You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1357 lines
35 KiB
1357 lines
35 KiB
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* irixelf.c: Code to load IRIX ELF executables conforming to the MIPS ABI.
|
|
* Based off of work by Eric Youngdale.
|
|
*
|
|
* Copyright (C) 1993 - 1994 Eric Youngdale <ericy@cais.com>
|
|
* Copyright (C) 1996 - 2004 David S. Miller <dm@engr.sgi.com>
|
|
* Copyright (C) 2004 - 2005 Steven J. Hill <sjhill@realitydiluted.com>
|
|
*/
|
|
#undef DEBUG
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/a.out.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/string.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/smp_lock.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/namei.h>
|
|
#include <asm/prctl.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#define DLINFO_ITEMS 12
|
|
|
|
#include <linux/elf.h>
|
|
|
|
static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs);
|
|
static int load_irix_library(struct file *);
|
|
static int irix_core_dump(long signr, struct pt_regs * regs,
|
|
struct file *file);
|
|
|
|
static struct linux_binfmt irix_format = {
|
|
NULL, THIS_MODULE, load_irix_binary, load_irix_library,
|
|
irix_core_dump, PAGE_SIZE
|
|
};
|
|
|
|
/* Debugging routines. */
|
|
static char *get_elf_p_type(Elf32_Word p_type)
|
|
{
|
|
#ifdef DEBUG
|
|
switch (p_type) {
|
|
case PT_NULL:
|
|
return "PT_NULL";
|
|
break;
|
|
|
|
case PT_LOAD:
|
|
return "PT_LOAD";
|
|
break;
|
|
|
|
case PT_DYNAMIC:
|
|
return "PT_DYNAMIC";
|
|
break;
|
|
|
|
case PT_INTERP:
|
|
return "PT_INTERP";
|
|
break;
|
|
|
|
case PT_NOTE:
|
|
return "PT_NOTE";
|
|
break;
|
|
|
|
case PT_SHLIB:
|
|
return "PT_SHLIB";
|
|
break;
|
|
|
|
case PT_PHDR:
|
|
return "PT_PHDR";
|
|
break;
|
|
|
|
case PT_LOPROC:
|
|
return "PT_LOPROC/REGINFO";
|
|
break;
|
|
|
|
case PT_HIPROC:
|
|
return "PT_HIPROC";
|
|
break;
|
|
|
|
default:
|
|
return "PT_BOGUS";
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void print_elfhdr(struct elfhdr *ehp)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("ELFHDR: e_ident<");
|
|
for (i = 0; i < (EI_NIDENT - 1); i++)
|
|
pr_debug("%x ", ehp->e_ident[i]);
|
|
pr_debug("%x>\n", ehp->e_ident[i]);
|
|
pr_debug(" e_type[%04x] e_machine[%04x] e_version[%08lx]\n",
|
|
(unsigned short) ehp->e_type, (unsigned short) ehp->e_machine,
|
|
(unsigned long) ehp->e_version);
|
|
pr_debug(" e_entry[%08lx] e_phoff[%08lx] e_shoff[%08lx] "
|
|
"e_flags[%08lx]\n",
|
|
(unsigned long) ehp->e_entry, (unsigned long) ehp->e_phoff,
|
|
(unsigned long) ehp->e_shoff, (unsigned long) ehp->e_flags);
|
|
pr_debug(" e_ehsize[%04x] e_phentsize[%04x] e_phnum[%04x]\n",
|
|
(unsigned short) ehp->e_ehsize,
|
|
(unsigned short) ehp->e_phentsize,
|
|
