) { struct qcrypto_alg *q_alg; q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL); if (!q_alg) return ERR_PTR(-ENOMEM); q_alg->alg_type = QCRYPTO_ALG_CIPHER; q_alg->cipher_alg = *template; q_alg->cp = cp; return q_alg; }; static struct qcrypto_alg *_qcrypto_aead_alg_alloc(struct crypto_priv *cp, struct aead_alg *template) { struct qcrypto_alg *q_alg; q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL); if (!q_alg) return ERR_PTR(-ENOMEM); q_alg->alg_type = QCRYPTO_ALG_AEAD; q_alg->aead_alg = *template; q_alg->cp = cp; return q_alg; }; static int _qcrypto_cipher_ctx_init(struct qcrypto_cipher_ctx *ctx, struct qcrypto_alg *q_alg) { if (!ctx || !q_alg) { pr_err("ctx or q_alg is NULL\n"); return -EINVAL; } ctx->flags = 0; /* update context with ptr to cp */ ctx->cp = q_alg->cp; /* random first IV */ get_random_bytes(ctx->iv, QCRYPTO_MAX_IV_LENGTH); if (_qcrypto_init_assign) { ctx->pengine = _qcrypto_static_assign_engine(ctx->cp); if (ctx->pengine == NULL) return -ENODEV; } else ctx->pengine = NULL; INIT_LIST_HEAD(&ctx->rsp_queue); ctx->auth_alg = QCE_HASH_LAST; return 0; } static int _qcrypto_cipher_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct qcrypto_alg *q_alg; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); q_alg = container_of(alg, struct qcrypto_alg, cipher_alg); return _qcrypto_cipher_ctx_init(ctx, q_alg); }; static int _qcrypto_ahash_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm); struct ahash_alg *alg = container_of(crypto_hash_alg_common(ahash), struct ahash_alg, halg); struct qcrypto_alg *q_alg = container_of(alg, struct qcrypto_alg, sha_alg); crypto_ahash_set_reqsize(ahash, sizeof(struct qcrypto_sha_req_ctx)); /* update context with ptr to cp */ sha_ctx->cp = q_alg->cp; sha_ctx->flags = 0; sha_ctx->ahash_req = NULL; if (_qcrypto_init_assign) { sha_ctx->pengine = _qcrypto_static_assign_engine(sha_ctx->cp); if (sha_ctx->pengine == NULL) return -ENODEV; } else sha_ctx->pengine = NULL; INIT_LIST_HEAD(&sha_ctx->rsp_queue); return 0; }; static void _qcrypto_ahash_cra_exit(struct crypto_tfm *tfm) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm); if (!list_empty(&sha_ctx->rsp_queue)) pr_err("%s: requests still outstanding\n", __func__); if (sha_ctx->ahash_req != NULL) { ahash_request_free(sha_ctx->ahash_req); sha_ctx->ahash_req = NULL; } }; static void _crypto_sha_hmac_ahash_req_complete( struct crypto_async_request *req, int err); static int _qcrypto_ahash_hmac_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm); int ret = 0; ret = _qcrypto_ahash_cra_init(tfm); if (ret) return ret; sha_ctx->ahash_req = ahash_request_alloc(ahash, GFP_KERNEL); if (sha_ctx->ahash_req == NULL) { _qcrypto_ahash_cra_exit(tfm); return -ENOMEM; } init_completion(&sha_ctx->ahash_req_complete); ahash_request_set_callback(sha_ctx->ahash_req, CRYPTO_TFM_REQ_MAY_BACKLOG, _crypto_sha_hmac_ahash_req_complete, &sha_ctx->ahash_req_complete); crypto_ahash_clear_flags(ahash, ~0); return 0; }; static int _qcrypto_cra_ablkcipher_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct qcrypto_cipher_req_ctx); return _qcrypto_cipher_cra_init(tfm); }; static int _qcrypto_cra_aes_ablkcipher_init(struct crypto_tfm *tfm) { const char *name = tfm->__crt_alg->cra_name; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); int ret; struct crypto_priv *cp = &qcrypto_dev; if (cp->ce_support.use_sw_aes_cbc_ecb_ctr_algo) { ctx->cipher_aes192_fb = NULL; return _qcrypto_cra_ablkcipher_init(tfm); } ctx->cipher_aes192_fb = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->cipher_aes192_fb)) { pr_err("Error allocating fallback algo %s\n", name); ret = PTR_ERR(ctx->cipher_aes192_fb); ctx->cipher_aes192_fb = NULL; return ret; } return _qcrypto_cra_ablkcipher_init(tfm); }; static int _qcrypto_aead_cra_init(struct crypto_aead *tfm) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); struct aead_alg *aeadalg = crypto_aead_alg(tfm); struct qcrypto_alg *q_alg = container_of(aeadalg, struct qcrypto_alg, aead_alg); return _qcrypto_cipher_ctx_init(ctx, q_alg); }; static int _qcrypto_cra_aead_sha1_init(struct crypto_aead *tfm) { int rc; struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx)); rc = _qcrypto_aead_cra_init(tfm); ctx->auth_alg = QCE_HASH_SHA1_HMAC; return rc; } static int _qcrypto_cra_aead_sha256_init(struct crypto_aead *tfm) { int rc; struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx)); rc = _qcrypto_aead_cra_init(tfm); ctx->auth_alg = QCE_HASH_SHA256_HMAC; return rc; } static int _qcrypto_cra_aead_ccm_init(struct crypto_aead *tfm) { int rc; struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx)); rc = _qcrypto_aead_cra_init(tfm); ctx->auth_alg = QCE_HASH_AES_CMAC; return rc; } static int _qcrypto_cra_aead_rfc4309_ccm_init(struct crypto_aead *tfm) { int rc; struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx)); rc = _qcrypto_aead_cra_init(tfm); ctx->auth_alg = QCE_HASH_AES_CMAC; return rc; } static int _qcrypto_cra_aead_aes_sha1_init(struct crypto_aead *tfm) { int rc; struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_priv *cp = &qcrypto_dev; crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx)); rc = _qcrypto_aead_cra_init(tfm); if (rc) return rc; ctx->cipher_aes192_fb = NULL; ctx->ahash_aead_aes192_fb = NULL; if (!cp->ce_support.aes_key_192) { ctx->cipher_aes192_fb = crypto_alloc_skcipher( "cbc(aes)", 0, 0); if (IS_ERR(ctx->cipher_aes192_fb)) { ctx->cipher_aes192_fb = NULL; } else { ctx->ahash_aead_aes192_fb = crypto_alloc_ahash( "hmac(sha1)", 0, 0); if (IS_ERR(ctx->ahash_aead_aes192_fb)) { ctx->ahash_aead_aes192_fb = NULL; crypto_free_skcipher(ctx->cipher_aes192_fb); ctx->cipher_aes192_fb = NULL; } } } ctx->auth_alg = QCE_HASH_SHA1_HMAC; return 0; } static int _qcrypto_cra_aead_aes_sha256_init(struct crypto_aead *tfm) { int rc; struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_priv *cp = &qcrypto_dev; crypto_aead_set_reqsize(tfm, sizeof(struct qcrypto_cipher_req_ctx)); rc = _qcrypto_aead_cra_init(tfm); if (rc) return rc; ctx->cipher_aes192_fb = NULL; ctx->ahash_aead_aes192_fb = NULL; if (!cp->ce_support.aes_key_192) { ctx->cipher_aes192_fb = crypto_alloc_skcipher( "cbc(aes)", 0, 0); if (IS_ERR(ctx->cipher_aes192_fb)) { ctx->cipher_aes192_fb = NULL; } else { ctx->ahash_aead_aes192_fb = crypto_alloc_ahash( "hmac(sha256)", 0, 0); if (IS_ERR(ctx->ahash_aead_aes192_fb)) { ctx->ahash_aead_aes192_fb = NULL; crypto_free_skcipher(ctx->cipher_aes192_fb); ctx->cipher_aes192_fb = NULL; } } } ctx->auth_alg = QCE_HASH_SHA256_HMAC; return 0; } static void _qcrypto_cra_ablkcipher_exit(struct crypto_tfm *tfm) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); if (!list_empty(&ctx->rsp_queue)) pr_err("_qcrypto__cra_ablkcipher_exit: requests still outstanding"); }; static void _qcrypto_cra_aes_ablkcipher_exit(struct crypto_tfm *tfm) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); _qcrypto_cra_ablkcipher_exit(tfm); if (ctx->cipher_aes192_fb) crypto_free_skcipher(ctx->cipher_aes192_fb); ctx->cipher_aes192_fb = NULL; } static void _qcrypto_cra_aead_exit(struct crypto_aead *tfm) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); if (!list_empty(&ctx->rsp_queue)) pr_err("_qcrypto__cra_aead_exit: requests still outstanding"); } static void _qcrypto_cra_aead_aes_exit(struct crypto_aead *tfm) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); if (!list_empty(&ctx->rsp_queue)) pr_err("_qcrypto__cra_aead_exit: requests still outstanding"); if (ctx->cipher_aes192_fb) crypto_free_skcipher(ctx->cipher_aes192_fb); if (ctx->ahash_aead_aes192_fb) crypto_free_ahash(ctx->ahash_aead_aes192_fb); ctx->cipher_aes192_fb = NULL; ctx->ahash_aead_aes192_fb = NULL; } static int _disp_stats(int id) { struct crypto_stat *pstat; int len = 0; unsigned long flags; struct crypto_priv *cp = &qcrypto_dev; struct crypto_engine *pe; int i; pstat = &_qcrypto_stat; len = scnprintf(_debug_read_buf, DEBUG_MAX_RW_BUF - 1, "\nQTI crypto accelerator %d Statistics\n", id + 1); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER AES encryption : %llu\n", pstat->ablk_cipher_aes_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER AES decryption : %llu\n", pstat->ablk_cipher_aes_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER DES encryption : %llu\n", pstat->ablk_cipher_des_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER DES decryption : %llu\n", pstat->ablk_cipher_des_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER 3DES encryption : %llu\n", pstat->ablk_cipher_3des_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER 3DES decryption : %llu\n", pstat->ablk_cipher_3des_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER operation success : %llu\n", pstat->ablk_cipher_op_success); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER operation fail : %llu\n", pstat->ablk_cipher_op_fail); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, "\n"); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-AES encryption : %llu\n", pstat->aead_sha1_aes_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-AES decryption : %llu\n", pstat->aead_sha1_aes_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-DES encryption : %llu\n", pstat->aead_sha1_des_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-DES decryption : %llu\n", pstat->aead_sha1_des_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-3DES encryption : %llu\n", pstat->aead_sha1_3des_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-3DES decryption : %llu\n", pstat->aead_sha1_3des_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA256-AES encryption : %llu\n", pstat->aead_sha256_aes_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA256-AES decryption : %llu\n", pstat->aead_sha256_aes_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA256-DES encryption : %llu\n", pstat->aead_sha256_des_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA256-DES decryption : %llu\n", pstat->aead_sha256_des_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA256-3DES encryption : %llu\n", pstat->aead_sha256_3des_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA256-3DES decryption : %llu\n", pstat->aead_sha256_3des_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD CCM-AES encryption : %llu\n", pstat->aead_ccm_aes_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD CCM-AES decryption : %llu\n", pstat->aead_ccm_aes_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD RFC4309-CCM-AES encryption : %llu\n", pstat->aead_rfc4309_ccm_aes_enc); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD RFC4309-CCM-AES decryption : %llu\n", pstat->aead_rfc4309_ccm_aes_dec); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD operation success : %llu\n", pstat->aead_op_success); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD operation fail : %llu\n", pstat->aead_op_fail); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD bad message : %llu\n", pstat->aead_bad_msg); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, "\n"); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AHASH SHA1 digest : %llu\n", pstat->sha1_digest); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AHASH SHA256 digest : %llu\n", pstat->sha256_digest); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AHASH SHA1 HMAC digest : %llu\n", pstat->sha1_hmac_digest); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AHASH SHA256 HMAC digest : %llu\n", pstat->sha256_hmac_digest); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AHASH operation success : %llu\n", pstat->ahash_op_success); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AHASH operation fail : %llu\n", pstat->ahash_op_fail); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " resp start, resp stop, max rsp queue reorder-cnt : %u %u %u %u\n", cp->resp_start, cp->resp_stop, cp->max_resp_qlen, cp->max_reorder_cnt); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " max queue legnth, no avail : %u %u\n", cp->max_qlen, cp->no_avail); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " work