You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/mmc/host/cmdq_hci-crypto.c

538 lines
14 KiB

/*
* Copyright 2020 Google LLC
*
* Copyright (c) 2020 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* drivers/mmc/host/cmdq-crypto.c - Qualcomm Technologies, Inc.
*
* Original source is taken from:
* https://android.googlesource.com/kernel/common/+/4bac1109a10c55d49c0aa4f7ebdc4bc53cc368e8
* The driver caters to crypto engine support for UFS controllers.
* The crypto engine programming sequence, HW functionality and register
* offset is almost same in UFS and eMMC controllers.
*/
#include <crypto/algapi.h>
#include "cmdq_hci-crypto.h"
#include "../core/queue.h"
static bool cmdq_cap_idx_valid(struct cmdq_host *host, unsigned int cap_idx)
{
return cap_idx < host->crypto_capabilities.num_crypto_cap;
}
static u8 get_data_unit_size_mask(unsigned int data_unit_size)
{
if (data_unit_size < 512 || data_unit_size > 65536 ||
!is_power_of_2(data_unit_size))
return 0;
return data_unit_size / 512;
}
static size_t get_keysize_bytes(enum cmdq_crypto_key_size size)
{
switch (size) {
case CMDQ_CRYPTO_KEY_SIZE_128:
return 16;
case CMDQ_CRYPTO_KEY_SIZE_192:
return 24;
case CMDQ_CRYPTO_KEY_SIZE_256:
return 32;
case CMDQ_CRYPTO_KEY_SIZE_512:
return 64;
default:
return 0;
}
}
int cmdq_crypto_cap_find(void *host_p, enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
struct cmdq_host *host = host_p;
enum cmdq_crypto_alg cmdq_alg;
u8 data_unit_mask;
int cap_idx;
enum cmdq_crypto_key_size cmdq_key_size;
union cmdq_crypto_cap_entry *ccap_array = host->crypto_cap_array;
if (!cmdq_host_is_crypto_supported(host))
return -EINVAL;
switch (crypto_mode) {
case BLK_ENCRYPTION_MODE_AES_256_XTS:
cmdq_alg = CMDQ_CRYPTO_ALG_AES_XTS;
cmdq_key_size = CMDQ_CRYPTO_KEY_SIZE_256;
break;
default:
return -EINVAL;
}
data_unit_mask = get_data_unit_size_mask(data_unit_size);
for (cap_idx = 0; cap_idx < host->crypto_capabilities.num_crypto_cap;
cap_idx++) {
if (ccap_array[cap_idx].algorithm_id == cmdq_alg &&
(ccap_array[cap_idx].sdus_mask & data_unit_mask) &&
ccap_array[cap_idx].key_size == cmdq_key_size)
return cap_idx;
}
return -EINVAL;
}
EXPORT_SYMBOL(cmdq_crypto_cap_find);
/**
* cmdq_crypto_cfg_entry_write_key - Write a key into a crypto_cfg_entry
*
* Writes the key with the appropriate format - for AES_XTS,
* the first half of the key is copied as is, the second half is
* copied with an offset halfway into the cfg->crypto_key array.
* For the other supported crypto algs, the key is just copied.