(unsigned short) ehp->e_phnum);
|
|
pr_debug(" e_shentsize[%04x] e_shnum[%04x] e_shstrndx[%04x]\n",
|
|
(unsigned short) ehp->e_shentsize,
|
|
(unsigned short) ehp->e_shnum,
|
|
(unsigned short) ehp->e_shstrndx);
|
|
}
|
|
|
|
static void print_phdr(int i, struct elf_phdr *ep)
|
|
{
|
|
pr_debug("PHDR[%d]: p_type[%s] p_offset[%08lx] p_vaddr[%08lx] "
|
|
"p_paddr[%08lx]\n", i, get_elf_p_type(ep->p_type),
|
|
(unsigned long) ep->p_offset, (unsigned long) ep->p_vaddr,
|
|
(unsigned long) ep->p_paddr);
|
|
pr_debug(" p_filesz[%08lx] p_memsz[%08lx] p_flags[%08lx] "
|
|
"p_align[%08lx]\n", (unsigned long) ep->p_filesz,
|
|
(unsigned long) ep->p_memsz, (unsigned long) ep->p_flags,
|
|
(unsigned long) ep->p_align);
|
|
}
|
|
|
|
static void dump_phdrs(struct elf_phdr *ep, int pnum)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < pnum; i++, ep++) {
|
|
if ((ep->p_type == PT_LOAD) ||
|
|
(ep->p_type == PT_INTERP) ||
|
|
(ep->p_type == PT_PHDR))
|
|
print_phdr(i, ep);
|
|
}
|
|
}
|
|
|
|
static void set_brk(unsigned long start, unsigned long end)
|
|
{
|
|
start = PAGE_ALIGN(start);
|
|
end = PAGE_ALIGN(end);
|
|
if (end <= start)
|
|
return;
|
|
down_write(¤t->mm->mmap_sem);
|
|
do_brk(start, end - start);
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
|
|
/* We need to explicitly zero any fractional pages
|
|
* after the data section (i.e. bss). This would
|
|
* contain the junk from the file that should not
|
|
* be in memory.
|
|
*/
|
|
static void padzero(unsigned long elf_bss)
|
|
{
|
|
unsigned long nbyte;
|
|
|
|
nbyte = elf_bss & (PAGE_SIZE-1);
|
|
if (nbyte) {
|
|
nbyte = PAGE_SIZE - nbyte;
|
|
clear_user((void __user *) elf_bss, nbyte);
|
|
}
|
|
}
|
|
|
|
static unsigned long * create_irix_tables(char * p, int argc, int envc,
|
|
struct elfhdr * exec, unsigned int load_addr,
|
|
unsigned int interp_load_addr, struct pt_regs *regs,
|
|
struct elf_phdr *ephdr)
|
|
{
|
|
elf_addr_t *argv;
|
|
elf_addr_t *envp;
|
|
elf_addr_t *sp, *csp;
|
|
|
|
pr_debug("create_irix_tables: p[%p] argc[%d] envc[%d] "
|
|
"load_addr[%08x] interp_load_addr[%08x]\n",
|
|
p, argc, envc, load_addr, interp_load_addr);
|
|
|
|
sp = (elf_addr_t *) (~15UL & (unsigned long) p);
|
|
csp = sp;
|
|
csp -= exec ? DLINFO_ITEMS*2 : 2;
|
|
csp -= envc+1;
|
|
csp -= argc+1;
|
|
csp -= 1; /* argc itself */
|
|
if ((unsigned long)csp & 15UL) {
|
|
sp -= (16UL - ((unsigned long)csp & 15UL)) / sizeof(*sp);
|
|
}
|
|
|
|
/*
|
|
* Put the ELF interpreter info on the stack
|
|
*/
|
|
#define NEW_AUX_ENT(nr, id, val) \
|
|
__put_user ((id), sp+(nr*2)); \
|
|
__put_user ((val), sp+(nr*2+1)); \
|
|
|
|
sp -= 2;
|
|
NEW_AUX_ENT(0, AT_NULL, 0);
|
|
|
|
if (exec) {
|
|
sp -= 11*2;
|
|
|
|
NEW_AUX_ENT (0, AT_PHDR, load_addr + exec->e_phoff);
|
|