queue : %u %u %u\n", cp->queue_work_eng3, cp->queue_work_not_eng3, cp->queue_work_not_eng3_nz); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, "\n"); spin_lock_irqsave(&cp->lock, flags); list_for_each_entry(pe, &cp->engine_list, elist) { len += scnprintf( _debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Engine %4d Req max %d : %llu\n", pe->unit, pe->max_req_used, pe->total_req ); len += scnprintf( _debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Engine %4d Req Error : %llu\n", pe->unit, pe->err_req ); qce_get_driver_stats(pe->qce); } spin_unlock_irqrestore(&cp->lock, flags); for (i = 0; i < MAX_SMP_CPU+1; i++) if (cp->cpu_req[i]) len += scnprintf( _debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, "CPU %d Issue Req : %d\n", i, cp->cpu_req[i]); return len; } static void _qcrypto_remove_engine(struct crypto_engine *pengine) { struct crypto_priv *cp; struct qcrypto_alg *q_alg; struct qcrypto_alg *n; unsigned long flags; struct crypto_engine *pe; cp = pengine->pcp; spin_lock_irqsave(&cp->lock, flags); list_del(&pengine->elist); if (pengine->first_engine) { cp->first_engine = NULL; pe = list_first_entry(&cp->engine_list, struct crypto_engine, elist); if (pe) { pe->first_engine = true; cp->first_engine = pe; } } if (cp->next_engine == pengine) cp->next_engine = NULL; if (cp->scheduled_eng == pengine) cp->scheduled_eng = NULL; spin_unlock_irqrestore(&cp->lock, flags); cp->total_units--; cancel_work_sync(&pengine->bw_reaper_ws); cancel_work_sync(&pengine->bw_allocate_ws); del_timer_sync(&pengine->bw_reaper_timer); kzfree(pengine->preq_pool); if (cp->total_units) return; list_for_each_entry_safe(q_alg, n, &cp->alg_list, entry) { if (q_alg->alg_type == QCRYPTO_ALG_CIPHER) crypto_unregister_alg(&q_alg->cipher_alg); if (q_alg->alg_type == QCRYPTO_ALG_SHA) crypto_unregister_ahash(&q_alg->sha_alg); if (q_alg->alg_type == QCRYPTO_ALG_AEAD) crypto_unregister_aead(&q_alg->aead_alg); list_del(&q_alg->entry); kzfree(q_alg); } } static int _qcrypto_remove(struct platform_device *pdev) { struct crypto_engine *pengine; struct crypto_priv *cp; pengine = platform_get_drvdata(pdev); if (!pengine) return 0; cp = pengine->pcp; mutex_lock(&cp->engine_lock); _qcrypto_remove_engine(pengine); mutex_unlock(&cp->engine_lock); if (msm_bus_scale_client_update_request(pengine->bus_scale_handle, 1)) pr_err("%s Unable to set high bandwidth\n", __func__); if (pengine->qce) qce_close(pengine->qce); if (msm_bus_scale_client_update_request(pengine->bus_scale_handle, 0)) pr_err("%s Unable to set low bandwidth\n", __func__); msm_bus_scale_unregister_client(pengine->bus_scale_handle); pengine->bus_scale_handle = 0; kzfree(pengine); return 0; } static int _qcrypto_check_aes_keylen(struct crypto_ablkcipher *cipher, struct crypto_priv *cp, unsigned int len) { switch (len) { case AES_KEYSIZE_128: case AES_KEYSIZE_256: break; case AES_KEYSIZE_192: if (cp->ce_support.aes_key_192) break; default: crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; return 0; } static int _qcrypto_setkey_aes_192_fallback(struct crypto_ablkcipher *cipher, const u8 *key) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ctx->enc_key_len = AES_KEYSIZE_192; ctx->cipher_aes192_fb->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; ctx->cipher_aes192_fb->base.crt_flags |= (cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK); ret = crypto_skcipher_setkey(ctx->cipher_aes192_fb, key, AES_KEYSIZE_192); if (ret) { tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; tfm->crt_flags |= (cipher->base.crt_flags & CRYPTO_TFM_RES_MASK); } return ret; } static int _qcrypto_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_priv *cp = ctx->cp; if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) return 0; if ((len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192) && ctx->cipher_aes192_fb) return _qcrypto_setkey_aes_192_fallback(cipher, key); if (_qcrypto_check_aes_keylen(cipher, cp, len)) return -EINVAL; ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) { if (key != NULL) { memcpy(ctx->enc_key, key, len); } else { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } } return 0; }; static int _qcrypto_setkey_aes_xts(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_priv *cp = ctx->cp; if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) return 0; if (_qcrypto_check_aes_keylen(cipher, cp, len/2)) return -EINVAL; ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) { if (key != NULL) { memcpy(ctx->enc_key, key, len); } else { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } } return 0; }; static int _qcrypto_setkey_des(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); u32 tmp[DES_EXPKEY_WORDS]; int ret; if (!key) { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } ret = des_ekey(tmp, key); if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) { pr_err("%s HW KEY usage not supported for DES algorithm\n", __func__); return 0; }; if (len != DES_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) memcpy(ctx->enc_key, key, len); return 0; }; static int _qcrypto_setkey_3des(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) { pr_err("%s HW KEY usage not supported for 3DES algorithm\n", __func__); return 0; }; if (len != DES3_EDE_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) { if (key != NULL) { memcpy(ctx->enc_key, key, len); } else { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } } return 0; }; static void seq_response(struct work_struct *work) { struct crypto_priv *cp = container_of(work, struct crypto_priv, resp_work); struct llist_node *list; struct llist_node *rev = NULL; struct crypto_engine *pengine; unsigned long flags; int total_unit; again: list = llist_del_all(&cp->ordered_resp_list); if (!list) goto end; while (list) { struct llist_node *t = list; list = llist_next(list); t->next = rev; rev = t; } while (rev) { struct qcrypto_resp_ctx *arsp; struct crypto_async_request *areq; arsp = container_of(rev, struct qcrypto_resp_ctx, llist); rev = llist_next(rev); areq = arsp->async_req; local_bh_disable(); areq->complete(areq, arsp->res); local_bh_enable(); atomic_dec(&cp->resp_cnt); } if (atomic_read(&cp->resp_cnt) < COMPLETION_CB_BACKLOG_LENGTH_START && (cmpxchg(&cp->ce_req_proc_sts, STOPPED, IN_PROGRESS) == STOPPED)) { cp->resp_start++; for (total_unit = cp->total_units; total_unit-- > 0;) { spin_lock_irqsave(&cp->lock, flags); pengine = _avail_eng(cp); spin_unlock_irqrestore(&cp->lock, flags); if (pengine) _start_qcrypto_process(cp, pengine); else break; } } end: if (cmpxchg(&cp->sched_resp_workq_status, SCHEDULE_AGAIN, IS_SCHEDULED) == SCHEDULE_AGAIN) goto again; else if (cmpxchg(&cp->sched_resp_workq_status, IS_SCHEDULED, NOT_SCHEDULED) == SCHEDULE_AGAIN) goto end; } #define SCHEUDLE_RSP_QLEN_THRESHOLD 64 static void _qcrypto_tfm_complete(struct crypto_engine *pengine, u32 type, void *tfm_ctx, struct qcrypto_resp_ctx *cur_arsp, int res) { struct crypto_priv *cp = pengine->pcp; unsigned long flags; struct qcrypto_resp_ctx *arsp; struct list_head *plist; unsigned int resp_qlen; unsigned int cnt = 0; switch (type) { case CRYPTO_ALG_TYPE_AHASH: plist = &((struct qcrypto_sha_ctx *) tfm_ctx)->rsp_queue; break; case CRYPTO_ALG_TYPE_ABLKCIPHER: case CRYPTO_ALG_TYPE_AEAD: default: plist = &((struct qcrypto_cipher_ctx *) tfm_ctx)->rsp_queue; break; } spin_lock_irqsave(&cp->lock, flags); cur_arsp->res = res; while (!list_empty(plist)) { arsp = list_first_entry(plist, struct qcrypto_resp_ctx, list); if (arsp->res == -EINPROGRESS) break; list_del(&arsp->list); llist_add(&arsp->llist, &cp->ordered_resp_list); atomic_inc(&cp->resp_cnt); cnt++; } resp_qlen = atomic_read(&cp->resp_cnt); if (resp_qlen > cp->max_resp_qlen) cp->max_resp_qlen = resp_qlen; if (cnt > cp->max_reorder_cnt) cp->max_reorder_cnt = cnt; if ((resp_qlen >= COMPLETION_CB_BACKLOG_LENGTH_STOP) && cmpxchg(&cp->ce_req_proc_sts, IN_PROGRESS, STOPPED) == IN_PROGRESS) { cp->resp_stop++; } spin_unlock_irqrestore(&cp->lock, flags); retry: if (!llist_empty(&cp->ordered_resp_list)) { unsigned int cpu; if (pengine->first_engine) { cpu = WORK_CPU_UNBOUND; cp->queue_work_eng3++; } else { cp->queue_work_not_eng3++; cpu = cp->cpu_getting_irqs_frm_first_ce; /* * If source not the first engine, and there * are outstanding requests going on first engine, * skip scheduling of work queue to anticipate * more may be coming. If the response queue * length exceeds threshold, to avoid further * delay, schedule work queue immediately. */ if (cp->first_engine && atomic_read( &cp->first_engine->req_count)) { if (resp_qlen < SCHEUDLE_RSP_QLEN_THRESHOLD) return; cp->queue_work_not_eng3_nz++; } } if (cmpxchg(&cp->sched_resp_workq_status, NOT_SCHEDULED, IS_SCHEDULED) == NOT_SCHEDULED) queue_work_on(cpu, cp->resp_wq, &cp->resp_work); else if (cmpxchg(&cp->sched_resp_workq_status, IS_SCHEDULED, SCHEDULE_AGAIN) == NOT_SCHEDULED) goto retry; } } static void req_done(struct qcrypto_req_control *pqcrypto_req_control) { struct crypto_engine *pengine; struct crypto_async_request *areq; struct crypto_priv *cp; struct qcrypto_resp_ctx *arsp; u32 type = 0; void *tfm_ctx = NULL; unsigned int cpu; int res; pengine = pqcrypto_req_control->pce; cp = pengine->pcp; areq = pqcrypto_req_control->req; arsp = pqcrypto_req_control->arsp; res = pqcrypto_req_control->res; qcrypto_free_req_control(pengine, pqcrypto_req_control); if (areq) { type = crypto_tfm_alg_type(areq->tfm); tfm_ctx = crypto_tfm_ctx(areq->tfm); } cpu = smp_processor_id(); pengine->irq_cpu = cpu; if (pengine->first_engine) { if (cpu != cp->cpu_getting_irqs_frm_first_ce) cp->cpu_getting_irqs_frm_first_ce = cpu; } if (areq) _qcrypto_tfm_complete(pengine, type, tfm_ctx, arsp, res); if (READ_ONCE(cp->ce_req_proc_sts) == IN_PROGRESS) _start_qcrypto_process(cp, pengine); } static void _qce_ahash_complete(void *cookie, unsigned char *digest, unsigned char *authdata, int ret) { struct ahash_request *areq = (struct ahash_request *) cookie; struct crypto_async_request *async_req; struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(areq->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(areq); struct crypto_priv *cp = sha_ctx->cp; struct crypto_stat *pstat; uint32_t diglen = crypto_ahash_digestsize(ahash); uint32_t *auth32 = (uint32_t *)authdata; struct crypto_engine *pengine; struct qcrypto_req_control *pqcrypto_req_control; async_req = &areq->base; pstat = &_qcrypto_stat; pengine = rctx->pengine; pqcrypto_req_control = find_req_control_for_areq(pengine, async_req); if (pqcrypto_req_control == NULL) { pr_err("async request not found\n"); return; } #ifdef QCRYPTO_DEBUG dev_info(&pengine->pdev->dev, "%s: %pK ret %d\n", __func__, areq, ret); #endif if (digest) { memcpy(rctx->digest, digest, diglen); if (rctx->last_blk) memcpy(areq->result, digest, diglen); } if (authdata) { rctx->byte_count[0] = auth32[0]; rctx->byte_count[1] = auth32[1]; rctx->byte_count[2] = auth32[2]; rctx->byte_count[3] = auth32[3]; } areq->src = rctx->src; areq->nbytes = rctx->nbytes; rctx->last_blk = 0; rctx->first_blk = 0; if (ret) { pqcrypto_req_control->res = -ENXIO; pstat->ahash_op_fail++; } else { pqcrypto_req_control->res = 0; pstat->ahash_op_success++; } if (cp->ce_support.aligned_only) { areq->src = rctx->orig_src; kfree(rctx->data); } req_done(pqcrypto_req_control); }; static void _qce_ablk_cipher_complete(void *cookie, unsigned char *icb, unsigned char *iv, int ret) { struct ablkcipher_request *areq = (struct ablkcipher_request *) cookie; struct crypto_async_request *async_req; struct crypto_ablkcipher *ablk = crypto_ablkcipher_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; struct qcrypto_cipher_req_ctx *rctx; struct crypto_engine *pengine; struct qcrypto_req_control *pqcrypto_req_control; async_req = &areq->base; pstat = &_qcrypto_stat; rctx = ablkcipher_request_ctx(areq); pengine = rctx->pengine; pqcrypto_req_control = find_req_control_for_areq(pengine, async_req); if (pqcrypto_req_control == NULL) { pr_err("async