In commit e6bde73b07 ("cpu-hotplug: return
better errno on cpu hotplug failure"), the cpu notifier can return an
encapsulated errno value.
This converts the cpu notifier to return an encapsulated errno value for
stop_machine().
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kernel/stop_machine.c: In function `cpu_stopper_thread':
kernel/stop_machine.c:265: warning: unused variable `ksym_buf'
ksym_buf[] is unused if WARN_ON() is a no-op.
Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Robin Holt tried to boot a 16TB system and found af_unix was overflowing
a 32bit value :
<quote>
We were seeing a failure which prevented boot. The kernel was incapable
of creating either a named pipe or unix domain socket. This comes down
to a common kernel function called unix_create1() which does:
atomic_inc(&unix_nr_socks);
if (atomic_read(&unix_nr_socks) > 2 * get_max_files())
goto out;
The function get_max_files() is a simple return of files_stat.max_files.
files_stat.max_files is a signed integer and is computed in
fs/file_table.c's files_init().
n = (mempages * (PAGE_SIZE / 1024)) / 10;
files_stat.max_files = n;
In our case, mempages (total_ram_pages) is approx 3,758,096,384
(0xe0000000). That leaves max_files at approximately 1,503,238,553.
This causes 2 * get_max_files() to integer overflow.
</quote>
Fix is to let /proc/sys/fs/file-nr & /proc/sys/fs/file-max use long
integers, and change af_unix to use an atomic_long_t instead of atomic_t.
get_max_files() is changed to return an unsigned long. get_nr_files() is
changed to return a long.
unix_nr_socks is changed from atomic_t to atomic_long_t, while not
strictly needed to address Robin problem.
Before patch (on a 64bit kernel) :
# echo 2147483648 >/proc/sys/fs/file-max
# cat /proc/sys/fs/file-max
-18446744071562067968
After patch:
# echo 2147483648 >/proc/sys/fs/file-max
# cat /proc/sys/fs/file-max
2147483648
# cat /proc/sys/fs/file-nr
704 0 2147483648
Reported-by: Robin Holt <holt@sgi.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: David Miller <davem@davemloft.net>
Reviewed-by: Robin Holt <holt@sgi.com>
Tested-by: Robin Holt <holt@sgi.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Silly though it is, completions and wait_queue_heads use foo_ONSTACK
(COMPLETION_INITIALIZER_ONSTACK, DECLARE_COMPLETION_ONSTACK,
__WAIT_QUEUE_HEAD_INIT_ONSTACK and DECLARE_WAIT_QUEUE_HEAD_ONSTACK) so I
guess workqueues should do the same thing.
s/INIT_WORK_ON_STACK/INIT_WORK_ONSTACK/
s/INIT_DELAYED_WORK_ON_STACK/INIT_DELAYED_WORK_ONSTACK/
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After all that's what they are intended for.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ensure kmap_atomic() usage is strictly nested
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's pointless to kill a task if another thread sharing its mm cannot be
killed to allow future memory freeing. A subsequent patch will prevent
kills in such cases, but first it's necessary to have a way to flag a task
that shares memory with an OOM_DISABLE task that doesn't incur an
additional tasklist scan, which would make select_bad_process() an O(n^2)
function.
This patch adds an atomic counter to struct mm_struct that follows how
many threads attached to it have an oom_score_adj of OOM_SCORE_ADJ_MIN.
They cannot be killed by the kernel, so their memory cannot be freed in
oom conditions.
This only requires task_lock() on the task that we're operating on, it
does not require mm->mmap_sem since task_lock() pins the mm and the
operation is atomic.
[rientjes@google.com: changelog and sys_unshare() code]
[rientjes@google.com: protect oom_disable_count with task_lock in fork]
[rientjes@google.com: use old_mm for oom_disable_count in exec]
Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocate space from the top of a region first, then work downward,
if an architecture desires this.
When we allocate space from a resource, we look for gaps between children
of the resource. Previously, we always looked at gaps from the bottom up.
For example, given this:
[mem 0xbff00000-0xf7ffffff] PCI Bus 0000:00
[mem 0xbff00000-0xbfffffff] gap -- available
[mem 0xc0000000-0xdfffffff] PCI Bus 0000:02
[mem 0xe0000000-0xf7ffffff] gap -- available
we attempted to allocate from the [mem 0xbff00000-0xbfffffff] gap first,
then the [mem 0xe0000000-0xf7ffffff] gap.
With this patch an architecture can choose to allocate from the top gap
[mem 0xe0000000-0xf7ffffff] first.