*
* @cfg: The crypto config to write to
* @key: The key to write
* @cap: The crypto capability (which specifies the crypto alg and key size)
*
* Returns 0 on success, or -EINVAL
*/
static int cmdq_crypto_cfg_entry_write_key(union cmdq_crypto_cfg_entry *cfg,
const u8 *key,
union cmdq_crypto_cap_entry cap)
{
size_t key_size_bytes = get_keysize_bytes(cap.key_size);
if (key_size_bytes == 0)
return -EINVAL;
switch (cap.algorithm_id) {
case CMDQ_CRYPTO_ALG_AES_XTS:
key_size_bytes *= 2;
if (key_size_bytes > CMDQ_CRYPTO_KEY_MAX_SIZE)
return -EINVAL;
memcpy(cfg->crypto_key, key, key_size_bytes/2);
memcpy(cfg->crypto_key + CMDQ_CRYPTO_KEY_MAX_SIZE/2,
key + key_size_bytes/2, key_size_bytes/2);
return 0;
case CMDQ_CRYPTO_ALG_BITLOCKER_AES_CBC:
/* fall through */
case CMDQ_CRYPTO_ALG_AES_ECB:
/* fall through */
case CMDQ_CRYPTO_ALG_ESSIV_AES_CBC:
memcpy(cfg->crypto_key, key, key_size_bytes);
return 0;
}
return -EINVAL;
}
static void cmdq_program_key(struct cmdq_host *host,
const union cmdq_crypto_cfg_entry *cfg,
int slot)
{
int i;
u32 slot_offset = host->crypto_cfg_register + slot * sizeof(*cfg);
if (host->crypto_vops && host->crypto_vops->program_key)
host->crypto_vops->program_key(host, cfg, slot);
/* Clear the dword 16 */
cmdq_writel(host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
/* Ensure that CFGE is cleared before programming the key */
wmb();
for (i = 0; i < 16; i++) {
cmdq_writel(host, le32_to_cpu(cfg->reg_val[i]),
slot_offset + i * sizeof(cfg->reg_val[0]));
/* Spec says each dword in key must be written sequentially */
wmb();
}
/* Write dword 17 */
cmdq_writel(host, le32_to_cpu(cfg->reg_val[17]),
slot_offset + 17 * sizeof(cfg->reg_val[0]));
/* Dword 16 must be written last */
wmb();
/* Write dword 16 */
cmdq_writel(host, le32_to_cpu(cfg->reg_val[16]),
slot_offset + 16 * sizeof(cfg->reg_val[0]));
/*Ensure that dword 16 is written */
wmb();
}
static void cmdq_crypto_clear_keyslot(struct cmdq_host *host, int slot)
{
union cmdq_crypto_cfg_entry cfg = { {0} };
cmdq_program_key(host, &cfg, slot);
}
static void cmdq_crypto_clear_all_keyslots(struct cmdq_host *host)
{
int slot;
for (slot = 0; slot < cmdq_num_keyslots(host); slot++)
cmdq_crypto_clear_keyslot(host, slot);
}
static int cmdq_crypto_keyslot_program(struct keyslot_manager *ksm,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct cmdq_host *host = keyslot_manager_private(ksm);
int err = 0;
u8 data_unit_mask;
union cmdq_crypto_cfg_entry cfg;
int cap_idx;
cap_idx = cmdq_crypto_cap_find(host, key->crypto_mode,
key->data_unit_size);
if (!cmdq_is_crypto_enabled(host) ||
!cmdq_keyslot_valid(host, slot) ||
!cmdq_cap_idx_valid(host, cap_idx))
return -EINVAL;
data_unit_mask = get_data_unit_size_mask(key->data_unit_size);
if (!(data_unit_mask & host->crypto_cap_array[cap_idx].sdus_mask))
return -EINVAL;
memset(&cfg, 0, sizeof(cfg));
cfg.data_unit_size = data_unit_mask;
cfg.crypto_cap_idx = cap_idx;
cfg.config_enable |= CMDQ_CRYPTO_CONFIGURATION_ENABLE;
err = cmdq_crypto_cfg_entry_write_key(&cfg, key->raw,
host->crypto_cap_array[cap_idx]);
if (err)
return err;
cmdq_program_key(host, &cfg, slot);
memzero_explicit(&cfg, sizeof(cfg));
return 0;
}
static int cmdq_crypto_keyslot_evict(struct keyslot_manager *ksm,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct cmdq_host *host = keyslot_manager_private(ksm);
if (!cmdq_is_crypto_enabled(host) ||
!cmdq_keyslot_valid(host, slot))
return -EINVAL;
/*
* Clear the crypto cfg on the device. Clearing CFGE
* might not be sufficient, so just clear the entire cfg.