request not found\n"); return; } #ifdef QCRYPTO_DEBUG dev_info(&pengine->pdev->dev, "%s: %pK ret %d\n", __func__, areq, ret); #endif if (iv) memcpy(ctx->iv, iv, crypto_ablkcipher_ivsize(ablk)); if (ret) { pqcrypto_req_control->res = -ENXIO; pstat->ablk_cipher_op_fail++; } else { pqcrypto_req_control->res = 0; pstat->ablk_cipher_op_success++; } if (cp->ce_support.aligned_only) { struct qcrypto_cipher_req_ctx *rctx; uint32_t num_sg = 0; uint32_t bytes = 0; rctx = ablkcipher_request_ctx(areq); areq->src = rctx->orig_src; areq->dst = rctx->orig_dst; num_sg = qcrypto_count_sg(areq->dst, areq->nbytes); bytes = qcrypto_sg_copy_from_buffer(areq->dst, num_sg, rctx->data, areq->nbytes); if (bytes != areq->nbytes) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, areq->nbytes); kzfree(rctx->data); } req_done(pqcrypto_req_control); }; static void _qce_aead_complete(void *cookie, unsigned char *icv, unsigned char *iv, int ret) { struct aead_request *areq = (struct aead_request *) cookie; struct crypto_async_request *async_req; struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct qcrypto_cipher_req_ctx *rctx; struct crypto_stat *pstat; struct crypto_engine *pengine; struct qcrypto_req_control *pqcrypto_req_control; async_req = &areq->base; pstat = &_qcrypto_stat; rctx = aead_request_ctx(areq); pengine = rctx->pengine; pqcrypto_req_control = find_req_control_for_areq(pengine, async_req); if (pqcrypto_req_control == NULL) { pr_err("async request not found\n"); return; } if (rctx->mode == QCE_MODE_CCM) { kzfree(rctx->adata); } else { uint32_t ivsize = crypto_aead_ivsize(aead); if (ret == 0) { if (rctx->dir == QCE_ENCRYPT) { /* copy the icv to dst */ scatterwalk_map_and_copy(icv, areq->dst, areq->cryptlen + areq->assoclen, ctx->authsize, 1); } else { unsigned char tmp[SHA256_DIGESTSIZE] = {0}; /* compare icv from src */ scatterwalk_map_and_copy(tmp, areq->src, areq->assoclen + areq->cryptlen - ctx->authsize, ctx->authsize, 0); ret = memcmp(icv, tmp, ctx->authsize); if (ret != 0) ret = -EBADMSG; } } else { ret = -ENXIO; } if (iv) memcpy(ctx->iv, iv, ivsize); } if (ret == (-EBADMSG)) pstat->aead_bad_msg++; else if (ret) pstat->aead_op_fail++; else pstat->aead_op_success++; pqcrypto_req_control->res = ret; req_done(pqcrypto_req_control); } static int aead_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize) { __be32 data; memset(block, 0, csize); block += csize; if (csize >= 4) csize = 4; else if (msglen > (1 << (8 * csize))) return -EOVERFLOW; data = cpu_to_be32(msglen); memcpy(block - csize, (u8 *)&data + 4 - csize, csize); return 0; } static int qccrypto_set_aead_ccm_nonce(struct qce_req *qreq, uint32_t assoclen) { unsigned int i = ((unsigned int)qreq->iv[0]) + 1; memcpy(&qreq->nonce[0], qreq->iv, qreq->ivsize); /* * Format control info per RFC 3610 and * NIST Special Publication 800-38C */ qreq->nonce[0] |= (8 * ((qreq->authsize - 2) / 2)); if (assoclen) qreq->nonce[0] |= 64; if (i > MAX_NONCE) return -EINVAL; return aead_ccm_set_msg_len(qreq->nonce + 16 - i, qreq->cryptlen, i); } static int qcrypto_aead_ccm_format_adata(struct qce_req *qreq, uint32_t alen, struct scatterlist *sg, unsigned char *adata) { uint32_t len; uint32_t bytes = 0; uint32_t num_sg = 0; /* * Add control info for associated data * RFC 3610 and NIST Special Publication 800-38C */ if (alen < 65280) { *(__be16 *)adata = cpu_to_be16(alen); len = 2; } else { if ((alen >= 65280) && (alen <= 0xffffffff)) { *(__be16 *)adata = cpu_to_be16(0xfffe); *(__be32 *)&adata[2] = cpu_to_be32(alen); len = 6; } else { *(__be16 *)adata = cpu_to_be16(0xffff); *(__be32 *)&adata[6] = cpu_to_be32(alen); len = 10; } } adata += len; qreq->assoclen = ALIGN((alen + len), 16); num_sg = qcrypto_count_sg(sg, alen); bytes = qcrypto_sg_copy_to_buffer(sg, num_sg, adata, alen); if (bytes != alen) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, alen); return 0; } static int _qcrypto_process_ablkcipher(struct crypto_engine *pengine, struct qcrypto_req_control *pqcrypto_req_control) { struct crypto_async_request *async_req; struct qce_req qreq; int ret; struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *cipher_ctx; struct ablkcipher_request *req; struct crypto_ablkcipher *tfm; async_req = pqcrypto_req_control->req; req = container_of(async_req, struct ablkcipher_request, base); cipher_ctx = crypto_tfm_ctx(async_req->tfm); rctx = ablkcipher_request_ctx(req); rctx->pengine = pengine; tfm = crypto_ablkcipher_reqtfm(req); if (pengine->pcp->ce_support.aligned_only) { uint32_t bytes = 0; uint32_t num_sg = 0; rctx->orig_src = req->src; rctx->orig_dst = req->dst; rctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC); if (rctx->data == NULL) return -ENOMEM; num_sg = qcrypto_count_sg(req->src, req->nbytes); bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, rctx->data, req->nbytes); if (bytes != req->nbytes) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, req->nbytes); sg_set_buf(&rctx->dsg, rctx->data, req->nbytes); sg_mark_end(&rctx->dsg); rctx->iv = req->info; req->src = &rctx->dsg; req->dst = &rctx->dsg; } qreq.op = QCE_REQ_ABLK_CIPHER; qreq.qce_cb = _qce_ablk_cipher_complete; qreq.areq = req; qreq.alg = rctx->alg; qreq.dir = rctx->dir; qreq.mode = rctx->mode; qreq.enckey = cipher_ctx->enc_key; qreq.encklen = cipher_ctx->enc_key_len; qreq.iv = req->info; qreq.ivsize = crypto_ablkcipher_ivsize(tfm); qreq.cryptlen = req->nbytes; qreq.use_pmem = 0; qreq.flags = cipher_ctx->flags; if ((cipher_ctx->enc_key_len == 0) && (pengine->pcp->platform_support.hw_key_support == 0)) ret = -EINVAL; else ret = qce_ablk_cipher_req(pengine->qce, &qreq); return ret; } static int _qcrypto_process_ahash(struct crypto_engine *pengine, struct qcrypto_req_control *pqcrypto_req_control) { struct crypto_async_request *async_req; struct ahash_request *req; struct qce_sha_req sreq; struct qcrypto_sha_req_ctx *rctx; struct qcrypto_sha_ctx *sha_ctx; int ret = 0; async_req = pqcrypto_req_control->req; req = container_of(async_req, struct ahash_request, base); rctx = ahash_request_ctx(req); sha_ctx = crypto_tfm_ctx(async_req->tfm); rctx->pengine = pengine; sreq.qce_cb = _qce_ahash_complete; sreq.digest = &rctx->digest[0]; sreq.src = req->src; sreq.auth_data[0] = rctx->byte_count[0]; sreq.auth_data[1] = rctx->byte_count[1]; sreq.auth_data[2] = rctx->byte_count[2]; sreq.auth_data[3] = rctx->byte_count[3]; sreq.first_blk = rctx->first_blk; sreq.last_blk = rctx->last_blk; sreq.size = req->nbytes; sreq.areq = req; sreq.flags = sha_ctx->flags; switch (sha_ctx->alg) { case QCE_HASH_SHA1: sreq.alg = QCE_HASH_SHA1; sreq.authkey = NULL; break; case QCE_HASH_SHA256: sreq.alg = QCE_HASH_SHA256; sreq.authkey = NULL; break; case QCE_HASH_SHA1_HMAC: sreq.alg = QCE_HASH_SHA1_HMAC; sreq.authkey = &sha_ctx->authkey[0]; sreq.authklen = SHA_HMAC_KEY_SIZE; break; case QCE_HASH_SHA256_HMAC: sreq.alg = QCE_HASH_SHA256_HMAC; sreq.authkey = &sha_ctx->authkey[0]; sreq.authklen = SHA_HMAC_KEY_SIZE; break; default: pr_err("Algorithm %d not supported, exiting", sha_ctx->alg); ret = -1; break; }; ret = qce_process_sha_req(pengine->qce, &sreq); return ret; } static int _qcrypto_process_aead(struct crypto_engine *pengine, struct qcrypto_req_control *pqcrypto_req_control) { struct crypto_async_request *async_req; struct qce_req qreq; int ret = 0; struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *cipher_ctx; struct aead_request *req; struct crypto_aead *aead; async_req = pqcrypto_req_control->req; req = container_of(async_req, struct aead_request, base); aead = crypto_aead_reqtfm(req); rctx = aead_request_ctx(req); rctx->pengine = pengine; cipher_ctx = crypto_tfm_ctx(async_req->tfm); qreq.op = QCE_REQ_AEAD; qreq.qce_cb = _qce_aead_complete; qreq.areq = req; qreq.alg = rctx->alg; qreq.dir = rctx->dir; qreq.mode = rctx->mode; qreq.iv = rctx->iv; qreq.enckey = cipher_ctx->enc_key; qreq.encklen = cipher_ctx->enc_key_len; qreq.authkey = cipher_ctx->auth_key; qreq.authklen = cipher_ctx->auth_key_len; qreq.authsize = crypto_aead_authsize(aead); qreq.auth_alg = cipher_ctx->auth_alg; if (qreq.mode == QCE_MODE_CCM) qreq.ivsize = AES_BLOCK_SIZE; else qreq.ivsize = crypto_aead_ivsize(aead); qreq.flags = cipher_ctx->flags; if (qreq.mode == QCE_MODE_CCM) { uint32_t assoclen; if (qreq.dir == QCE_ENCRYPT) qreq.cryptlen = req->cryptlen; else qreq.cryptlen = req->cryptlen - qreq.authsize; /* if rfc4309 ccm, adjust assoclen */ assoclen = req->assoclen; if (rctx->ccmtype) assoclen -= 8; /* Get NONCE */ ret = qccrypto_set_aead_ccm_nonce(&qreq, assoclen); if (ret) return ret; if (assoclen) { rctx->adata = kzalloc((assoclen + 0x64), GFP_ATOMIC); if (!rctx->adata) return -ENOMEM; /* Format Associated data */ ret = qcrypto_aead_ccm_format_adata(&qreq, assoclen, req->src, rctx->adata); } else { qreq.assoclen = 0; rctx->adata = NULL; } if (ret) { kzfree(rctx->adata); return ret; } /* * update req with new formatted associated * data info */ qreq.asg = &rctx->asg; if (rctx->adata) sg_set_buf(qreq.asg, rctx->adata, qreq.assoclen); sg_mark_end(qreq.asg); } ret = qce_aead_req(pengine->qce, &qreq); return ret; } static struct crypto_engine *_qcrypto_static_assign_engine( struct crypto_priv *cp) { struct crypto_engine *pengine; unsigned long flags; spin_lock_irqsave(&cp->lock, flags); if (cp->next_engine) pengine = cp->next_engine; else pengine = list_first_entry(&cp->engine_list, struct crypto_engine, elist); if (list_is_last(&pengine->elist, &cp->engine_list)) cp->next_engine = list_first_entry( &cp->engine_list, struct crypto_engine, elist); else cp->next_engine = list_next_entry(pengine, elist); spin_unlock_irqrestore(&cp->lock, flags); return pengine; } static int _start_qcrypto_process(struct crypto_priv *cp, struct crypto_engine *pengine) { struct crypto_async_request *async_req = NULL; struct crypto_async_request *backlog_eng = NULL; struct crypto_async_request *backlog_cp = NULL; unsigned long flags; u32 type; int ret = 0; struct crypto_stat *pstat; void *tfm_ctx; struct qcrypto_cipher_req_ctx *cipher_rctx; struct qcrypto_sha_req_ctx *ahash_rctx; struct ablkcipher_request *ablkcipher_req; struct ahash_request *ahash_req; struct aead_request *aead_req; struct qcrypto_resp_ctx *arsp; struct qcrypto_req_control *pqcrypto_req_control; unsigned int cpu = MAX_SMP_CPU; if (READ_ONCE(cp->ce_req_proc_sts) == STOPPED) return 0; if (in_interrupt()) { cpu = smp_processor_id(); if (cpu >= MAX_SMP_CPU) cpu = MAX_SMP_CPU - 1; } else cpu = MAX_SMP_CPU; pstat = &_qcrypto_stat; again: spin_lock_irqsave(&cp->lock, flags); if (pengine->issue_req || atomic_read(&pengine->req_count) >= (pengine->max_req)) { spin_unlock_irqrestore(&cp->lock, flags); return 0; } backlog_eng = crypto_get_backlog(&pengine->req_queue); /* make sure it is in high bandwidth state */ if (pengine->bw_state != BUS_HAS_BANDWIDTH) { spin_unlock_irqrestore(&cp->lock, flags); return 0; } /* try to get request from request queue of the engine first */ async_req = crypto_dequeue_request(&pengine->req_queue); if (!async_req) { /* * if no request from the engine, * try to get from request queue of driver */ backlog_cp = crypto_get_backlog(&cp->req_queue); async_req = crypto_dequeue_request(&cp->req_queue); if (!async_req) { spin_unlock_irqrestore(&cp->lock, flags); return 0; } } pqcrypto_req_control = qcrypto_alloc_req_control(pengine); if (pqcrypto_req_control == NULL) { pr_err("Allocation of request failed\n"); spin_unlock_irqrestore(&cp->lock, flags); return 0; } /* add associated rsp entry to tfm response queue */ type = crypto_tfm_alg_type(async_req->tfm); tfm_ctx = crypto_tfm_ctx(async_req->tfm); switch (type) { case CRYPTO_ALG_TYPE_AHASH: ahash_req = container_of(async_req, struct ahash_request, base); ahash_rctx = ahash_request_ctx(ahash_req); arsp = &ahash_rctx->rsp_entry; list_add_tail( &arsp->list, &((struct qcrypto_sha_ctx *)tfm_ctx) ->rsp_queue); break; case CRYPTO_ALG_TYPE_ABLKCIPHER: ablkcipher_req = container_of(async_req, struct ablkcipher_request, base); cipher_rctx = ablkcipher_request_ctx(ablkcipher_req); arsp = &cipher_rctx->rsp_entry; list_add_tail( &arsp->list, &((struct qcrypto_cipher_ctx *)tfm_ctx) ->rsp_queue); break; case CRYPTO_ALG_TYPE_AEAD: default: aead_req = container_of(async_req, struct aead_request, base); cipher_rctx = aead_request_ctx(aead_req); arsp = &cipher_rctx->rsp_entry; list_add_tail( &arsp->list, &((struct qcrypto_cipher_ctx *)tfm_ctx) ->rsp_queue); break; } arsp->res = -EINPROGRESS; arsp->async_req = async_req; pqcrypto_req_control->pce = pengine; pqcrypto_req_control->req = async_req; pqcrypto_req_control->arsp = arsp; pengine->active_seq++; pengine->check_flag = true; pengine->issue_req = true; cp->cpu_req[cpu]++; smp_mb(); /* make it visible */ spin_unlock_irqrestore(&cp->lock, flags); if (backlog_eng) backlog_eng->complete(backlog_eng, -EINPROGRESS); if (backlog_cp) backlog_cp->complete(backlog_cp, -EINPROGRESS); switch (type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: ret = _qcrypto_process_ablkcipher(pengine, pqcrypto_req_control); break; case CRYPTO_ALG_TYPE_AHASH: ret = _qcrypto_process_ahash(pengine, pqcrypto_req_control); break; case CRYPTO_ALG_TYPE_AEAD: ret = _qcrypto_process_aead(pengine, pqcrypto_req_control); break; default: ret = -EINVAL; }; pengine->issue_req = false; smp_mb(); /* make it visible */ pengine->total_req++; if (ret) { pengine->err_req++; qcrypto_free_req_control(pengine, pqcrypto_req_control); if (type == CRYPTO_ALG_TYPE_ABLKCIPHER) pstat->ablk_cipher_op_fail++; else if (type == CRYPTO_ALG_TYPE_AHASH) pstat->ahash_op_fail++; else pstat->aead_op_fail++; _qcrypto_tfm_complete(pengine, type, tfm_ctx, arsp, ret); goto again; }; return ret; } static inline struct crypto_engine *_next_eng(struct crypto_priv *cp, struct crypto_engine *p) { if (p == NULL || list_is_last(&p->elist, &cp->engine_list)) p = list_first_entry(&cp->engine_list, struct crypto_engine, elist); else p = list_entry(p->elist.next, struct crypto_engine, elist); return p; } static struct crypto_engine *_avail_eng(struct crypto_priv *cp) { /* call this function with spinlock set */ struct crypto_engine *q = NULL; struct crypto_engine *p = cp->scheduled_eng; struct crypto_engine *q1; int eng_cnt = cp->total_units; if (unlikely(list_empty(&cp->engine_list))) { pr_err("%s: no valid ce to schedule\n", __func__); return NULL; } p = _next_eng(cp, p); q1 = p; while (eng_cnt-- > 0) { if (!p->issue_req && atomic_read(&p->req_count) < p->max_req) { q = p; break; } p = _next_eng(cp, p); if (q1 == p) break; } cp->scheduled_eng = q; return q; } static int _qcrypto_queue_req(struct crypto_priv *cp, struct crypto_engine *pengine, struct crypto_async_request *req) { int ret; unsigned long flags; spin_lock_irqsave(&cp->lock, flags); if (pengine) { ret = crypto_enqueue_request(&pengine->req_queue, req); } else { ret = crypto_enqueue_request(&cp->req_queue, req); pengine = _avail_eng(cp); if (cp->req_queue.qlen > cp->max_qlen) cp->max_qlen = cp->req_queue.qlen; } if (pengine) { switch (pengine->bw_state) { case BUS_NO_BANDWIDTH: if (pengine->high_bw_req == false) { qcrypto_ce_bw_allocate_req(pengine); pengine->high_bw_req = true; } pengine = NULL; break; case BUS_HAS_BANDWIDTH: break; case BUS_BANDWIDTH_RELEASING: pengine->high_bw_req = true; pengine = NULL; break; case BUS_BANDWIDTH_ALLOCATING: pengine = NULL; break; case BUS_SUSPENDED: case BUS_SUSPENDING: default: pengine = NULL; break; } } else { cp->no_avail++; } spin_unlock_irqrestore(&cp->lock, flags); if (pengine && (READ_ONCE(cp->ce_req_proc_sts) == IN_PROGRESS)) _start_qcrypto_process(cp, pengine); return ret; } static int _qcrypto_enc_aes_192_fallback(struct ablkcipher_request *req) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); int err; SKCIPHER_REQUEST_ON_STACK(subreq, ctx->cipher_aes192_fb); skcipher_request_set_tfm(subreq, ctx->cipher_aes192_fb); skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->nbytes, req->info); err = crypto_skcipher_encrypt(subreq); skcipher_request_zero(subreq); return err; } static int _qcrypto_dec_aes_192_fallback(struct ablkcipher_request *req) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); int err; SKCIPHER_REQUEST_ON_STACK(subreq, ctx->cipher_aes192_fb); skcipher_request_set_tfm(subreq, ctx->cipher_aes192_fb); skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->nbytes, req->info); err = crypto_skcipher_decrypt(subreq); skcipher_request_zero(subreq); return err; } static int _qcrypto_enc_aes_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif if ((ctx->enc_key_len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192) && ctx->cipher_aes192_fb) return _qcrypto_enc_aes_192_fallback(req); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_enc_aes_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif if ((ctx->enc_key_len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192) && ctx->cipher_aes192_fb) return _qcrypto_enc_aes_192_fallback(req); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_enc_aes_ctr(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif if ((ctx->enc_key_len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192) && ctx->cipher_aes192_fb) return _qcrypto_enc_aes_192_fallback(req); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CTR; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_enc_aes_xts(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_XTS; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_aead_encrypt_aes_ccm(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1)) return -EINVAL; if ((ctx->auth_key_len != AES_KEYSIZE_128) && (ctx->auth_key_len != AES_KEYSIZE_256)) return -EINVAL; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CCM; rctx->iv = req->iv; rctx->ccmtype = 0; pstat->aead_ccm_aes_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_rfc4309_enc_aes_ccm(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; if (req->assoclen != 16 && req->assoclen != 20) return -EINVAL; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CCM; memset(rctx->rfc4309_iv, 0, sizeof(rctx->rfc4309_iv)); rctx->rfc4309_iv[0] = 3; /* L -1 */ memcpy(&rctx->rfc4309_iv[1], ctx->ccm4309_nonce, 3); memcpy(&rctx->rfc4309_iv[4], req->iv, 8); rctx->ccmtype = 1; rctx->iv = rctx->rfc4309_iv; pstat->aead_rfc4309_ccm_aes_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_enc_des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_des_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_enc_des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_des_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_enc_3des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_3des_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_enc_3des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_3des_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_aes_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif if ((ctx->enc_key_len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192) && ctx->cipher_aes192_fb) return _qcrypto_dec_aes_192_fallback(req); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_aes_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif if ((ctx->enc_key_len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192) && ctx->cipher_aes192_fb) return _qcrypto_dec_aes_192_fallback(req); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_aes_ctr(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif if ((ctx->enc_key_len == AES_KEYSIZE_192) && (!cp->ce_support.aes_key_192) && ctx->cipher_aes192_fb) return _qcrypto_dec_aes_192_fallback(req); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->mode = QCE_MODE_CTR; /* Note. There is no such thing as aes/counter mode, decrypt */ rctx->dir = QCE_ENCRYPT; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_des_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_des_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_3des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_3des_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_3des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_3des_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_dec_aes_xts(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; WARN_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->mode = QCE_MODE_XTS; rctx->dir = QCE_DECRYPT; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); }; static int _qcrypto_aead_decrypt_aes_ccm(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1)) return -EINVAL; if ((ctx->auth_key_len != AES_KEYSIZE_128) && (ctx->auth_key_len != AES_KEYSIZE_256)) return -EINVAL; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CCM; rctx->iv = req->iv; rctx->ccmtype = 0; pstat->aead_ccm_aes_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_rfc4309_dec_aes_ccm(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; if (req->assoclen != 16 && req->assoclen != 20) return -EINVAL; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CCM; memset(rctx->rfc4309_iv, 0, sizeof(rctx->rfc4309_iv)); rctx->rfc4309_iv[0] = 3; /* L -1 */ memcpy(&rctx->rfc4309_iv[1], ctx->ccm4309_nonce, 3); memcpy(&rctx->rfc4309_iv[4], req->iv, 8); rctx->ccmtype = 1; rctx->iv = rctx->rfc4309_iv; pstat->aead_rfc4309_ccm_aes_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; return 0; } static int _qcrypto_aead_ccm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc); switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } ctx->authsize = authsize; return 0; } static int _qcrypto_aead_rfc4309_ccm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc); switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } ctx->authsize = authsize; return 0; } static int _qcrypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); struct rtattr *rta = (struct rtattr *)key; struct crypto_authenc_key_param *param; int ret; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); ctx->enc_key_len = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < ctx->enc_key_len) goto badkey; ctx->auth_key_len = keylen - ctx->enc_key_len; if (ctx->enc_key_len >= QCRYPTO_MAX_KEY_SIZE || ctx->auth_key_len >= QCRYPTO_MAX_KEY_SIZE) goto badkey; memset(ctx->auth_key, 0, QCRYPTO_MAX_KEY_SIZE); memcpy(ctx->enc_key, key + ctx->auth_key_len, ctx->enc_key_len); memcpy(ctx->auth_key, key, ctx->auth_key_len); if (ctx->enc_key_len == AES_KEYSIZE_192 && ctx->cipher_aes192_fb && ctx->ahash_aead_aes192_fb) { crypto_ahash_clear_flags(ctx->ahash_aead_aes192_fb, ~0); ret = crypto_ahash_setkey(ctx->ahash_aead_aes192_fb, ctx->auth_key, ctx->auth_key_len); if (ret) goto badkey; crypto_skcipher_clear_flags(ctx->cipher_aes192_fb, ~0); ret = crypto_skcipher_setkey(ctx->cipher_aes192_fb, ctx->enc_key, ctx->enc_key_len); if (ret) goto badkey; } return 0; badkey: ctx->enc_key_len = 0; crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int _qcrypto_aead_ccm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_priv *cp = ctx->cp; switch (keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_256: break; case AES_KEYSIZE_192: if (cp->ce_support.aes_key_192) break; default: ctx->enc_key_len = 0; crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; ctx->enc_key_len = keylen; memcpy(ctx->enc_key, key, keylen); ctx->auth_key_len = keylen; memcpy(ctx->auth_key, key, keylen); return 0; } static int _qcrypto_aead_rfc4309_ccm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int key_len) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); int ret; if (key_len < QCRYPTO_CCM4309_NONCE_LEN) return -EINVAL; key_len -= QCRYPTO_CCM4309_NONCE_LEN; memcpy(ctx->ccm4309_nonce, key + key_len, QCRYPTO_CCM4309_NONCE_LEN); ret = _qcrypto_aead_ccm_setkey(aead, key, key_len); return ret; }; static void _qcrypto_aead_aes_192_fb_a_cb(struct qcrypto_cipher_req_ctx *rctx, int res) { struct aead_request *req; struct crypto_async_request *areq; req = rctx->aead_req; areq = &req->base; if (rctx->fb_aes_req) skcipher_request_free(rctx->fb_aes_req); if (rctx->fb_hash_req) ahash_request_free(rctx->fb_hash_req); rctx->fb_aes_req = NULL; rctx->fb_hash_req = NULL; kfree(rctx->fb_aes_iv); areq->complete(areq, res); } static void _aead_aes_fb_stage2_ahash_complete( struct crypto_async_request *base, int err) { struct qcrypto_cipher_req_ctx *rctx; struct aead_request *req; struct qcrypto_cipher_ctx *ctx; rctx = base->data; req = rctx->aead_req; ctx = crypto_tfm_ctx(req->base.tfm); /* copy icv */ if (err == 0) scatterwalk_map_and_copy(rctx->fb_ahash_digest, rctx->fb_aes_dst, req->cryptlen, ctx->authsize, 1); _qcrypto_aead_aes_192_fb_a_cb(rctx, err); } static int _start_aead_aes_fb_stage2_hmac(struct qcrypto_cipher_req_ctx *rctx) { struct ahash_request *ahash_req; ahash_req = rctx->fb_hash_req; ahash_request_set_callback(ahash_req, CRYPTO_TFM_REQ_MAY_BACKLOG, _aead_aes_fb_stage2_ahash_complete, rctx); return crypto_ahash_digest(ahash_req); } static void _aead_aes_fb_stage2_decrypt_complete( struct crypto_async_request *base, int err) { struct qcrypto_cipher_req_ctx *rctx; rctx = base->data; _qcrypto_aead_aes_192_fb_a_cb(rctx, err); } static int _start_aead_aes_fb_stage2_decrypt( struct qcrypto_cipher_req_ctx *rctx) { struct skcipher_request *aes_req; aes_req = rctx->fb_aes_req; skcipher_request_set_callback(aes_req, CRYPTO_TFM_REQ_MAY_BACKLOG, _aead_aes_fb_stage2_decrypt_complete, rctx); return crypto_skcipher_decrypt(aes_req); } static void _aead_aes_fb_stage1_ahash_complete( struct crypto_async_request *base, int err) { struct qcrypto_cipher_req_ctx *rctx; struct aead_request *req; struct qcrypto_cipher_ctx *ctx; rctx = base->data; req = rctx->aead_req; ctx = crypto_tfm_ctx(req->base.tfm); /* compare icv */ if (err == 0) { unsigned char tmp[ctx->authsize]; scatterwalk_map_and_copy(tmp, rctx->fb_aes_src, req->cryptlen - ctx->authsize, ctx->authsize, 0); if (memcmp(rctx->fb_ahash_digest, tmp, ctx->authsize) != 0) err = -EBADMSG; } if (err) _qcrypto_aead_aes_192_fb_a_cb(rctx, err); else { err = _start_aead_aes_fb_stage2_decrypt(rctx); if (err != -EINPROGRESS && err != -EBUSY) _qcrypto_aead_aes_192_fb_a_cb(rctx, err); } } static void _aead_aes_fb_stage1_encrypt_complete( struct crypto_async_request *base, int err) { struct qcrypto_cipher_req_ctx *rctx; struct aead_request *req; struct qcrypto_cipher_ctx *ctx; rctx = base->data; req = rctx->aead_req; ctx = crypto_tfm_ctx(req->base.tfm); memcpy(ctx->iv, rctx->fb_aes_iv, rctx->ivsize); if (err) { _qcrypto_aead_aes_192_fb_a_cb(rctx, err); return; } err = _start_aead_aes_fb_stage2_hmac(rctx); /* copy icv */ if (err == 0) { scatterwalk_map_and_copy(rctx->fb_ahash_digest, rctx->fb_aes_dst, req->cryptlen, ctx->authsize, 1); } if (err != -EINPROGRESS && err != -EBUSY) _qcrypto_aead_aes_192_fb_a_cb(rctx, err); } static int _qcrypto_aead_aes_192_fallback(struct aead_request *req, bool is_encrypt) { int rc = -EINVAL; struct qcrypto_cipher_req_ctx *rctx = aead_request_ctx(req); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_aead *aead_tfm = crypto_aead_reqtfm(req); struct skcipher_request *aes_req = NULL; struct ahash_request *ahash_req = NULL; int nbytes; struct scatterlist *src, *dst; rctx->fb_aes_iv = NULL; aes_req = skcipher_request_alloc(ctx->cipher_aes192_fb, GFP_KERNEL); if (!aes_req) return -ENOMEM; ahash_req = ahash_request_alloc(ctx->ahash_aead_aes192_fb, GFP_KERNEL); if (!ahash_req) goto ret; rctx->fb_aes_req = aes_req; rctx->fb_hash_req = ahash_req; rctx->aead_req = req; /* assoc and iv are sitting in the beginning of src sg list */ /* Similarly, assoc and iv are sitting in the beginning of dst list */ src = scatterwalk_ffwd(rctx->fb_ablkcipher_src_sg, req->src, req->assoclen); dst = scatterwalk_ffwd(rctx->fb_ablkcipher_dst_sg, req->dst, req->assoclen); nbytes = req->cryptlen; if (!is_encrypt) nbytes -= ctx->authsize; rctx->fb_ahash_length = nbytes + req->assoclen; rctx->fb_aes_src = src; rctx->fb_aes_dst = dst; rctx->fb_aes_cryptlen = nbytes; rctx->ivsize = crypto_aead_ivsize(aead_tfm); rctx->fb_aes_iv = kzalloc(rctx->ivsize, GFP_ATOMIC); if (!rctx->fb_aes_iv) goto ret; memcpy(rctx->fb_aes_iv, req->iv, rctx->ivsize); skcipher_request_set_crypt(aes_req, rctx->fb_aes_src, rctx->fb_aes_dst, rctx->fb_aes_cryptlen, rctx->fb_aes_iv); if (is_encrypt) ahash_request_set_crypt(ahash_req, req->dst, rctx->fb_ahash_digest, rctx->fb_ahash_length); else ahash_request_set_crypt(ahash_req, req->src, rctx->fb_ahash_digest, rctx->fb_ahash_length); if (is_encrypt) { skcipher_request_set_callback(aes_req, CRYPTO_TFM_REQ_MAY_BACKLOG, _aead_aes_fb_stage1_encrypt_complete, rctx); rc = crypto_skcipher_encrypt(aes_req); if (rc == 0) { memcpy(ctx->iv, rctx->fb_aes_iv, rctx->ivsize); rc = _start_aead_aes_fb_stage2_hmac(rctx); if (rc == 0) { /* copy icv */ scatterwalk_map_and_copy(rctx->fb_ahash_digest, dst, req->cryptlen, ctx->authsize, 1); } } if (rc == -EINPROGRESS || rc == -EBUSY) return rc; goto ret; } else { ahash_request_set_callback(ahash_req, CRYPTO_TFM_REQ_MAY_BACKLOG, _aead_aes_fb_stage1_ahash_complete, rctx); rc = crypto_ahash_digest(ahash_req); if (rc == 0) { unsigned char tmp[ctx->authsize]; /* compare icv */ scatterwalk_map_and_copy(tmp, src, req->cryptlen - ctx->authsize, ctx->authsize, 0); if (memcmp(rctx->fb_ahash_digest, tmp, ctx->authsize) != 0) rc = -EBADMSG; else rc = _start_aead_aes_fb_stage2_decrypt(rctx); } if (rc == -EINPROGRESS || rc == -EBUSY) return rc; goto ret; } ret: if (aes_req) skcipher_request_free(aes_req); if (ahash_req) ahash_request_free(ahash_req); kfree(rctx->fb_aes_iv); return rc; } static int _qcrypto_aead_encrypt_aes_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; rctx->aead_req = req; if (ctx->auth_alg == QCE_HASH_SHA1_HMAC) pstat->aead_sha1_aes_enc++; else pstat->aead_sha256_aes_enc++; if (ctx->enc_key_len == AES_KEYSIZE_192 && ctx->cipher_aes192_fb && ctx->ahash_aead_aes192_fb) return _qcrypto_aead_aes_192_fallback(req, true); return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_decrypt_aes_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; #ifdef QCRYPTO_DEBUG dev_info(&ctx->pengine->pdev->dev, "%s: %pK\n", __func__, req); #endif rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; rctx->aead_req = req; if (ctx->auth_alg == QCE_HASH_SHA1_HMAC) pstat->aead_sha1_aes_dec++; else pstat->aead_sha256_aes_dec++; if (ctx->enc_key_len == AES_KEYSIZE_192 && ctx->cipher_aes192_fb && ctx->ahash_aead_aes192_fb) return _qcrypto_aead_aes_192_fallback(req, false); return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_encrypt_des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; if (ctx->auth_alg == QCE_HASH_SHA1_HMAC) pstat->aead_sha1_des_enc++; else pstat->aead_sha256_des_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_decrypt_des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; if (ctx->auth_alg == QCE_HASH_SHA1_HMAC) pstat->aead_sha1_des_dec++; else pstat->aead_sha256_des_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_encrypt_3des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; if (ctx->auth_alg == QCE_HASH_SHA1_HMAC) pstat->aead_sha1_3des_enc++; else pstat->aead_sha256_3des_enc++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _qcrypto_aead_decrypt_3des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; if (ctx->auth_alg == QCE_HASH_SHA1_HMAC) pstat->aead_sha1_3des_dec++; else pstat->aead_sha256_3des_dec++; return _qcrypto_queue_req(cp, ctx->pengine, &req->base); } static int _sha_init(struct ahash_request *req) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); rctx->first_blk = 1; rctx->last_blk = 0; rctx->byte_count[0] = 0; rctx->byte_count[1] = 0; rctx->byte_count[2] = 0; rctx->byte_count[3] = 0; rctx->trailing_buf_len = 0; rctx->count = 0; return 0; }; static int _sha1_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); pstat = &_qcrypto_stat; _sha_init(req); sha_ctx->alg = QCE_HASH_SHA1; memset(&rctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE); memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; pstat->sha1_digest++; return 0; }; static int _sha256_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); pstat = &_qcrypto_stat; _sha_init(req); sha_ctx->alg = QCE_HASH_SHA256; memset(&rctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE); memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; pstat->sha256_digest++; return 0; }; static int _sha1_export(struct ahash_request *req, void *out) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha1_state *out_ctx = (struct sha1_state *)out; out_ctx->count = rctx->count; _byte_stream_to_words(out_ctx->state, rctx->digest, SHA1_DIGEST_SIZE); memcpy(out_ctx->buffer, rctx->trailing_buf, SHA1_BLOCK_SIZE); return 0; }; static int _sha1_hmac_export(struct ahash_request *req, void *out) { return _sha1_export(req, out); } /* crypto hw padding constant for hmac first operation */ #define HMAC_PADDING 64 static int __sha1_import_common(struct ahash_request *req, const void *in, bool hmac) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha1_state *in_ctx = (struct sha1_state *)in; u64 hw_count = in_ctx->count; rctx->count = in_ctx->count; memcpy(rctx->trailing_buf, in_ctx->buffer, SHA1_BLOCK_SIZE); if (in_ctx->count <= SHA1_BLOCK_SIZE) { rctx->first_blk = 1; } else { rctx->first_blk = 0; /* * For hmac, there is a hardware padding done * when first is set. So the byte_count will be * incremened by 64 after the operstion of first */ if (hmac) hw_count += HMAC_PADDING; } rctx->byte_count[0] = (uint32_t)(hw_count & 0xFFFFFFC0); rctx->byte_count[1] = (uint32_t)(hw_count >> 32); _words_to_byte_stream(in_ctx->state, rctx->digest, sha_ctx->diglen); rctx->trailing_buf_len = (uint32_t)(in_ctx->count & (SHA1_BLOCK_SIZE-1)); return 0; } static int _sha1_import(struct ahash_request *req, const void *in) { return __sha1_import_common(req, in, false); } static int _sha1_hmac_import(struct ahash_request *req, const void *in) { return __sha1_import_common(req, in, true); } static int _sha256_export(struct ahash_request *req, void *out) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *out_ctx = (struct sha256_state *)out; out_ctx->count = rctx->count; _byte_stream_to_words(out_ctx->state, rctx->digest, SHA256_DIGEST_SIZE); memcpy(out_ctx->buf, rctx->trailing_buf, SHA256_BLOCK_SIZE); return 0; }; static int _sha256_hmac_export(struct ahash_request *req, void *out) { return _sha256_export(req, out); } static int __sha256_import_common(struct ahash_request *req, const void *in, bool hmac) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *in_ctx = (struct sha256_state *)in; u64 hw_count = in_ctx->count; rctx->count = in_ctx->count; memcpy(rctx->trailing_buf, in_ctx->buf, SHA256_BLOCK_SIZE); if (in_ctx->count <= SHA256_BLOCK_SIZE) { rctx->first_blk = 1; } else { rctx->first_blk = 0; /* * for hmac, there is a hardware padding done * when first is set. So the byte_count will be * incremened by 64 after the operstion of first */ if (hmac) hw_count += HMAC_PADDING; } rctx->byte_count[0] = (uint32_t)(hw_count & 0xFFFFFFC0); rctx->byte_count[1] = (uint32_t)(hw_count >> 32); _words_to_byte_stream(in_ctx->state, rctx->digest, sha_ctx->diglen); rctx->trailing_buf_len = (uint32_t)(in_ctx->count & (SHA256_BLOCK_SIZE-1)); return 0; } static int _sha256_import(struct ahash_request *req, const void *in) { return __sha256_import_common(req, in, false); } static int _sha256_hmac_import(struct ahash_request *req, const void *in) { return __sha256_import_common(req, in, true); } static int _copy_source(struct ahash_request *req) { struct qcrypto_sha_req_ctx *srctx = NULL; uint32_t bytes = 0; uint32_t num_sg = 0; srctx = ahash_request_ctx(req); srctx->orig_src = req->src; srctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC); if (srctx->data == NULL) { pr_err("Mem Alloc fail rctx->data, err %ld for 0x%x\n", PTR_ERR(srctx->data), (req->nbytes + 64)); return -ENOMEM; } num_sg = qcrypto_count_sg(req->src, req->nbytes); bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, srctx->data, req->nbytes); if (bytes != req->nbytes) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, req->nbytes); sg_set_buf(&srctx->dsg, srctx->data, req->nbytes); sg_mark_end(&srctx->dsg); req->src = &srctx->dsg; return 0; } static int _sha_update(struct ahash_request *req, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); uint32_t total, len, num_sg; struct scatterlist *sg_last; uint8_t *k_src = NULL; uint32_t sha_pad_len = 0; uint32_t trailing_buf_len = 0; uint32_t nbytes; uint32_t offset = 0; uint32_t bytes = 0; uint8_t *staging; int ret = 0; /* check for trailing buffer from previous updates and append it */ total = req->nbytes + rctx->trailing_buf_len; len = req->nbytes; if (total <= sha_block_size) { k_src = &rctx->trailing_buf[rctx->trailing_buf_len]; num_sg = qcrypto_count_sg(req->src, len); bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, k_src, len); rctx->trailing_buf_len = total; return 0; } /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf), L1_CACHE_BYTES); memcpy(staging, rctx->trailing_buf, rctx->trailing_buf_len); k_src = &rctx->trailing_buf[0]; /* get new trailing buffer */ sha_pad_len = ALIGN(total, sha_block_size) - total; trailing_buf_len = sha_block_size - sha_pad_len; offset = req->nbytes - trailing_buf_len; if (offset != req->nbytes) scatterwalk_map_and_copy(k_src, req->src, offset, trailing_buf_len, 0); nbytes = total - trailing_buf_len; num_sg = qcrypto_count_sg(req->src, req->nbytes); len = rctx->trailing_buf_len; sg_last = req->src; while (len < nbytes) { if ((len + sg_last->length) > nbytes) break; len += sg_last->length; sg_last = sg_next(sg_last); } if (rctx->trailing_buf_len) { if (cp->ce_support.aligned_only) { rctx->data2 = kzalloc((req->nbytes + 64), GFP_ATOMIC); if (rctx->data2 == NULL) return -ENOMEM; memcpy(rctx->data2, staging, rctx->trailing_buf_len); memcpy((rctx->data2 + rctx->trailing_buf_len), rctx->data, req->src->length); kzfree(rctx->data); rctx->data = rctx->data2; sg_set_buf(&rctx->sg[0], rctx->data, (rctx->trailing_buf_len + req->src->length)); req->src = rctx->sg; sg_mark_end(&rctx->sg[0]); } else { sg_mark_end(sg_last); memset(rctx->sg, 0, sizeof(rctx->sg)); sg_set_buf(&rctx->sg[0], staging, rctx->trailing_buf_len); sg_mark_end(&rctx->sg[1]); sg_chain(rctx->sg, 2, req->src); req->src = rctx->sg; } } else sg_mark_end(sg_last); req->nbytes = nbytes; rctx->trailing_buf_len = trailing_buf_len; ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base); return ret; }; static int _sha1_update(struct ahash_request *req) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } rctx->count += req->nbytes; return _sha_update(req, SHA1_BLOCK_SIZE); } static int _sha256_update(struct ahash_request *req) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } rctx->count += req->nbytes; return _sha_update(req, SHA256_BLOCK_SIZE); } static int _sha_final(struct ahash_request *req, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); int ret = 0; uint8_t *staging; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } rctx->last_blk = 1; /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf), L1_CACHE_BYTES); memcpy(staging, rctx->trailing_buf, rctx->trailing_buf_len); sg_set_buf(&rctx->sg[0], staging, rctx->trailing_buf_len); sg_mark_end(&rctx->sg[0]); req->src = &rctx->sg[0]; req->nbytes = rctx->trailing_buf_len; ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base); return ret; }; static int _sha1_final(struct ahash_request *req) { return _sha_final(req, SHA1_BLOCK_SIZE); } static int _sha256_final(struct ahash_request *req) { return _sha_final(req, SHA256_BLOCK_SIZE); } static int _sha_digest(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_priv *cp = sha_ctx->cp; int ret = 0; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; rctx->first_blk = 1; rctx->last_blk = 1; ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base); return ret; } static int _sha1_digest(struct ahash_request *req) { _sha1_init(req); return _sha_digest(req); } static int _sha256_digest(struct ahash_request *req) { _sha256_init(req); return _sha_digest(req); } static void _crypto_sha_hmac_ahash_req_complete( struct crypto_async_request *req, int err) { struct completion *ahash_req_complete = req->data; if (err == -EINPROGRESS) return; complete(ahash_req_complete); } static int _sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base); uint8_t *in_buf; int ret = 0; struct scatterlist sg = {0}; struct ahash_request *ahash_req; struct completion ahash_req_complete; ahash_req = ahash_request_alloc(tfm, GFP_KERNEL); if (ahash_req == NULL) return -ENOMEM; init_completion(&ahash_req_complete); ahash_request_set_callback(ahash_req, CRYPTO_TFM_REQ_MAY_BACKLOG, _crypto_sha_hmac_ahash_req_complete, &ahash_req_complete); crypto_ahash_clear_flags(tfm, ~0); in_buf = kzalloc(len + 64, GFP_KERNEL); if (in_buf == NULL) { ahash_request_free(ahash_req); return -ENOMEM; } memcpy(in_buf, key, len); sg_set_buf(&sg, in_buf, len); sg_mark_end(&sg); ahash_request_set_crypt(ahash_req, &sg, &sha_ctx->authkey[0], len); if (sha_ctx->alg == QCE_HASH_SHA1) ret = _sha1_digest(ahash_req); else ret = _sha256_digest(ahash_req); if (ret == -EINPROGRESS || ret == -EBUSY) { ret = wait_for_completion_interruptible( &ahash_req_complete); reinit_completion(&sha_ctx->ahash_req_complete); } kzfree(in_buf); ahash_request_free(ahash_req); return ret; } static int _sha1_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base); int ret = 0; memset(&sha_ctx->authkey[0], 0, SHA1_BLOCK_SIZE); if (len <= SHA1_BLOCK_SIZE) { memcpy(&sha_ctx->authkey[0], key, len); sha_ctx->authkey_in_len = len; } else { sha_ctx->alg = QCE_HASH_SHA1; sha_ctx->diglen = SHA1_DIGEST_SIZE; ret = _sha_hmac_setkey(tfm, key, len); if (ret) pr_err("SHA1 hmac setkey failed\n"); sha_ctx->authkey_in_len = SHA1_BLOCK_SIZE; } return ret; } static int _sha256_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base); int ret = 0; memset(&sha_ctx->authkey[0], 0, SHA256_BLOCK_SIZE); if (len <= SHA256_BLOCK_SIZE) { memcpy(&sha_ctx->authkey[0], key, len); sha_ctx->authkey_in_len = len; } else { sha_ctx->alg = QCE_HASH_SHA256; sha_ctx->diglen = SHA256_DIGEST_SIZE; ret = _sha_hmac_setkey(tfm, key, len); if (ret) pr_err("SHA256 hmac setkey failed\n"); sha_ctx->authkey_in_len = SHA256_BLOCK_SIZE; } return ret; } static int _sha_hmac_init_ihash(struct ahash_request *req, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); int i; for (i = 0; i < sha_block_size; i++) rctx->trailing_buf[i] = sha_ctx->authkey[i] ^ 0x36; rctx->trailing_buf_len = sha_block_size; return 0; } static int _sha1_hmac_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct crypto_stat *pstat; int ret = 0; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); pstat = &_qcrypto_stat; pstat->sha1_hmac_digest++; _sha_init(req); memset(&rctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE); memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; if (cp->ce_support.sha_hmac) sha_ctx->alg = QCE_HASH_SHA1_HMAC; else { sha_ctx->alg = QCE_HASH_SHA1; ret = _sha_hmac_init_ihash(req, SHA1_BLOCK_SIZE); } return ret; } static int _sha256_hmac_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct crypto_stat *pstat; int ret = 0; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); pstat = &_qcrypto_stat; pstat->sha256_hmac_digest++; _sha_init(req); memset(&rctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE); memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; if (cp->ce_support.sha_hmac) sha_ctx->alg = QCE_HASH_SHA256_HMAC; else { sha_ctx->alg = QCE_HASH_SHA256; ret = _sha_hmac_init_ihash(req, SHA256_BLOCK_SIZE); } return ret; } static int _sha1_hmac_update(struct ahash_request *req) { return _sha1_update(req); } static int _sha256_hmac_update(struct ahash_request *req) { return _sha256_update(req); } static int _sha_hmac_outer_hash(struct ahash_request *req, uint32_t sha_digest_size, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_priv *cp = sha_ctx->cp; int i; uint8_t *staging; uint8_t *p; staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf), L1_CACHE_BYTES); p = staging; for (i = 0; i < sha_block_size; i++) *p++ = sha_ctx->authkey[i] ^ 0x5c; memcpy(p, &rctx->digest[0], sha_digest_size); sg_set_buf(&rctx->sg[0], staging, sha_block_size + sha_digest_size); sg_mark_end(&rctx->sg[0]); /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; req->src = &rctx->sg[0]; req->nbytes = sha_block_size + sha_digest_size; _sha_init(req); if (sha_ctx->alg == QCE_HASH_SHA1) { memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; } else { memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; } rctx->last_blk = 1; return _qcrypto_queue_req(cp, sha_ctx->pengine, &req->base); } static int _sha_hmac_inner_hash(struct ahash_request *req, uint32_t sha_digest_size, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct ahash_request *areq = sha_ctx->ahash_req; struct crypto_priv *cp = sha_ctx->cp; int ret = 0; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); uint8_t *staging; staging = (uint8_t *)ALIGN(((uintptr_t)rctx->staging_dmabuf), L1_CACHE_BYTES); memcpy(staging, rctx->trailing_buf, rctx->trailing_buf_len); sg_set_buf(&rctx->sg[0], staging, rctx->trailing_buf_len); sg_mark_end(&rctx->sg[0]); ahash_request_set_crypt(areq, &rctx->sg[0], &rctx->digest[0], rctx->trailing_buf_len); rctx->last_blk = 1; ret = _qcrypto_queue_req(cp, sha_ctx->pengine, &areq->base); if (ret == -EINPROGRESS || ret == -EBUSY) { ret = wait_for_completion_interruptible(&sha_ctx->ahash_req_complete); reinit_completion(&sha_ctx->ahash_req_complete); } return ret; } static int _sha1_hmac_final(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; int ret = 0; if (cp->ce_support.sha_hmac) return _sha_final(req, SHA1_BLOCK_SIZE); ret = _sha_hmac_inner_hash(req, SHA1_DIGEST_SIZE, SHA1_BLOCK_SIZE); if (ret) return ret; return _sha_hmac_outer_hash(req, SHA1_DIGEST_SIZE, SHA1_BLOCK_SIZE); } static int _sha256_hmac_final(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; int ret = 0; if (cp->ce_support.sha_hmac) return _sha_final(req, SHA256_BLOCK_SIZE); ret = _sha_hmac_inner_hash(req, SHA256_DIGEST_SIZE, SHA256_BLOCK_SIZE); if (ret) return ret; return _sha_hmac_outer_hash(req, SHA256_DIGEST_SIZE, SHA256_BLOCK_SIZE); } static int _sha1_hmac_digest(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); pstat = &_qcrypto_stat; pstat->sha1_hmac_digest++; _sha_init(req); memcpy(&rctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; sha_ctx->alg = QCE_HASH_SHA1_HMAC; return _sha_digest(req); } static int _sha256_hmac_digest(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); pstat = &_qcrypto_stat; pstat->sha256_hmac_digest++; _sha_init(req); memcpy(&rctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; sha_ctx->alg = QCE_HASH_SHA256_HMAC; return _sha_digest(req); } static int _qcrypto_prefix_alg_cra_name(char cra_name[], unsigned int size) { char new_cra_name[CRYPTO_MAX_ALG_NAME] = "qcom-"; if (size >= CRYPTO_MAX_ALG_NAME - strlen("qcom-")) return -EINVAL; strlcat(new_cra_name, cra_name, CRYPTO_MAX_ALG_NAME); strlcpy(cra_name, new_cra_name, CRYPTO_MAX_ALG_NAME); return 0; } int qcrypto_cipher_set_device(struct ablkcipher_request *req, unsigned int dev) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_engine *pengine = NULL; pengine = _qrypto_find_pengine_device(cp, dev); if (pengine == NULL) return -ENODEV; ctx->pengine = pengine; return 0; }; EXPORT_SYMBOL(qcrypto_cipher_set_device); int qcrypto_cipher_set_device_hw(struct skcipher_request *req, u32 dev, u32 hw_inst) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_engine *pengine = NULL; pengine = _qrypto_find_pengine_device_hw(cp, dev, hw_inst); if (pengine == NULL) return -ENODEV; ctx->pengine = pengine; return 0; } EXPORT_SYMBOL(qcrypto_cipher_set_device_hw); int qcrypto_aead_set_device(struct aead_request *req, unsigned int dev) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_engine *pengine = NULL; pengine = _qrypto_find_pengine_device(cp, dev); if (pengine == NULL) return -ENODEV; ctx->pengine = pengine; return 0; }; EXPORT_SYMBOL(qcrypto_aead_set_device); int