We can't do this across the board because iomem_resource.end is initialized
to 0xffffffff_ffffffff on 64-bit architectures, and most machines can't
address the entire 64-bit physical address space. Therefore, we only
allocate top-down if the arch requests it by clearing
"resource_alloc_from_bottom".
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
If tmp.start is near ~0, ALIGN(tmp.start) may overflow, which would
make us think there's more available space than there really is. We
would likely return something that conflicts with a previous resource,
which would cause a failure when allocate_resource() requests the newly-
allocated region.
Reference: https://bugzilla.redhat.com/show_bug.cgi?id=646027
Reported-by: Fabrice Bellet <fabrice@bellet.info>
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The alignment callback returns a proposed location, which may have been
adjusted to avoid ISA aliases or for other architecture-specific reasons.
We already had a check ("tmp.start < tmp.end") to make sure the callback
doesn't return an area that extends past the available area. This patch
reworks the check to make sure it doesn't return an area that extends
either below or above the available area.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This factors out the min/max clipping to simplify find_resource().
No functional change.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This removes a test from find_resource(), which is getting cluttered.
No functional change.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The nr_dentry stat is a globally touched cacheline and atomic operation
twice over the lifetime of a dentry. It is used for the benfit of userspace
only. Turn it into a per-cpu counter and always decrement it in d_free instead
of doing various batching operations to reduce lock hold times in the callers.
Based on an earlier patch from Nick Piggin <npiggin@suse.de>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The number of inodes allocated does not need to be tied to the
addition or removal of an inode to/from a list. If we are not tied
to a list lock, we could update the counters when inodes are
initialised or destroyed, but to do that we need to convert the
counters to be per-cpu (i.e. independent of a lock). This means that
we have the freedom to change the list/locking implementation
without needing to care about the counters.
Based on a patch originally from Eric Dumazet.
[AV: cleaned up a bit, fixed build breakage on weird configs
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Andrew,
Could you please review this patch, you probably are the right guy to
take it, because it crosses fs and net trees.
Note : /proc/sys/fs/file-nr is a read-only file, so this patch doesnt
depend on previous patch (sysctl: fix min/max handling in
__do_proc_doulongvec_minmax())
Thanks !
[PATCH V4] fs: allow for more than 2^31 files
Robin Holt tried to boot a 16TB system and found af_unix was overflowing
a 32bit value :
<quote>
We were seeing a failure which prevented boot. The kernel was incapable
of creating either a named pipe or unix domain socket. This comes down
to a common kernel function called unix_create1() which does:
atomic_inc(&unix_nr_socks);
if (atomic_read(&unix_nr_socks) > 2 * get_max_files())
goto out;
The function get_max_files() is a simple return of files_stat.max_files.
files_stat.max_files is a signed integer and is computed in
fs/file_table.c's files_init().
n = (mempages * (PAGE_SIZE / 1024)) / 10;
files_stat.max_files = n;
In our case, mempages (total_ram_pages) is approx 3,758,096,384
(0xe0000000). That leaves max_files at approximately 1,503,238,553.
This causes 2 * get_max_files() to integer overflow.
</quote>
Fix is to let /proc/sys/fs/file-nr & /proc/sys/fs/file-max use long
integers, and change af_unix to use an atomic_long_t instead of
atomic_t.
get_max_files() is changed to return an unsigned long.
get_nr_files() is changed to return a long.
unix_nr_socks is changed from atomic_t to atomic_long_t, while not
strictly needed to address Robin problem.
Before patch (on a 64bit kernel) :
# echo 2147483648 >/proc/sys/fs/file-max
# cat /proc/sys/fs/file-max
-18446744071562067968
After patch:
# echo 2147483648 >/proc/sys/fs/file-max
# cat /proc/sys/fs/file-max
2147483648
# cat /proc/sys/fs/file-nr
704 0 2147483648
Reported-by: Robin Holt <holt@sgi.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: David Miller <davem@davemloft.net>
Reviewed-by: Robin Holt <holt@sgi.com>
Tested-by: Robin Holt <holt@sgi.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In the MN10300 arch, we occasionally see an assertion being tripped in
alloc_cwqs() at the following line:
/* just in case, make sure it's actually aligned */
---> BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
return wq->cpu_wq.v ? 0 : -ENOMEM;
The values are:
wa->cpu_wq.v => 0x902776e0
align => 0x100
and align is calculated by the following:
const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
__alignof__(unsigned long long));
This is because the pointer in question (wq->cpu_wq.v) loses some of its
lower bits to control flags, and so the object it points to must be
sufficiently aligned to avoid the need to use those bits for pointing to
things.
