You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
884 lines
21 KiB
884 lines
21 KiB
/*
|
|
* SMP boot-related support
|
|
*
|
|
* Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Copyright (C) 2001, 2004-2005 Intel Corp
|
|
* Rohit Seth <rohit.seth@intel.com>
|
|
* Suresh Siddha <suresh.b.siddha@intel.com>
|
|
* Gordon Jin <gordon.jin@intel.com>
|
|
* Ashok Raj <ashok.raj@intel.com>
|
|
*
|
|
* 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
|
|
* 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
|
|
* 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
|
|
* smp_boot_cpus()/smp_commence() is replaced by
|
|
* smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
|
|
* 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
|
|
* 04/12/26 Jin Gordon <gordon.jin@intel.com>
|
|
* 04/12/26 Rohit Seth <rohit.seth@intel.com>
|
|
* Add multi-threading and multi-core detection
|
|
* 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
|
|
* Setup cpu_sibling_map and cpu_core_map
|
|
*/
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/current.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/mca.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/system.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/unistd.h>
|
|
|
|
#define SMP_DEBUG 0
|
|
|
|
#if SMP_DEBUG
|
|
#define Dprintk(x...) printk(x)
|
|
#else
|
|
#define Dprintk(x...)
|
|
#endif
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* Store all idle threads, this can be reused instead of creating
|
|
* a new thread. Also avoids complicated thread destroy functionality
|
|
* for idle threads.
|
|
*/
|
|
struct task_struct *idle_thread_array[NR_CPUS];
|
|
|
|
/*
|
|
* Global array allocated for NR_CPUS at boot time
|
|
*/
|
|
struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
|
|
|
|
/*
|
|
* start_ap in head.S uses this to store current booting cpu
|
|
* info.
|
|
*/
|
|
struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
|
|
|
|
#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
|
|
|
|
#define get_idle_for_cpu(x) (idle_thread_array[(x)])
|
|
#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
|
|
|
|
#else
|
|
|
|
#define get_idle_for_cpu(x) (NULL)
|
|
#define set_idle_for_cpu(x,p)
|
|
#define set_brendez_area(x)
|
|
#endif
|
|
|
|
|
|
/*
|
|
* ITC synchronization related stuff:
|
|
*/
|
|
#define MASTER 0
|
|
#define SLAVE (SMP_CACHE_BYTES/8)
|
|
|
|
#define NUM_ROUNDS 64 /* magic value */
|
|
#define NUM_ITERS 5 /* likewise */
|
|
|
|
static DEFINE_SPINLOCK(itc_sync_lock);
|
|
static volatile unsigned long go[SLAVE + 1];
|
|
|
|
#define DEBUG_ITC_SYNC 0
|
|
|
|
extern void __devinit calibrate_delay (void);
|
|
extern void start_ap (void);
|
|
extern unsigned long ia64_iobase;
|
|
|
|
task_t *task_for_booting_cpu;
|
|
|
|
/*
|
|
* State for each CPU
|
|
*/
|
|
DEFINE_PER_CPU(int, cpu_state);
|
|
|
|
/* Bitmasks of currently online, and possible CPUs */
|
|
cpumask_t cpu_online_map;
|
|
EXPORT_SYMBOL(cpu_online_map);
|
|
cpumask_t cpu_possible_map;
|
|
EXPORT_SYMBOL(cpu_possible_map);
|
|
|
|
cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
|
|
cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
|
|
int smp_num_siblings = 1;
|
|
int smp_num_cpucores = 1;
|
|
|
|
/* which logical CPU number maps to which CPU (physical APIC ID) */
|
|
volatile int ia64_cpu_to_sapicid[NR_CPUS];
|
|
EXPORT_SYMBOL(ia64_cpu_to_sapicid);
|
|
|
|
static volatile cpumask_t cpu_callin_map;
|
|
|
|
struct smp_boot_data smp_boot_data __initdata;
|
|
|
|
unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
|
|
|
|
char __initdata no_int_routing;
|
|
|
|
unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
|
|
|
|
static int __init
|
|
nointroute (char *str)
|
|
{
|
|
no_int_routing = 1;
|
|
printk ("no_int_routing on\n");
|
|
return 1;
|
|
}
|
|
|
|
__setup("nointroute", nointroute);
|
|
|
|
void
|
|
sync_master (void *arg)
|
|
{
|
|
unsigned long flags, i;
|
|
|
|
go[MASTER] = 0;
|
|
|
|
local_irq_save(flags);
|
|
{
|
|
for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
|
|
while (!go[MASTER])
|
|
cpu_relax();
|
|
go[MASTER] = 0;
|
|
go[SLAVE] = ia64_get_itc();
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Return the number of cycles by which our itc differs from the itc on the master
|
|
* (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
|
|
* negative that it is behind.