qcrypto_ahash_set_device(struct ahash_request *req, unsigned int dev) { struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_engine *pengine = NULL; pengine = _qrypto_find_pengine_device(cp, dev); if (pengine == NULL) return -ENODEV; ctx->pengine = pengine; return 0; }; EXPORT_SYMBOL(qcrypto_ahash_set_device); int qcrypto_cipher_set_flag(struct skcipher_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; if ((flags & QCRYPTO_CTX_USE_HW_KEY) && (cp->platform_support.hw_key_support == false)) { pr_err("%s HW key usage not supported\n", __func__); return -EINVAL; } if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) == QCRYPTO_CTX_KEY_MASK) { pr_err("%s Cannot set all key flags\n", __func__); return -EINVAL; } ctx->flags |= flags; return 0; }; EXPORT_SYMBOL(qcrypto_cipher_set_flag); int qcrypto_aead_set_flag(struct aead_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; if ((flags & QCRYPTO_CTX_USE_HW_KEY) && (cp->platform_support.hw_key_support == false)) { pr_err("%s HW key usage not supported\n", __func__); return -EINVAL; } if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) == QCRYPTO_CTX_KEY_MASK) { pr_err("%s Cannot set all key flags\n", __func__); return -EINVAL; } ctx->flags |= flags; return 0; }; EXPORT_SYMBOL(qcrypto_aead_set_flag); int qcrypto_ahash_set_flag(struct ahash_request *req, unsigned int flags) { struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; if ((flags & QCRYPTO_CTX_USE_HW_KEY) && (cp->platform_support.hw_key_support == false)) { pr_err("%s HW key usage not supported\n", __func__); return -EINVAL; } if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) == QCRYPTO_CTX_KEY_MASK) { pr_err("%s Cannot set all key flags\n", __func__); return -EINVAL; } ctx->flags |= flags; return 0; }; EXPORT_SYMBOL(qcrypto_ahash_set_flag); int qcrypto_cipher_clear_flag(struct ablkcipher_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); ctx->flags &= ~flags; return 0; }; EXPORT_SYMBOL(qcrypto_cipher_clear_flag); int qcrypto_aead_clear_flag(struct aead_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); ctx->flags &= ~flags; return 0; }; EXPORT_SYMBOL(qcrypto_aead_clear_flag); int qcrypto_ahash_clear_flag(struct ahash_request *req, unsigned int flags) { struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm); ctx->flags &= ~flags; return 0; }; EXPORT_SYMBOL(qcrypto_ahash_clear_flag); static struct ahash_alg _qcrypto_ahash_algos[] = { { .init = _sha1_init, .update = _sha1_update, .final = _sha1_final, .export = _sha1_export, .import = _sha1_import, .digest = _sha1_digest, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "qcrypto-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, { .init = _sha256_init, .update = _sha256_update, .final = _sha256_final, .export = _sha256_export, .import = _sha256_import, .digest = _sha256_digest, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "qcrypto-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, }; static struct ahash_alg _qcrypto_sha_hmac_algos[] = { { .init = _sha1_hmac_init, .update = _sha1_hmac_update, .final = _sha1_hmac_final, .export = _sha1_hmac_export, .import = _sha1_hmac_import, .digest = _sha1_hmac_digest, .setkey = _sha1_hmac_setkey, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "qcrypto-hmac-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_hmac_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, { .init = _sha256_hmac_init, .update = _sha256_hmac_update, .final = _sha256_hmac_final, .export = _sha256_hmac_export, .import = _sha256_hmac_import, .digest = _sha256_hmac_digest, .setkey = _sha256_hmac_setkey, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "qcrypto-hmac-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_hmac_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, }; static struct crypto_alg _qcrypto_ablk_cipher_algos[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "qcrypto-ecb-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aes_ablkcipher_init, .cra_exit = _qcrypto_cra_aes_ablkcipher_exit, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes, .encrypt = _qcrypto_enc_aes_ecb, .decrypt = _qcrypto_dec_aes_ecb, }, }, }, { .cra_name = "cbc(aes)", .cra_driver_name = "qcrypto-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aes_ablkcipher_init, .cra_exit = _qcrypto_cra_aes_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes, .encrypt = _qcrypto_enc_aes_cbc, .decrypt = _qcrypto_dec_aes_cbc, }, }, }, { .cra_name = "ctr(aes)", .cra_driver_name = "qcrypto-ctr-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aes_ablkcipher_init, .cra_exit = _qcrypto_cra_aes_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes, .encrypt = _qcrypto_enc_aes_ctr, .decrypt = _qcrypto_dec_aes_ctr, }, }, }, { .cra_name = "ecb(des)", .cra_driver_name = "qcrypto-ecb-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .setkey = _qcrypto_setkey_des, .encrypt = _qcrypto_enc_des_ecb, .decrypt = _qcrypto_dec_des_ecb, }, }, }, { .cra_name = "cbc(des)", .cra_driver_name = "qcrypto-cbc-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = DES_BLOCK_SIZE, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .setkey = _qcrypto_setkey_des, .encrypt = _qcrypto_enc_des_cbc, .decrypt = _qcrypto_dec_des_cbc, }, }, }, { .cra_name = "ecb(des3_ede)", .cra_driver_name = "qcrypto-ecb-3des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .setkey = _qcrypto_setkey_3des, .encrypt = _qcrypto_enc_3des_ecb, .decrypt = _qcrypto_dec_3des_ecb, }, }, }, { .cra_name = "cbc(des3_ede)", .cra_driver_name = "qcrypto-cbc-3des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = DES3_EDE_BLOCK_SIZE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .setkey = _qcrypto_setkey_3des, .encrypt = _qcrypto_enc_3des_cbc, .decrypt = _qcrypto_dec_3des_cbc, }, }, }, }; static struct crypto_alg _qcrypto_ablk_cipher_xts_algo = { .cra_name = "xts(aes)", .cra_driver_name = "qcrypto-xts-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes_xts, .encrypt = _qcrypto_enc_aes_xts, .decrypt = _qcrypto_dec_aes_xts, }, }, }; static struct aead_alg _qcrypto_aead_sha1_hmac_algos[] = { { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_aes_cbc, .decrypt = _qcrypto_aead_decrypt_aes_cbc, .init = _qcrypto_cra_aead_aes_sha1_init, .exit = _qcrypto_cra_aead_aes_exit, }, { .base = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_des_cbc, .decrypt = _qcrypto_aead_decrypt_des_cbc, .init = _qcrypto_cra_aead_sha1_init, .exit = _qcrypto_cra_aead_exit, }, { .base = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-3des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_3des_cbc, .decrypt = _qcrypto_aead_decrypt_3des_cbc, .init = _qcrypto_cra_aead_sha1_init, .exit = _qcrypto_cra_aead_exit, }, }; static struct aead_alg _qcrypto_aead_sha256_hmac_algos[] = { { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "qcrypto-aead-hmac-sha256-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_aes_cbc, .decrypt = _qcrypto_aead_decrypt_aes_cbc, .init = _qcrypto_cra_aead_aes_sha256_init, .exit = _qcrypto_cra_aead_aes_exit, }, { .base = { .cra_name = "authenc(hmac(sha256),cbc(des))", .cra_driver_name = "qcrypto-aead-hmac-sha256-cbc-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_des_cbc, .decrypt = _qcrypto_aead_decrypt_des_cbc, .init = _qcrypto_cra_aead_sha256_init, .exit = _qcrypto_cra_aead_exit, }, { .base = { .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", .cra_driver_name = "qcrypto-aead-hmac-sha256-cbc-3des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_3des_cbc, .decrypt = _qcrypto_aead_decrypt_3des_cbc, .init = _qcrypto_cra_aead_sha256_init, .exit = _qcrypto_cra_aead_exit, }, }; static struct aead_alg _qcrypto_aead_ccm_algo = { .base = { .cra_name = "ccm(aes)", .cra_driver_name = "qcrypto-aes-ccm", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, .setkey = _qcrypto_aead_ccm_setkey, .setauthsize = _qcrypto_aead_ccm_setauthsize, .encrypt = _qcrypto_aead_encrypt_aes_ccm, .decrypt = _qcrypto_aead_decrypt_aes_ccm, .init = _qcrypto_cra_aead_ccm_init, .exit = _qcrypto_cra_aead_exit, }; static struct aead_alg _qcrypto_aead_rfc4309_ccm_algo = { .base = { .cra_name = "rfc4309(ccm(aes))", .cra_driver_name = "qcrypto-rfc4309-aes-ccm", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .ivsize = 8, .maxauthsize = 16, .setkey = _qcrypto_aead_rfc4309_ccm_setkey, .setauthsize = _qcrypto_aead_rfc4309_ccm_setauthsize, .encrypt = _qcrypto_aead_rfc4309_enc_aes_ccm, .decrypt = _qcrypto_aead_rfc4309_dec_aes_ccm, .init = _qcrypto_cra_aead_rfc4309_ccm_init, .exit = _qcrypto_cra_aead_exit, }; static int _qcrypto_probe(struct platform_device *pdev) { int rc = 0; void *handle; struct crypto_priv *cp = &qcrypto_dev; int i; struct msm_ce_hw_support *platform_support; struct crypto_engine *pengine; unsigned long flags; struct qcrypto_req_control *pqcrypto_req_control = NULL; pengine = kzalloc(sizeof(*pengine), GFP_KERNEL); if (!pengine) return -ENOMEM; cp->platform_support.bus_scale_table = (struct msm_bus_scale_pdata *) msm_bus_cl_get_pdata(pdev); if (!cp->platform_support.bus_scale_table) { dev_err(&pdev->dev, "bus_scale_table is NULL\n"); pengine->bw_state = BUS_HAS_BANDWIDTH; } else { pengine->bus_scale_handle = msm_bus_scale_register_client( (struct msm_bus_scale_pdata *) cp->platform_support.bus_scale_table); if (!pengine->bus_scale_handle) { dev_err(&pdev->dev, "failed to get bus scale handle\n"); rc = -ENOMEM; goto exit_kzfree; } pengine->bw_state = BUS_NO_BANDWIDTH; } rc = msm_bus_scale_client_update_request(pengine->bus_scale_handle, 1); if (rc) { dev_err(&pdev->dev, "failed to set high bandwidth\n"); goto exit_kzfree; } handle = qce_open(pdev, &rc); if (handle == NULL) { rc = -ENODEV; goto exit_free_pdata; } rc = msm_bus_scale_client_update_request(pengine->bus_scale_handle, 0); if (rc) { dev_err(&pdev->dev, "failed to set low bandwidth\n"); goto exit_qce_close; } platform_set_drvdata(pdev, pengine); pengine->qce = handle; pengine->pcp = cp; pengine->pdev = pdev; pengine->signature = 0xdeadbeef; init_timer(&(pengine->bw_reaper_timer)); INIT_WORK(&pengine->bw_reaper_ws, qcrypto_bw_reaper_work); pengine->bw_reaper_timer.function = qcrypto_bw_reaper_timer_callback; INIT_WORK(&pengine->bw_allocate_ws, qcrypto_bw_allocate_work); pengine->high_bw_req = false; pengine->active_seq = 0; pengine->last_active_seq = 0; pengine->check_flag = false; pengine->max_req_used = 0; pengine->issue_req = false; crypto_init_queue(&pengine->req_queue, MSM_QCRYPTO_REQ_QUEUE_LENGTH); mutex_lock(&cp->engine_lock); cp->total_units++; pengine->unit = cp->total_units; spin_lock_irqsave(&cp->lock, flags); pengine->first_engine = list_empty(&cp->engine_list); if (pengine->first_engine) cp->first_engine = pengine; list_add_tail(&pengine->elist, &cp->engine_list); cp->next_engine = pengine; spin_unlock_irqrestore(&cp->lock, flags); qce_hw_support(pengine->qce, &cp->ce_support); pengine->ce_hw_instance = cp->ce_support.ce_hw_instance; pengine->max_req = cp->ce_support.max_request; pqcrypto_req_control = kcalloc(pengine->max_req, sizeof(struct qcrypto_req_control), GFP_KERNEL); if (pqcrypto_req_control == NULL) { rc = -ENOMEM; goto exit_unlock_mutex; } qcrypto_init_req_control(pengine, pqcrypto_req_control); if (cp->ce_support.bam) { cp->platform_support.ce_shared = cp->ce_support.is_shared; cp->platform_support.shared_ce_resource = 0; cp->platform_support.hw_key_support = cp->ce_support.hw_key; cp->platform_support.sha_hmac = 1; pengine->ce_device = cp->ce_support.ce_device; } else { platform_support = (struct msm_ce_hw_support *)pdev->dev.platform_data; cp->platform_support.ce_shared = platform_support->ce_shared; cp->platform_support.shared_ce_resource = platform_support->shared_ce_resource; cp->platform_support.hw_key_support = platform_support->hw_key_support; cp->platform_support.sha_hmac = platform_support->sha_hmac; } if (cp->total_units != 1) goto exit_unlock_mutex; /* register crypto cipher algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(_qcrypto_ablk_cipher_algos); i++) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_cipher_alg_alloc(cp, &_qcrypto_ablk_cipher_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_aes_cbc_ecb_ctr_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->cipher_alg.cra_name, strlen(q_alg->cipher_alg.