NEW_AUX_ENT (1, AT_PHENT, sizeof (struct elf_phdr));
|
|
NEW_AUX_ENT (2, AT_PHNUM, exec->e_phnum);
|
|
NEW_AUX_ENT (3, AT_PAGESZ, ELF_EXEC_PAGESIZE);
|
|
NEW_AUX_ENT (4, AT_BASE, interp_load_addr);
|
|
NEW_AUX_ENT (5, AT_FLAGS, 0);
|
|
NEW_AUX_ENT (6, AT_ENTRY, (elf_addr_t) exec->e_entry);
|
|
NEW_AUX_ENT (7, AT_UID, (elf_addr_t) current->uid);
|
|
NEW_AUX_ENT (8, AT_EUID, (elf_addr_t) current->euid);
|
|
NEW_AUX_ENT (9, AT_GID, (elf_addr_t) current->gid);
|
|
NEW_AUX_ENT (10, AT_EGID, (elf_addr_t) current->egid);
|
|
}
|
|
#undef NEW_AUX_ENT
|
|
|
|
sp -= envc+1;
|
|
envp = sp;
|
|
sp -= argc+1;
|
|
argv = sp;
|
|
|
|
__put_user((elf_addr_t)argc,--sp);
|
|
current->mm->arg_start = (unsigned long) p;
|
|
while (argc-->0) {
|
|
__put_user((unsigned long)p,argv++);
|
|
p += strlen_user(p);
|
|
}
|
|
__put_user((unsigned long) NULL, argv);
|
|
current->mm->arg_end = current->mm->env_start = (unsigned long) p;
|
|
while (envc-->0) {
|
|
__put_user((unsigned long)p,envp++);
|
|
p += strlen_user(p);
|
|
}
|
|
__put_user((unsigned long) NULL, envp);
|
|
current->mm->env_end = (unsigned long) p;
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* This is much more generalized than the library routine read function,
|
|
* so we keep this separate. Technically the library read function
|
|
* is only provided so that we can read a.out libraries that have
|
|
* an ELF header.
|
|
*/
|
|
static unsigned int load_irix_interp(struct elfhdr * interp_elf_ex,
|
|
struct file * interpreter,
|
|
unsigned int *interp_load_addr)
|
|
{
|
|
struct elf_phdr *elf_phdata = NULL;
|
|
struct elf_phdr *eppnt;
|
|
unsigned int len;
|
|
unsigned int load_addr;
|
|
int elf_bss;
|
|
int retval;
|
|
unsigned int last_bss;
|
|
int error;
|
|
int i;
|
|
unsigned int k;
|
|
|
|
elf_bss = 0;
|
|
last_bss = 0;
|
|
error = load_addr = 0;
|
|
|
|
print_elfhdr(interp_elf_ex);
|
|
|
|
/* First of all, some simple consistency checks */
|
|
if ((interp_elf_ex->e_type != ET_EXEC &&
|
|
interp_elf_ex->e_type != ET_DYN) ||
|
|
!interpreter->f_op->mmap) {
|
|
printk("IRIX interp has bad e_type %d\n", interp_elf_ex->e_type);
|
|
return 0xffffffff;
|
|
}
|
|
|
|
/* Now read in all of the header information */
|
|
if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > PAGE_SIZE) {
|
|
printk("IRIX interp header bigger than a page (%d)\n",
|
|
(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum));
|
|
return 0xffffffff;
|
|
}
|
|
|
|
elf_phdata = kmalloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum,
|
|
GFP_KERNEL);
|
|
|
|
if (!elf_phdata) {
|
|
printk("Cannot kmalloc phdata for IRIX interp.\n");
|
|
return 0xffffffff;
|
|
}
|
|
|
|
/* If the size of this structure has changed, then punt, since
|
|
* we will be doing the wrong thing.