|
|
*/
|
|
static inline long
|
|
get_delta (long *rt, long *master)
|
|
{
|
|
unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
|
|
unsigned long tcenter, t0, t1, tm;
|
|
long i;
|
|
|
|
for (i = 0; i < NUM_ITERS; ++i) {
|
|
t0 = ia64_get_itc();
|
|
go[MASTER] = 1;
|
|
while (!(tm = go[SLAVE]))
|
|
cpu_relax();
|
|
go[SLAVE] = 0;
|
|
t1 = ia64_get_itc();
|
|
|
|
if (t1 - t0 < best_t1 - best_t0)
|
|
best_t0 = t0, best_t1 = t1, best_tm = tm;
|
|
}
|
|
|
|
*rt = best_t1 - best_t0;
|
|
*master = best_tm - best_t0;
|
|
|
|
/* average best_t0 and best_t1 without overflow: */
|
|
tcenter = (best_t0/2 + best_t1/2);
|
|
if (best_t0 % 2 + best_t1 % 2 == 2)
|
|
++tcenter;
|
|
return tcenter - best_tm;
|
|
}
|
|
|
|
/*
|
|
* Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
|
|
* (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
|
|
* unaccounted-for errors (such as getting a machine check in the middle of a calibration
|
|
* step). The basic idea is for the slave to ask the master what itc value it has and to
|
|
* read its own itc before and after the master responds. Each iteration gives us three
|
|
* timestamps:
|
|
*
|
|
* slave master
|
|
*
|
|
* t0 ---\
|
|
* ---\
|
|
* --->
|
|
* tm
|
|
* /---
|
|
* /---
|
|
* t1 <---
|
|
*
|
|
*
|
|
* The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
|
|
* and t1. If we achieve this, the clocks are synchronized provided the interconnect
|
|
* between the slave and the master is symmetric. Even if the interconnect were
|
|
* asymmetric, we would still know that the synchronization error is smaller than the
|
|
* roundtrip latency (t0 - t1).
|
|
*
|
|
* When the interconnect is quiet and symmetric, this lets us synchronize the itc to
|
|
* within one or two cycles. However, we can only *guarantee* that the synchronization is
|
|
* accurate to within a round-trip time, which is typically in the range of several
|
|
* hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
|
|
* almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
|
|
* than half a micro second or so.
|
|
*/
|
|
void
|
|
ia64_sync_itc (unsigned int master)
|
|
{
|
|
long i, delta, adj, adjust_latency = 0, done = 0;
|
|
unsigned long flags, rt, master_time_stamp, bound;
|
|
#if DEBUG_ITC_SYNC
|
|
struct {
|
|
long rt; /* roundtrip time */
|
|
long master; /* master's timestamp */
|
|
long diff; /* difference between midpoint and master's timestamp */
|
|
long lat; /* estimate of itc adjustment latency */
|
|
} t[NUM_ROUNDS];
|
|
#endif
|
|
|
|
/*
|
|
* Make sure local timer ticks are disabled while we sync. If
|
|
* they were enabled, we'd have to worry about nasty issues
|
|
* like setting the ITC ahead of (or a long time before) the
|
|
* next scheduled tick.
|
|
*/
|
|
BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
|
|
|
|
go[MASTER] = 1;
|
|
|
|
if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
|
|
printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
|
|
return;
|
|
}
|
|
|
|
while (go[MASTER])
|
|
cpu_relax(); /* wait for master to be ready */
|
|
|
|
spin_lock_irqsave(&itc_sync_lock, flags);
|
|
{
|
|
for (i = 0; i < NUM_ROUNDS; ++i) {
|
|
delta = get_delta(&rt, &master_time_stamp);
|
|
if (delta == 0) {
|
|
done = 1; /* let's lock on to this... */
|
|
bound = rt;
|
|
}
|
|
|
|
if (!done) {
|
|
if (i > 0) {
|
|
adjust_latency += -delta;
|
|
adj = -delta + adjust_latency/4;
|
|
} else
|
|
adj = -delta;
|
|
|
|
ia64_set_itc(ia64_get_itc() + adj);
|
|
}
|
|
#if DEBUG_ITC_SYNC
|
|
t[i].rt = rt;
|
|
t[i].master = master_time_stamp;
|
|
t[i].diff = delta;
|
|
t[i].lat = adjust_latency/4;
|
|
#endif
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&itc_sync_lock, flags);
|
|
|
|
#if DEBUG_ITC_SYNC
|
|
for (i = 0; i < NUM_ROUNDS; ++i)
|
|
printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
|
|
t[i].rt, t[i].master, t[i].diff, t[i].lat);
|
|
#endif
|
|
|
|
printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
|
|
"maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
|
|
}
|
|
|
|
/*
|
|
* Ideally sets up per-cpu profiling hooks. Doesn't do much now...
