@ -157,15 +157,7 @@ static inline void sched_info_reset_dequeued(struct task_struct *t)
}
/*
* Called when a process is dequeued from the active array and given
* the cpu . We should note that with the exception of interactive
* tasks , the expired queue will become the active queue after the active
* queue is empty , without explicitly dequeuing and requeuing tasks in the
* expired queue . ( Interactive tasks may be requeued directly to the
* active queue , thus delaying tasks in the expired queue from running ;
* see scheduler_tick ( ) ) .
*
* Though we are interested in knowing how long it was from the * first * time a
* We are interested in knowing how long it was from the * first * time a
* task was queued to the time that it finally hit a cpu , we call this routine
* from dequeue_task ( ) to account for possible rq - > clock skew across cpus . The
* delta taken on each cpu would annul the skew .
@ -203,16 +195,6 @@ static void sched_info_arrive(struct task_struct *t)
}
/*
* Called when a process is queued into either the active or expired
* array . The time is noted and later used to determine how long we
* had to wait for us to reach the cpu . Since the expired queue will
* become the active queue after active queue is empty , without dequeuing
* and requeuing any tasks , we are interested in queuing to either . It
* is unusual but not impossible for tasks to be dequeued and immediately
* requeued in the same or another array : this can happen in sched_yield ( ) ,
* set_user_nice ( ) , and even load_balance ( ) as it moves tasks from runqueue
* to runqueue .
*
* This function is only called from enqueue_task ( ) , but also only updates
* the timestamp if it is already not set . It ' s assumed that
* sched_info_dequeued ( ) will clear that stamp when appropriate .