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->cipher_alg.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_alg(&q_alg->cipher_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->cipher_alg.cra_driver_name); kzfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->cipher_alg.cra_driver_name); } } /* register crypto cipher algorithms the device supports */ if (cp->ce_support.aes_xts) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_cipher_alg_alloc(cp, &_qcrypto_ablk_cipher_xts_algo); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_aes_xts_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->cipher_alg.cra_name, strlen(q_alg->cipher_alg.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->cipher_alg.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_alg(&q_alg->cipher_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->cipher_alg.cra_driver_name); kzfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->cipher_alg.cra_driver_name); } } /* * Register crypto hash (sha1 and sha256) algorithms the * device supports */ for (i = 0; i < ARRAY_SIZE(_qcrypto_ahash_algos); i++) { struct qcrypto_alg *q_alg = NULL; q_alg = _qcrypto_sha_alg_alloc(cp, &_qcrypto_ahash_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_ahash_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->sha_alg.halg.base.cra_name, strlen(q_alg->sha_alg.halg.base.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->sha_alg.halg.base.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_ahash(&q_alg->sha_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->sha_alg.halg.base.cra_driver_name); kzfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->sha_alg.halg.base.cra_driver_name); } } /* register crypto aead (hmac-sha1) algorithms the device supports */ if (cp->ce_support.sha1_hmac_20 || cp->ce_support.sha1_hmac || cp->ce_support.sha_hmac) { for (i = 0; i < ARRAY_SIZE(_qcrypto_aead_sha1_hmac_algos); i++) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_aead_alg_alloc(cp, &_qcrypto_aead_sha1_hmac_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_aead_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->aead_alg.base.cra_name, strlen(q_alg->aead_alg.base.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->aead_alg.base.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_aead(&q_alg->aead_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->aead_alg.base.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->aead_alg.base.cra_driver_name); } } } /* register crypto aead (hmac-sha256) algorithms the device supports */ if (cp->ce_support.sha_hmac) { for (i = 0; i < ARRAY_SIZE(_qcrypto_aead_sha256_hmac_algos); i++) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_aead_alg_alloc(cp, &_qcrypto_aead_sha256_hmac_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_aead_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->aead_alg.base.cra_name, strlen(q_alg->aead_alg.base.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->aead_alg.base.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_aead(&q_alg->aead_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->aead_alg.base.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->aead_alg.base.cra_driver_name); } } } if ((cp->ce_support.sha_hmac) || (cp->platform_support.sha_hmac)) { /* register crypto hmac algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(_qcrypto_sha_hmac_algos); i++) { struct qcrypto_alg *q_alg = NULL; q_alg = _qcrypto_sha_alg_alloc(cp, &_qcrypto_sha_hmac_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_hmac_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->sha_alg.halg.base.cra_name, strlen( q_alg->sha_alg.halg.base.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->sha_alg.halg.base.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_ahash(&q_alg->sha_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->sha_alg.halg.base.cra_driver_name); kzfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->sha_alg.halg.base.cra_driver_name); } } } /* * Register crypto cipher (aes-ccm) algorithms the * device supports */ if (cp->ce_support.aes_ccm) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_aead_alg_alloc(cp, &_qcrypto_aead_ccm_algo); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_aes_ccm_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->aead_alg.base.cra_name, strlen(q_alg->aead_alg.base.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->aead_alg.base.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_aead(&q_alg->aead_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->aead_alg.base.cra_driver_name); kzfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->aead_alg.base.cra_driver_name); } q_alg = _qcrypto_aead_alg_alloc(cp, &_qcrypto_aead_rfc4309_ccm_algo); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } if (cp->ce_support.use_sw_aes_ccm_algo) { rc = _qcrypto_prefix_alg_cra_name( q_alg->aead_alg.base.cra_name, strlen(q_alg->aead_alg.base.cra_name)); if (rc) { dev_err(&pdev->dev, "The algorithm name %s is too long.\n", q_alg->aead_alg.base.cra_name); kfree(q_alg); goto err; } } rc = crypto_register_aead(&q_alg->aead_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->aead_alg.base.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->aead_alg.base.cra_driver_name); } } mutex_unlock(&cp->engine_lock); return 0; err: _qcrypto_remove_engine(pengine); kzfree(pqcrypto_req_control); exit_unlock_mutex: mutex_unlock(&cp->engine_lock); exit_qce_close: if (pengine->qce) qce_close(pengine->qce); exit_free_pdata: if (msm_bus_scale_client_update_request(pengine->bus_scale_handle, 0)) pr_err("%s Unable to set low bandwidth\n", __func__); platform_set_drvdata(pdev, NULL); exit_kzfree: kzfree(pengine); return rc; }; static int _qcrypto_engine_in_use(struct crypto_engine *pengine) { struct crypto_priv *cp = pengine->pcp; if ((atomic_read(&pengine->req_count) > 0) || pengine->req_queue.qlen || cp->req_queue.qlen) return 1; return 0; } static void _qcrypto_do_suspending(struct crypto_engine *pengine) { struct crypto_priv *cp = pengine->pcp; if (cp->platform_support.bus_scale_table == NULL) return; del_timer_sync(&pengine->bw_reaper_timer); qcrypto_ce_set_bus(pengine, false); } static int _qcrypto_suspend(struct platform_device *pdev, pm_message_t state) { int ret = 0; struct crypto_engine *pengine; struct crypto_priv *cp; unsigned long flags; pengine = platform_get_drvdata(pdev); if (!pengine) return -EINVAL; /* * Check if this platform supports clock management in suspend/resume * If not, just simply return 0. */ cp = pengine->pcp; if (!cp->ce_support.clk_mgmt_sus_res) return 0; spin_lock_irqsave(&cp->lock, flags); switch (pengine->bw_state) { case BUS_NO_BANDWIDTH: if (pengine->high_bw_req == false) pengine->bw_state = BUS_SUSPENDED; else ret = -EBUSY; break; case BUS_HAS_BANDWIDTH: if (_qcrypto_engine_in_use(pengine)) { ret = -EBUSY; } else { pengine->bw_state = BUS_SUSPENDING; spin_unlock_irqrestore(&cp->lock, flags); _qcrypto_do_suspending(pengine); spin_lock_irqsave(&cp->lock, flags); pengine->bw_state = BUS_SUSPENDED; } break; case BUS_BANDWIDTH_RELEASING: case BUS_BANDWIDTH_ALLOCATING: case BUS_SUSPENDED: case BUS_SUSPENDING: default: ret = -EBUSY; break; } spin_unlock_irqrestore(&cp->lock, flags); if (ret) return ret; if (qce_pm_table.suspend) { qcrypto_ce_set_bus(pengine, true); qce_pm_table.suspend(pengine->qce); qcrypto_ce_set_bus(pengine, false); } return 0; } static int _qcrypto_resume(struct platform_device *pdev) { struct crypto_engine *pengine; struct crypto_priv *cp; unsigned long flags; int ret = 0; pengine = platform_get_drvdata(pdev); if (!pengine) return -EINVAL; cp = pengine->pcp; if (!cp->ce_support.clk_mgmt_sus_res) return 0; spin_lock_irqsave(&cp->lock, flags); if (pengine->bw_state == BUS_SUSPENDED) { spin_unlock_irqrestore(&cp->lock, flags); if (qce_pm_table.resume) { qcrypto_ce_set_bus(pengine, true); qce_pm_table.resume(pengine->qce); qcrypto_ce_set_bus(pengine, false); } spin_lock_irqsave(&cp->lock, flags); pengine->bw_state = BUS_NO_BANDWIDTH; pengine->active_seq++; pengine->check_flag = false; if (cp->req_queue.qlen || pengine->req_queue.qlen) { if (pengine->high_bw_req == false) { qcrypto_ce_bw_allocate_req(pengine); pengine->high_bw_req = true; } } } else ret = -EBUSY; spin_unlock_irqrestore(&cp->lock, flags); return ret; } static const struct of_device_id qcrypto_match[] = { { .compatible = "qcom,qcrypto", }, {} }; static struct platform_driver __qcrypto = { .probe = _qcrypto_probe, .remove = _qcrypto_remove, .suspend = _qcrypto_suspend, .resume = _qcrypto_resume, .driver = { .owner = THIS_MODULE, .name = "qcrypto", .of_match_table = qcrypto_match, }, }; static int _debug_qcrypto; static int _debug_stats_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t _debug_stats_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { int rc = -EINVAL; int qcrypto = *((int *) file->private_data); int len; len = _disp_stats(qcrypto); if (len <= count) rc = simple_read_from_buffer((void __user *) buf, len, ppos, (void *) _debug_read_buf, len); return rc; } static ssize_t _debug_stats_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { unsigned long flags; struct crypto_priv *cp = &qcrypto_dev; struct crypto_engine *pe; int i; memset((char *)&_qcrypto_stat, 0, sizeof(struct crypto_stat)); spin_lock_irqsave(&cp->lock, flags); list_for_each_entry(pe, &cp->engine_list, elist) { pe->total_req = 0; pe->err_req = 0; qce_clear_driver_stats(pe->qce); pe->max_req_used = 0; } cp->max_qlen = 0; cp->resp_start = 0; cp->resp_stop = 0; cp->no_avail = 0; cp->max_resp_qlen = 0; cp->queue_work_eng3 = 0; cp->queue_work_not_eng3 = 0; cp->queue_work_not_eng3_nz = 0; cp->max_reorder_cnt = 0; for (i = 0; i < MAX_SMP_CPU + 1; i++) cp->cpu_req[i] = 0; spin_unlock_irqrestore(&cp->lock, flags); return count; } static const struct file_operations _debug_stats_ops = { .open = _debug_stats_open, .read = _debug_stats_read, .write = _debug_stats_write, }; static int _qcrypto_debug_init(void) { int rc; char name[DEBUG_MAX_FNAME]; struct dentry *dent; _debug_dent = debugfs_create_dir("qcrypto", NULL); if (IS_ERR(_debug_dent)) { pr_debug("qcrypto debugfs_create_dir fail, error %ld\n", PTR_ERR(_debug_dent)); return PTR_ERR(_debug_dent); } snprintf(name, DEBUG_MAX_FNAME-1, "stats-%d", 1); _debug_qcrypto = 0; dent = debugfs_create_file(name, 0644, _debug_dent, &_debug_qcrypto, &_debug_stats_ops); if (dent == NULL) { pr_debug("qcrypto debugfs_create_file fail, error %ld\n", PTR_ERR(dent)); rc = PTR_ERR(dent); goto err; } return 0; err: debugfs_remove_recursive(_debug_dent); return rc; } static int __init _qcrypto_init(void) { struct crypto_priv *pcp = &qcrypto_dev; _qcrypto_debug_init(); INIT_LIST_HEAD(&pcp->alg_list); INIT_LIST_HEAD(&pcp->engine_list); init_llist_head(&pcp->ordered_resp_list); spin_lock_init(&pcp->lock); mutex_init(&pcp->engine_lock); pcp->resp_wq = alloc_workqueue("qcrypto_seq_response_wq", WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); if (!pcp->resp_wq) { pr_err("Error allocating workqueue\n"); return -ENOMEM; } INIT_WORK(&pcp->resp_work, seq_response); pcp->total_units = 0; pcp->platform_support.bus_scale_table = NULL; pcp->next_engine = NULL; pcp->scheduled_eng = NULL; pcp->ce_req_proc_sts = IN_PROGRESS; crypto_init_queue(&pcp->req_queue, MSM_QCRYPTO_REQ_QUEUE_LENGTH); return platform_driver_register(&__qcrypto); } static void __exit _qcrypto_exit(void) { pr_debug("%s Unregister QCRYPTO\n", __func__); debugfs_remove_recursive(_debug_dent); platform_driver_unregister(&__qcrypto); } module_init(_qcrypto_init); module_exit(_qcrypto_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("QTI Crypto driver");