Currently, 4 control bits and 4 colour bits are used in normal
circumstances, plus a debugging bit if debugging is set. This requires
the cpu_workqueue_struct struct to be at least 256 bytes aligned (or 512
bytes aligned with debugging).
PERCPU() alignment on MN13000, however, is only 32 bytes as set in
vmlinux.lds.S. So we set this to PAGE_SIZE (4096) to match most other
arches and stick a comment in alloc_cwqs() for anyone else who triggers
the assertion.
Reported-by: Akira Takeuchi <takeuchi.akr@jp.panasonic.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mark Salter <msalter@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove text_mutex locking in optimize_all_kprobes, because
this function doesn't modify text. It simply queues probes on
optimization list for kprobe_optimizer worker thread.
Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20101025131801.19160.70939.stgit@ltc236.sdl.hitachi.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove some sched_info_queue(), sched_info_dequeue() code comment.
We no longer belongs to the era of O(1) and we don't use active or expired
array anymore.
Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <AANLkTi=REu0WzOp5N=nVT1=ZJ=ZA+MZFV+4CHSJ3Q-Yv@mail.gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The kdb shell needs to enforce switching back to the original CPU that
took the exception before restoring normal kernel execution. Resuming
from a different CPU than what took the original exception will cause
problems with spin locks that are freed from the a different processor
than had taken the lock.
The special logic in dbg_cpu_switch() can go away entirely with
because the state of what cpus want to be masters or slaves will
remain unchanged between entry and exit of the debug_core exception
context.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
For quite some time there have been problems with memory barriers and
various races with NMI on multi processor systems using the kernel
debugger. The algorithm for entering the kernel debug core and
resuming kernel execution was racy and had several known edge case
problems with attempting to debug something on a heavily loaded system
using breakpoints that are hit repeatedly and quickly.
The prior "locking" design entry worked as follows:
* The atomic counter kgdb_active was used with atomic exchange in
order to elect a master cpu out of all the cpus that may have
taken a debug exception.
* The master cpu increments all elements of passive_cpu_wait[].
* The master cpu issues the round up cpus message.
* Each "slave cpu" that enters the debug core increments its own
element in cpu_in_kgdb[].
* Each "slave cpu" spins on passive_cpu_wait[] until it becomes 0.
* The master cpu debugs the system.
The new scheme removes the two arrays of atomic counters and replaces
them with 2 single counters. One counter is used to count the number
of cpus waiting to become a master cpu (because one or more hit an
exception). The second counter is use to indicate how many cpus have
entered as slave cpus.
The new entry logic works as follows:
* One or more cpus enters via kgdb_handle_exception() and increments
the masters_in_kgdb. Each cpu attempts to get the spin lock called
dbg_master_lock.
* The master cpu sets kgdb_active to the current cpu.
* The master cpu takes the spinlock dbg_slave_lock.
* The master cpu asks to round up all the other cpus.
* Each slave cpu that is not already in kgdb_handle_exception()
will enter and increment slaves_in_kgdb. Each slave will now spin
try_locking on dbg_slave_lock.
* The master cpu waits for the sum of masters_in_kgdb and slaves_in_kgdb
to be equal to the sum of the online cpus.
* The master cpu debugs the system.
In the new design the kgdb_active can only be changed while holding
dbg_master_lock. Stress testing has not turned up any further
entry/exit races that existed in the prior locking design. The prior
locking design suffered from atomic variables not being truly atomic
(in the capacity as used by kgdb) along with memory barrier races.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Acked-by: Dongdong Deng <dongdong.deng@windriver.com>
The slave cpus do not have the hw breakpoints disabled upon entry to
the debug_core and as a result could cause unrecoverable recursive
faults on badly placed breakpoints, or get out of sync with the arch
specific hw breakpoint operations.
This patch addresses the problem by invoking kgdb_disable_hw_debug()
earlier in kgdb_enter_cpu for each cpu that enters the debug core.