|
|
*/
|
|
static inline void __devinit
|
|
smp_setup_percpu_timer (void)
|
|
{
|
|
}
|
|
|
|
static void __devinit
|
|
smp_callin (void)
|
|
{
|
|
int cpuid, phys_id;
|
|
extern void ia64_init_itm(void);
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
extern void pfm_init_percpu(void);
|
|
#endif
|
|
|
|
cpuid = smp_processor_id();
|
|
phys_id = hard_smp_processor_id();
|
|
|
|
if (cpu_online(cpuid)) {
|
|
printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
|
|
phys_id, cpuid);
|
|
BUG();
|
|
}
|
|
|
|
lock_ipi_calllock();
|
|
cpu_set(cpuid, cpu_online_map);
|
|
unlock_ipi_calllock();
|
|
per_cpu(cpu_state, cpuid) = CPU_ONLINE;
|
|
|
|
smp_setup_percpu_timer();
|
|
|
|
ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
pfm_init_percpu();
|
|
#endif
|
|
|
|
local_irq_enable();
|
|
|
|
if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
|
|
/*
|
|
* Synchronize the ITC with the BP. Need to do this after irqs are
|
|
* enabled because ia64_sync_itc() calls smp_call_function_single(), which
|
|
* calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
|
|
* local_bh_enable(), which bugs out if irqs are not enabled...
|
|
*/
|
|
Dprintk("Going to syncup ITC with BP.\n");
|
|
ia64_sync_itc(0);
|
|
}
|
|
|
|
/*
|
|
* Get our bogomips.
|
|
*/
|
|
ia64_init_itm();
|
|
calibrate_delay();
|
|
local_cpu_data->loops_per_jiffy = loops_per_jiffy;
|
|
|
|
#ifdef CONFIG_IA32_SUPPORT
|
|
ia32_gdt_init();
|
|
#endif
|
|
|
|
/*
|
|
* Allow the master to continue.
|
|
*/
|
|
cpu_set(cpuid, cpu_callin_map);
|
|
Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
|
|
}
|
|
|
|
|
|
/*
|
|
* Activate a secondary processor. head.S calls this.
|
|
*/
|
|
int __devinit
|
|
start_secondary (void *unused)
|
|
{
|
|
/* Early console may use I/O ports */
|
|
ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
|
|
Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
|
|
efi_map_pal_code();
|
|
cpu_init();
|
|
preempt_disable();
|
|
smp_callin();
|
|
|
|
cpu_idle();
|
|
return 0;
|
|
}
|
|
|
|
struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
struct create_idle {
|
|
struct task_struct *idle;
|
|
struct completion done;
|
|
int cpu;
|
|
};
|
|
|
|
void
|
|
do_fork_idle(void *_c_idle)
|
|
{
|
|
struct create_idle *c_idle = _c_idle;
|
|
|
|
c_idle->idle = fork_idle(c_idle->cpu);
|
|
complete(&c_idle->done);
|
|
}
|
|
|
|
static int __devinit
|
|
do_boot_cpu (int sapicid, int cpu)
|
|
{
|
|
int timeout;
|
|
struct create_idle c_idle = {
|
|
.cpu = cpu,
|
|
.done = COMPLETION_INITIALIZER(c_idle.done),
|
|
};
|
|
DECLARE_WORK(work, do_fork_idle, &c_idle);
|
|
|
|
c_idle.idle = get_idle_for_cpu(cpu);
|
|
if (c_idle.idle) {
|
|
init_idle(c_idle.idle, cpu);
|
|
goto do_rest;
|
|
}
|
|
|
|
/*
|
|
* We can't use kernel_thread since we must avoid to reschedule the child.