*/
cmdq_crypto_clear_keyslot(host, slot);
return 0;
}
/* Functions implementing eMMC v5.2 specification behaviour */
void cmdq_crypto_enable_spec(struct cmdq_host *host)
{
if (!cmdq_host_is_crypto_supported(host))
return;
host->caps |= CMDQ_CAP_CRYPTO_SUPPORT;
}
EXPORT_SYMBOL(cmdq_crypto_enable_spec);
void cmdq_crypto_disable_spec(struct cmdq_host *host)
{
host->caps &= ~CMDQ_CAP_CRYPTO_SUPPORT;
}
EXPORT_SYMBOL(cmdq_crypto_disable_spec);
static const struct keyslot_mgmt_ll_ops cmdq_ksm_ops = {
.keyslot_program = cmdq_crypto_keyslot_program,
.keyslot_evict = cmdq_crypto_keyslot_evict,
};
enum blk_crypto_mode_num cmdq_crypto_blk_crypto_mode_num_for_alg_dusize(
enum cmdq_crypto_alg cmdq_crypto_alg,
enum cmdq_crypto_key_size key_size)
{
/*
* Currently the only mode that eMMC and blk-crypto both support.
*/
if (cmdq_crypto_alg == CMDQ_CRYPTO_ALG_AES_XTS &&
key_size == CMDQ_CRYPTO_KEY_SIZE_256)
return BLK_ENCRYPTION_MODE_AES_256_XTS;
return BLK_ENCRYPTION_MODE_INVALID;
}
/**
* cmdq_host_init_crypto - Read crypto capabilities, init crypto fields in host
* @host: Per adapter instance
*
* Returns 0 on success. Returns -ENODEV if such capabilities don't exist, and
* -ENOMEM upon OOM.
*/
int cmdq_host_init_crypto_spec(struct cmdq_host *host,
const struct keyslot_mgmt_ll_ops *ksm_ops)
{
int cap_idx = 0;
int err = 0;
unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX];
enum blk_crypto_mode_num blk_mode_num;
/* Default to disabling crypto */
host->caps &= ~CMDQ_CAP_CRYPTO_SUPPORT;
if (!(cmdq_readl(host, CQCAP) & CQ_CAP_CS)) {
pr_err("%s no crypto capability\n", __func__);
err = -ENODEV;
goto out;
}
/*
* Crypto Capabilities should never be 0, because the
* config_array_ptr > 04h. So we use a 0 value to indicate that
* crypto init failed, and can't be enabled.
*/
host->crypto_capabilities.reg_val = cmdq_readl(host, CQ_CCAP);
host->crypto_cfg_register =
(u32)host->crypto_capabilities.config_array_ptr * 0x100;
host->crypto_cap_array =
devm_kcalloc(mmc_dev(host->mmc),
host->crypto_capabilities.num_crypto_cap,
sizeof(host->crypto_cap_array[0]), GFP_KERNEL);
if (!host->crypto_cap_array) {
err = -ENOMEM;
pr_err("%s no memory cap\n", __func__);
goto out;
}
memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported));
/*
* Store all the capabilities now so that we don't need to repeatedly
* access the device each time we want to know its capabilities
*/
for (cap_idx = 0; cap_idx < host->crypto_capabilities.num_crypto_cap;
cap_idx++) {
host->crypto_cap_array[cap_idx].reg_val =
cpu_to_le32(cmdq_readl(host,
CQ_CRYPTOCAP +
cap_idx * sizeof(__le32)));
blk_mode_num = cmdq_crypto_blk_crypto_mode_num_for_alg_dusize(
host->crypto_cap_array[cap_idx].algorithm_id,
host->crypto_cap_array[cap_idx].key_size);
if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
continue;
crypto_modes_supported[blk_mode_num] |=
host->crypto_cap_array[cap_idx].sdus_mask * 512;
}
cmdq_crypto_clear_all_keyslots(host);