The hw breakpoint dis/enable flow should be:
master_debug_cpu slave_debug_cpu
\ /
kgdb_cpu_enter
|
kgdb_disable_hw_debug --> uninstall pre-enabled hw_breakpoint
|
do add/rm dis/enable operates to hw_breakpoints on master_debug_cpu..
|
correct_hw_break --> correct/install the enabled hw_breakpoint
|
leave_kgdb
Signed-off-by: Dongdong Deng <dongdong.deng@windriver.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Fix the following sparse warnings:
kdb_main.c:328:5: warning: symbol 'kdbgetu64arg' was not declared. Should it be static?
kgdboc.c:246:12: warning: symbol 'kgdboc_early_init' was not declared. Should it be static?
kgdb.c:652:26: warning: incorrect type in argument 1 (different address spaces)
kgdb.c:652:26: expected void const *ptr
kgdb.c:652:26: got struct perf_event *[noderef] <asn:3>*pev
The one in kgdb.c required the (void * __force) because of the return
code from register_wide_hw_breakpoint looking like:
return (void __percpu __force *)ERR_PTR(err);
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Nothing should try to use kdb_commands directly as sometimes it is
null. Instead, use the for_each_kdbcmd() iterator.
This particular problem dates back to the initial kdb merge (2.6.35),
but at that point nothing was dynamically unregistering commands from
the kdb shell.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Now that include/linux/kdb.h properly exports all the functions
required to dynamically add a kdb shell command, the reference to the
private kdb header can be removed.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
In order to allow kernel modules to dynamically add a command to the
kdb shell the kdb_register, kdb_register_repeat, kdb_unregister, and
kdb_printf need to be exported as GPL symbols.
Any kernel module that adds a dynamic kdb shell function should only
need to include linux/kdb.h.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
When returning from the kernel debugger reset the rcu jiffies_stall
value to prevent the rcu stall detector from sending NMI events which
invoke a stack dump for each cpu in the system.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Move the various clock and watch dog syncs to a single function in
advance of adding another sync for the rcu stall detector.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
The recent changes in the genirq core unearthed a bug in arch/um which
called enable_irq() before the interrupt was set up.
Warn and return instead of crashing the machine with a NULL pointer
dereference.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Weinberger <richard@nod.at>
This new version (see commit 8e5fc1a) is much simpler and ensures that
in case of error in group_sched_in() during event_sched_in(), the
events up to the failed event go through regular event_sched_out().
But the failed event and the remaining events in the group have their
timings adjusted as if they had also gone through event_sched_in() and
event_sched_out(). This ensures timing uniformity across all events in
a group. This also takes care of the tstamp_stopped problem in case
the group could never be scheduled. The tstamp_stopped is updated as
if the event had actually run.
With this patch, the following now reports correct time_enabled,
in case the NMI watchdog is active:
$ task -e unhalted_core_cycles,instructions_retired,baclears,baclears
noploop 1
noploop for 1 seconds
0 unhalted_core_cycles (100.00% scaling, ena=997,552,872, run=0)
0 instructions_retired (100.00% scaling, ena=997,552,872, run=0)
0 baclears (100.00% scaling, ena=997,552,872, run=0)
0 baclears (100.00% scaling, ena=997,552,872, run=0)
And the older test case also works:
$ task -einstructions_retired,baclears,baclears -e
unhalted_core_cycles,baclears,baclears sleep 5
1680885 instructions_retired (69.39% scaling, ena=950756, run=291006)
10735 baclears (69.39% scaling, ena=950756, run=291006)
10735 baclears (69.39% scaling, ena=950756, run=291006)
0 unhalted_core_cycles (100.00% scaling, ena=817932, run=0)
0 baclears (100.00% scaling, ena=817932, run=0)
0 baclears (100.00% scaling, ena=817932, run=0)
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4cbeeebc.8ee7d80a.5a28.0d5f@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch reverts commit 8e5fc1a (perf_events: Fix transaction
recovery in group_sched_in()) because it had one flaw in case the
group could never be scheduled. It would cause time_enabled to get
negative.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4cbeeeb7.0aefd80a.6e40.0e2f@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Dima noticed that we fail to correct the ->vruntime of sleeping tasks
when we move them between cgroups.
Reported-by: Dima Zavin <dima@android.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Mike Galbraith <efault@gmx.de>
LKML-Reference: <1287150604.29097.1513.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the addition of trace_softirq_raise() the softirq tracepoint got
even more convoluted. Why the tracepoints take two pointers to assign
an integer is beyond my comprehension.
But adding an extra case which treats the first pointer as an unsigned
long when the second pointer is NULL including the back and forth
type casting is just horrible.
Convert the softirq tracepoints to take a single unsigned int argument
for the softirq vector number and fix the call sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <alpine.LFD.2.00.1010191428560.6815@localhost6.localdomain6>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: mathieu.desnoyers@efficios.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
The tracing per_cpu buffers were limited to 999 CPUs for a mear
savings in stack space of a char array. Up the array to 30 characters
which is more than enough to hold a 64 bit number.