|
|
*/
|
|
if (!keventd_up() || current_is_keventd())
|
|
work.func(work.data);
|
|
else {
|
|
schedule_work(&work);
|
|
wait_for_completion(&c_idle.done);
|
|
}
|
|
|
|
if (IS_ERR(c_idle.idle))
|
|
panic("failed fork for CPU %d", cpu);
|
|
|
|
set_idle_for_cpu(cpu, c_idle.idle);
|
|
|
|
do_rest:
|
|
task_for_booting_cpu = c_idle.idle;
|
|
|
|
Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
|
|
|
|
set_brendez_area(cpu);
|
|
platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
|
|
|
|
/*
|
|
* Wait 10s total for the AP to start
|
|
*/
|
|
Dprintk("Waiting on callin_map ...");
|
|
for (timeout = 0; timeout < 100000; timeout++) {
|
|
if (cpu_isset(cpu, cpu_callin_map))
|
|
break; /* It has booted */
|
|
udelay(100);
|
|
}
|
|
Dprintk("\n");
|
|
|
|
if (!cpu_isset(cpu, cpu_callin_map)) {
|
|
printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
|
|
ia64_cpu_to_sapicid[cpu] = -1;
|
|
cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init
|
|
decay (char *str)
|
|
{
|
|
int ticks;
|
|
get_option (&str, &ticks);
|
|
return 1;
|
|
}
|
|
|
|
__setup("decay=", decay);
|
|
|
|
/*
|
|
* Initialize the logical CPU number to SAPICID mapping
|
|
*/
|
|
void __init
|
|
smp_build_cpu_map (void)
|
|
{
|
|
int sapicid, cpu, i;
|
|
int boot_cpu_id = hard_smp_processor_id();
|
|
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
ia64_cpu_to_sapicid[cpu] = -1;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
cpu_set(cpu, cpu_possible_map);
|
|
#endif
|
|
}
|
|
|
|
ia64_cpu_to_sapicid[0] = boot_cpu_id;
|
|
cpus_clear(cpu_present_map);
|
|
cpu_set(0, cpu_present_map);
|
|
cpu_set(0, cpu_possible_map);
|
|
for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
|
|
sapicid = smp_boot_data.cpu_phys_id[i];
|
|
if (sapicid == boot_cpu_id)
|
|
continue;
|
|
cpu_set(cpu, cpu_present_map);
|
|
cpu_set(cpu, cpu_possible_map);
|
|
ia64_cpu_to_sapicid[cpu] = sapicid;
|
|
cpu++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cycle through the APs sending Wakeup IPIs to boot each.
|
|
*/
|
|
void __init
|
|
smp_prepare_cpus (unsigned int max_cpus)
|
|
{
|
|
int boot_cpu_id = hard_smp_processor_id();
|
|
|
|
/*
|
|
* Initialize the per-CPU profiling counter/multiplier
|
|
*/
|
|
|
|
smp_setup_percpu_timer();
|
|
|
|
/*
|
|
* We have the boot CPU online for sure.
|
|
*/
|
|
cpu_set(0, cpu_online_map);
|
|
cpu_set(0, cpu_callin_map);
|
|
|
|
local_cpu_data->loops_per_jiffy = loops_per_jiffy;
|
|
ia64_cpu_to_sapicid[0] = boot_cpu_id;
|
|
|
|
printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
|
|
|
|
current_thread_info()->cpu = 0;
|
|
|
|
/*
|
|
* If SMP should be disabled, then really disable it!
|
|
*/
|
|
if (!max_cpus) {
|
|
printk(KERN_INFO "SMP mode deactivated.\n");
|
|
cpus_clear(cpu_online_map);
|
|
cpus_clear(cpu_present_map);
|
|
cpus_clear(cpu_possible_map);
|
|
cpu_set(0, cpu_online_map);
|
|
cpu_set(0, cpu_present_map);
|
|
cpu_set(0, cpu_possible_map);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void __devinit smp_prepare_boot_cpu(void)
|
|
{
|
|
cpu_set(smp_processor_id(), cpu_online_map);
|
|
cpu_set(smp_processor_id(), cpu_callin_map);
|
|
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
|
|
}
|
|
|
|
/*
|
|
* mt_info[] is a temporary store for all info returned by
|
|
* PAL_LOGICAL_TO_PHYSICAL, to be copied into cpuinfo_ia64 when the
|
|
* specific cpu comes.