ANDROID: ufs, block: fix crypto power management and move into block layer The call to pm_runtime_get_sync() in ufshcd_program_key() can deadlock because it waits for the UFS controller to be resumed, but it can itself be reached while resuming the UFS controller via: - ufshcd_runtime_resume() - ufshcd_resume() - ufshcd_reset_and_restore() - ufshcd_host_reset_and_restore() - ufshcd_hba_enable() - ufshcd_hba_execute_hce() - ufshcd_hba_start() - ufshcd_crypto_enable() - keyslot_manager_reprogram_all_keys() - ufshcd_crypto_keyslot_program() - ufshcd_program_key() But pm_runtime_get_sync() *is* needed when evicting a key. Also, on pre-4.20 kernels it's needed when programming a keyslot for a bio since the block layer used to resume the device in a different place. Thus, it's hard for drivers to know what to do in .keyslot_program() and .keyslot_evict(). In old kernels it may even be impossible unless we were to pass more information down from the keyslot_manager. There's also another possible deadlock: keyslot programming and eviction take ksm->lock for write and then resume the device, which may result in ksm->lock being taken again via the above call stack. To fix this, we should resume the device before taking ksm->lock. Fix these problems by moving to a better design where the block layer (namely, the keyslot manager) handles runtime power management instead of drivers. This is analogous to the block layer's existing runtime power management support (blk-pm), which handles resuming devices when bios are submitted to them so that drivers don't need to handle it. Test: Tested on coral with: echo 5 > /sys/bus/platform/devices/1d84000.ufshc/rpm_lvl sleep 30 touch /data && sync # hangs before this fix Also verified via kvm-xfstests that blk-crypto-fallback continues to work both with and without CONFIG_PM=y. Bug: 137270441 Bug: 149368295 Change-Id: I6bc9fb81854afe7edf490d71796ee68a61f7cbc8 Signed-off-by: Eric Biggers <ebiggers@google.com> Git-Commit: 8d97219e60d4b11b9592b178627a557a0683a841 Git-Repo: https://android.googlesource.com/kernel/common [neersoni@codeaurora.org]: fixed compilation issues. Signed-off-by: Neeraj Soni <neersoni@codeaurora.org>
5 years ago
host->ksm = keyslot_manager_create(host->mmc->parent,
cmdq_num_keyslots(host), ksm_ops,
BLK_CRYPTO_FEATURE_STANDARD_KEYS,
crypto_modes_supported, host);
if (!host->ksm) {
err = -ENOMEM;
goto out_free_caps;
}
/*
* In case host controller supports cryptographic operations
* then, it uses 128bit task descriptor. Upper 64 bits of task
* descriptor would be used to pass crypto specific informaton.
*/
host->caps |= CMDQ_TASK_DESC_SZ_128;
return 0;
out_free_caps:
devm_kfree(mmc_dev(host->mmc), host->crypto_cap_array);
out:
// TODO: print error?
/* Indicate that init failed by setting crypto_capabilities to 0 */
host->crypto_capabilities.reg_val = 0;
return err;
}
EXPORT_SYMBOL(cmdq_host_init_crypto_spec);
void cmdq_crypto_setup_rq_keyslot_manager_spec(struct cmdq_host *host,
struct request_queue *q)
{
if (!cmdq_host_is_crypto_supported(host) || !q)
return;
q->ksm = host->ksm;
}
EXPORT_SYMBOL(cmdq_crypto_setup_rq_keyslot_manager_spec);
void cmdq_crypto_destroy_rq_keyslot_manager_spec(struct cmdq_host *host,
struct request_queue *q)
{
keyslot_manager_destroy(host->ksm);
}
EXPORT_SYMBOL(cmdq_crypto_destroy_rq_keyslot_manager_spec);
int cmdq_prepare_crypto_desc_spec(struct cmdq_host *host,
struct mmc_request *mrq,
u64 *ice_ctx)
{
struct bio_crypt_ctx *bc;
struct request *req = mrq->req;
if (!req->bio ||
!bio_crypt_should_process(req)) {
*ice_ctx = 0;
return 0;
}
if (WARN_ON(!cmdq_is_crypto_enabled(host))) {
/*
* Upper layer asked us to do inline encryption
* but that isn't enabled, so we fail this request.