Reported-by: Robin Holt <holt@sgi.com>
Suggested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
All security modules shouldn't change sched_param parameter of
security_task_setscheduler(). This is not only meaningless, but also
make a harmful result if caller pass a static variable.
This patch remove policy and sched_param parameter from
security_task_setscheduler() becuase none of security module is
using it.
Cc: James Morris <jmorris@namei.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: James Morris <jmorris@namei.org>
With the binding of time extends to events we no longer need to use
the macro RB_TIMESTAMPS_PER_PAGE. Remove it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There's a condition to check if we should add a time extend or
not in the fast path. But this condition is racey (in the sense
that we can add a unnecessary time extend, but nothing that
can break anything). We later check if the time or event time
delta should be zero or have real data in it (not racey), making
this first check redundant.
This check may help save space once in a while, but really is
not worth the hassle to try to save some space that happens at
most 134 ms at a time.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When the time between two timestamps is greater than
2^27 nanosecs (~134 ms) a time extend event is added that extends
the time difference to 59 bits (~18 years). This is due to
events only having a 27 bit field to store time.
Currently this time extend is a separate event. We add it just before
the event data that is being written to the buffer. But before
the event data is committed, the event data can also be discarded (as
with the case of filters). But because the time extend has already been
committed, it will stay in the buffer.
If lots of events are being filtered and no event is being
written, then every 134ms a time extend can be added to the buffer
without any data attached. To keep from filling the entire buffer
with time extends, a time extend will never be the first event
in a page because the page timestamp can be used. Time extends can
only fill the rest of a page with some data at the beginning.
This patch binds the time extend with the data. The difference here
is that the time extend is not committed before the data is added.
Instead, when a time extend is needed, the space reserved on
the ring buffer is the time extend + the data event size. The
time extend is added to the first part of the reserved block and
the data is added to the second. The time extend event is passed
back to the reserver, but since the reserver also uses a function
to find the data portion of the reserved block, no changes to the
ring buffer interface need to be made.
When a commit is discarded, we now remove both the time extend and
the event. With this approach no more than one time extend can
be in the buffer in a row. Data must always follow a time extend.
Thanks to Mathieu Desnoyers for suggesting this idea.
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The delta between events is passed to the timestamp code by reference
and the timestamp code will reset the value. But it can be reset
from the caller. No need to pass it in by reference.
By changing the call to pass by value, lets gcc optimize the code
a bit more where it can store the delta in a register and not
worry about updating the reference.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The original code for the ring buffer had locations that modified
the timestamp and that change was used by the callers. Now,
the timestamp is not reused by the callers and there is no reason
to pass it by reference.
By changing the call to pass by value, lets gcc optimize the code
a bit more where it can store the timestamp in a register and not
worry about updating the reference.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Gcc inlines the slow path of the ring buffer write which can
hurt performance. This patch simply forces the slow path function
rb_move_tail() to always be a function.
The ring_buffer_benchmark module with reader_disabled=1 shows that
this patch changes the time to record an event from 135 ns to
132 ns. (3 ns or 2.22% improvement)
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function start_func_tracer() was incorrectly added in the
#ifdef CONFIG_FUNCTION_TRACER condition, but is still used even
when function tracing is not enabled.
The calls to register_ftrace_function() and register_ftrace_graph()
become nops (and their arguments are even ignored), thus there is
no reason to hide start_func_tracer() when function tracing is
not enabled.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
futex_wait() is leaking key references due to futex_wait_setup()
acquiring an additional reference via the queue_lock() routine. The
nested key ref-counting has been masking bugs and complicating code
analysis. queue_lock() is only called with a previously ref-counted
key, so remove the additional ref-counting from the queue_(un)lock()
functions.
Also futex_wait_requeue_pi() drops one key reference too many in
unqueue_me_pi(). Remove the key reference handling from
unqueue_me_pi(). This was paired with a queue_lock() in
futex_lock_pi(), so the count remains unchanged.
Document remaining nested key ref-counting sites.
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Reported-and-tested-by: Matthieu Fertré<matthieu.fertre@kerlabs.com>
Reported-by: Louis Rilling<louis.rilling@kerlabs.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <4CBB17A8.70401@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
According to Jens, this code does not need the BKL at all,
it is sufficiently serialized by bd_mutex.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
The big kernel lock is going away, so make sure
that if it is disabled by Kconfig, we do not
try to validate it, which would result in
compile errors.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>