|
|
*/
|
|
static struct {
|
|
__u32 socket_id;
|
|
__u16 core_id;
|
|
__u16 thread_id;
|
|
__u16 proc_fixed_addr;
|
|
__u8 valid;
|
|
} mt_info[NR_CPUS] __devinitdata;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static inline void
|
|
remove_from_mtinfo(int cpu)
|
|
{
|
|
int i;
|
|
|
|
for_each_cpu(i)
|
|
if (mt_info[i].valid && mt_info[i].socket_id ==
|
|
cpu_data(cpu)->socket_id)
|
|
mt_info[i].valid = 0;
|
|
}
|
|
|
|
static inline void
|
|
clear_cpu_sibling_map(int cpu)
|
|
{
|
|
int i;
|
|
|
|
for_each_cpu_mask(i, cpu_sibling_map[cpu])
|
|
cpu_clear(cpu, cpu_sibling_map[i]);
|
|
for_each_cpu_mask(i, cpu_core_map[cpu])
|
|
cpu_clear(cpu, cpu_core_map[i]);
|
|
|
|
cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
|
|
}
|
|
|
|
static void
|
|
remove_siblinginfo(int cpu)
|
|
{
|
|
int last = 0;
|
|
|
|
if (cpu_data(cpu)->threads_per_core == 1 &&
|
|
cpu_data(cpu)->cores_per_socket == 1) {
|
|
cpu_clear(cpu, cpu_core_map[cpu]);
|
|
cpu_clear(cpu, cpu_sibling_map[cpu]);
|
|
return;
|
|
}
|
|
|
|
last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
|
|
|
|
/* remove it from all sibling map's */
|
|
clear_cpu_sibling_map(cpu);
|
|
|
|
/* if this cpu is the last in the core group, remove all its info
|
|
* from mt_info structure
|
|
*/
|
|
if (last)
|
|
remove_from_mtinfo(cpu);
|
|
}
|
|
|
|
extern void fixup_irqs(void);
|
|
/* must be called with cpucontrol mutex held */
|
|
int __cpu_disable(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/*
|
|
* dont permit boot processor for now
|
|
*/
|
|
if (cpu == 0)
|
|
return -EBUSY;
|
|
|
|
remove_siblinginfo(cpu);
|
|
cpu_clear(cpu, cpu_online_map);
|
|
fixup_irqs();
|
|
local_flush_tlb_all();
|
|
cpu_clear(cpu, cpu_callin_map);
|
|
return 0;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
/* They ack this in play_dead by setting CPU_DEAD */
|
|
if (per_cpu(cpu_state, cpu) == CPU_DEAD)
|
|
{
|
|
printk ("CPU %d is now offline\n", cpu);
|
|
return;
|
|
}
|
|
msleep(100);
|
|
}
|
|
printk(KERN_ERR "CPU %u didn't die...\n", cpu);
|
|
}
|
|
#else /* !CONFIG_HOTPLUG_CPU */
|
|
int __cpu_disable(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
/* We said "no" in __cpu_disable */
|
|
BUG();
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
void
|
|
smp_cpus_done (unsigned int dummy)
|
|
{
|
|
int cpu;
|
|
unsigned long bogosum = 0;
|
|
|
|
/*
|
|
* Allow the user to impress friends.
|
|
*/
|
|
|
|
for_each_online_cpu(cpu) {
|
|
bogosum += cpu_data(cpu)->loops_per_jiffy;
|
|
}
|
|
|
|
printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
|
|
(int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
|
|
}
|
|
|
|
static inline void __devinit
|
|
set_cpu_sibling_map(int cpu)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_cpu(i) {
|
|
if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
|
|
cpu_set(i, cpu_core_map[cpu]);
|
|
cpu_set(cpu, cpu_core_map[i]);
|
|
if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
|
|
cpu_set(i, cpu_sibling_map[cpu]);
|
|
cpu_set(cpu, cpu_sibling_map[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int __devinit
|
|
__cpu_up (unsigned int cpu)
|
|
{
|
|
int ret;
|
|
int sapicid;
|
|
|
|
sapicid = ia64_cpu_to_sapicid[cpu];
|
|
if (sapicid == -1)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Already booted cpu? not valid anymore since we dont
|
|
* do idle loop tightspin anymore.
|
|
*/
|
|
if (cpu_isset(cpu, cpu_callin_map))
|
|
return -EINVAL;
|
|
|
|
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
|
|
/* Processor goes to start_secondary(), sets online flag */
|
|
ret = do_boot_cpu(sapicid, cpu);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (cpu_data(cpu)->threads_per_core == 1 &&
|
|
cpu_data(cpu)->cores_per_socket == 1) {
|
|
cpu_set(cpu, cpu_sibling_map[cpu]);
|
|
cpu_set(cpu, cpu_core_map[cpu]);
|
|
return 0;
|
|
}
|
|
|
|
set_cpu_sibling_map(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Assume that CPU's have been discovered by some platform-dependent interface. For
|
|
* SoftSDV/Lion, that would be ACPI.