*/
return -EINVAL;
}
bc = req->bio->bi_crypt_context;
if (!cmdq_keyslot_valid(host, bc->bc_keyslot))
return -EINVAL;
if (ice_ctx) {
*ice_ctx = DATA_UNIT_NUM(bc->bc_dun[0]) |
CRYPTO_CONFIG_INDEX(bc->bc_keyslot) |
CRYPTO_ENABLE(true);
}
return 0;
}
EXPORT_SYMBOL(cmdq_prepare_crypto_desc_spec);
/* Crypto Variant Ops Support */
void cmdq_crypto_enable(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->enable)
return host->crypto_vops->enable(host);
return cmdq_crypto_enable_spec(host);
}
void cmdq_crypto_disable(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->disable)
return host->crypto_vops->disable(host);
return cmdq_crypto_disable_spec(host);
}
int cmdq_host_init_crypto(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->host_init_crypto)
return host->crypto_vops->host_init_crypto(host,
&cmdq_ksm_ops);
return cmdq_host_init_crypto_spec(host, &cmdq_ksm_ops);
}
void cmdq_crypto_setup_rq_keyslot_manager(struct cmdq_host *host,
struct request_queue *q)
{
if (host->crypto_vops && host->crypto_vops->setup_rq_keyslot_manager)
return host->crypto_vops->setup_rq_keyslot_manager(host, q);
return cmdq_crypto_setup_rq_keyslot_manager_spec(host, q);
}
void cmdq_crypto_destroy_rq_keyslot_manager(struct cmdq_host *host,
struct request_queue *q)
{
if (host->crypto_vops && host->crypto_vops->destroy_rq_keyslot_manager)
return host->crypto_vops->destroy_rq_keyslot_manager(host, q);
return cmdq_crypto_destroy_rq_keyslot_manager_spec(host, q);
}
int cmdq_crypto_get_ctx(struct cmdq_host *host,
struct mmc_request *mrq,
u64 *ice_ctx)
{
if (host->crypto_vops && host->crypto_vops->prepare_crypto_desc)
return host->crypto_vops->prepare_crypto_desc(host, mrq,
ice_ctx);
return cmdq_prepare_crypto_desc_spec(host, mrq, ice_ctx);
}
int cmdq_complete_crypto_desc(struct cmdq_host *host,
struct mmc_request *mrq,
u64 *ice_ctx)
{
if (host->crypto_vops && host->crypto_vops->complete_crypto_desc)
return host->crypto_vops->complete_crypto_desc(host, mrq,
ice_ctx);
return 0;
}
void cmdq_crypto_debug(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->debug)
host->crypto_vops->debug(host);
}
void cmdq_crypto_set_vops(struct cmdq_host *host,
struct cmdq_host_crypto_variant_ops *crypto_vops)
{
if (host)
host->crypto_vops = crypto_vops;
}
int cmdq_crypto_suspend(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->suspend)
return host->crypto_vops->suspend(host);
return 0;
}
int cmdq_crypto_resume(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->resume)
return host->crypto_vops->resume(host);
return 0;
}
int cmdq_crypto_reset(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->reset)
return host->crypto_vops->reset(host);
return 0;
}
int cmdq_crypto_recovery_finish(struct cmdq_host *host)
{
if (host->crypto_vops && host->crypto_vops->recovery_finish)
return host->crypto_vops->recovery_finish(host);
/* Reset/Recovery might clear all keys, so reprogram all the keys. */
keyslot_manager_reprogram_all_keys(host->ksm);
return 0;
}