|
|
*
|
|
* Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
|
|
*/
|
|
void __init
|
|
init_smp_config(void)
|
|
{
|
|
struct fptr {
|
|
unsigned long fp;
|
|
unsigned long gp;
|
|
} *ap_startup;
|
|
long sal_ret;
|
|
|
|
/* Tell SAL where to drop the AP's. */
|
|
ap_startup = (struct fptr *) start_ap;
|
|
sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
|
|
ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
|
|
if (sal_ret < 0)
|
|
printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
|
|
ia64_sal_strerror(sal_ret));
|
|
}
|
|
|
|
static inline int __devinit
|
|
check_for_mtinfo_index(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_cpu(i)
|
|
if (!mt_info[i].valid)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Search the mt_info to find out if this socket's cid/tid information is
|
|
* cached or not. If the socket exists, fill in the core_id and thread_id
|
|
* in cpuinfo
|
|
*/
|
|
static int __devinit
|
|
check_for_new_socket(__u16 logical_address, struct cpuinfo_ia64 *c)
|
|
{
|
|
int i;
|
|
__u32 sid = c->socket_id;
|
|
|
|
for_each_cpu(i) {
|
|
if (mt_info[i].valid && mt_info[i].proc_fixed_addr == logical_address
|
|
&& mt_info[i].socket_id == sid) {
|
|
c->core_id = mt_info[i].core_id;
|
|
c->thread_id = mt_info[i].thread_id;
|
|
return 1; /* not a new socket */
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* identify_siblings(cpu) gets called from identify_cpu. This populates the
|
|
* information related to logical execution units in per_cpu_data structure.
|
|
*/
|
|
void __devinit
|
|
identify_siblings(struct cpuinfo_ia64 *c)
|
|
{
|
|
s64 status;
|
|
u16 pltid;
|
|
u64 proc_fixed_addr;
|
|
int count, i;
|
|
pal_logical_to_physical_t info;
|
|
|
|
if (smp_num_cpucores == 1 && smp_num_siblings == 1)
|
|
return;
|
|
|
|
if ((status = ia64_pal_logical_to_phys(0, &info)) != PAL_STATUS_SUCCESS) {
|
|
printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
|
|
status);
|
|
return;
|
|
}
|
|
if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
|
|
printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
|
|
return;
|
|
}
|
|
if ((status = ia64_pal_fixed_addr(&proc_fixed_addr)) != PAL_STATUS_SUCCESS) {
|
|
printk(KERN_ERR "ia64_pal_fixed_addr failed with %ld\n", status);
|
|
return;
|
|
}
|
|
|
|
c->socket_id = (pltid << 8) | info.overview_ppid;
|
|
c->cores_per_socket = info.overview_cpp;
|
|
c->threads_per_core = info.overview_tpc;
|
|
count = c->num_log = info.overview_num_log;
|
|
|
|
/* If the thread and core id information is already cached, then
|
|
* we will simply update cpu_info and return. Otherwise, we will
|
|
* do the PAL calls and cache core and thread id's of all the siblings.
|
|
*/
|
|
if (check_for_new_socket(proc_fixed_addr, c))
|
|
return;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
int index;
|
|
|
|
if (i && (status = ia64_pal_logical_to_phys(i, &info))
|
|
!= PAL_STATUS_SUCCESS) {
|
|
printk(KERN_ERR "ia64_pal_logical_to_phys failed"
|
|
" with %ld\n", status);
|
|
return;
|
|
}
|
|
if (info.log2_la == proc_fixed_addr) {
|
|
c->core_id = info.log1_cid;
|
|
c->thread_id = info.log1_tid;
|
|
}
|
|
|
|
index = check_for_mtinfo_index();
|
|
/* We will not do the mt_info caching optimization in this case.
|
|
*/
|
|
if (index < 0)
|
|
continue;
|
|
|
|
mt_info[index].valid = 1;
|
|
mt_info[index].socket_id = c->socket_id;
|
|
mt_info[index].core_id = info.log1_cid;
|
|
mt_info[index].thread_id = info.log1_tid;
|
|
mt_info[index].proc_fixed_addr = info.log2_la;
|
|
}
|
|
}
|
|
|