|
|
*/
|
|
if (interp_elf_ex->e_phentsize != 32) {
|
|
printk("IRIX interp e_phentsize == %d != 32 ",
|
|
interp_elf_ex->e_phentsize);
|
|
kfree(elf_phdata);
|
|
return 0xffffffff;
|
|
}
|
|
|
|
retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
|
|
(char *) elf_phdata,
|
|
sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
|
|
|
|
dump_phdrs(elf_phdata, interp_elf_ex->e_phnum);
|
|
|
|
eppnt = elf_phdata;
|
|
for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
|
|
if (eppnt->p_type == PT_LOAD) {
|
|
int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
|
|
int elf_prot = 0;
|
|
unsigned long vaddr = 0;
|
|
if (eppnt->p_flags & PF_R)
|
|
elf_prot = PROT_READ;
|
|
if (eppnt->p_flags & PF_W)
|
|
elf_prot |= PROT_WRITE;
|
|
if (eppnt->p_flags & PF_X)
|
|
elf_prot |= PROT_EXEC;
|
|
elf_type |= MAP_FIXED;
|
|
vaddr = eppnt->p_vaddr;
|
|
|
|
pr_debug("INTERP do_mmap"
|
|
"(%p, %08lx, %08lx, %08lx, %08lx, %08lx) ",
|
|
interpreter, vaddr,
|
|
(unsigned long)
|
|
(eppnt->p_filesz + (eppnt->p_vaddr & 0xfff)),
|
|
(unsigned long)
|
|
elf_prot, (unsigned long) elf_type,
|
|
(unsigned long)
|
|
(eppnt->p_offset & 0xfffff000));
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
error = do_mmap(interpreter, vaddr,
|
|
eppnt->p_filesz + (eppnt->p_vaddr & 0xfff),
|
|
elf_prot, elf_type,
|
|
eppnt->p_offset & 0xfffff000);
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
if (error < 0 && error > -1024) {
|
|
printk("Aieee IRIX interp mmap error=%d\n",
|
|
error);
|
|
break; /* Real error */
|
|
}
|
|
pr_debug("error=%08lx ", (unsigned long) error);
|
|
if (!load_addr && interp_elf_ex->e_type == ET_DYN) {
|
|
load_addr = error;
|
|
pr_debug("load_addr = error ");
|
|
}
|
|
|
|
/*
|
|
* Find the end of the file mapping for this phdr, and
|
|
* keep track of the largest address we see for this.
|
|
*/
|
|
k = eppnt->p_vaddr + eppnt->p_filesz;
|
|
if (k > elf_bss)
|
|
elf_bss = k;
|
|
|
|
/* Do the same thing for the memory mapping - between
|
|
* elf_bss and last_bss is the bss section.
|
|
*/
|
|
k = eppnt->p_memsz + eppnt->p_vaddr;
|
|
if (k > last_bss)
|
|
last_bss = k;
|
|
pr_debug("\n");
|
|
}
|
|
}
|
|
|
|
/* Now use mmap to map the library into memory. */
|
|
if (error < 0 && error > -1024) {
|
|
pr_debug("got error %d\n", error);
|
|
kfree(elf_phdata);
|
|
return 0xffffffff;
|
|
}
|
|
|
|
/* Now fill out the bss section. First pad the last page up
|
|
* to the page boundary, and then perform a mmap to make sure
|
|
* that there are zero-mapped pages up to and including the
|
|
* last bss page.
|
|
*/
|
|
pr_debug("padzero(%08lx) ", (unsigned long) (elf_bss));
|
|
padzero(elf_bss);
|
|
len = (elf_bss + 0xfff) & 0xfffff000; /* What we have mapped so far */
|
|
|
|
pr_debug("last_bss[%08lx] len[%08lx]\n", (unsigned long) last_bss,
|
|
(unsigned long) len);
|
|
|
|
/* Map the last of the bss segment */
|
|
if (last_bss > len) {
|
|
down_write(¤t->mm->mmap_sem);
|
|
do_brk(len, (last_bss - len));
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
kfree(elf_phdata);
|
|
|
|
*interp_load_addr = load_addr;
|
|
return ((unsigned int) interp_elf_ex->e_entry);
|
|
}
|
|
|
|
/* Check sanity of IRIX elf executable header. */
|
|
static int verify_binary(struct elfhdr *ehp, struct linux_binprm *bprm)
|
|
{
|
|
if (memcmp(ehp->e_ident, ELFMAG, SELFMAG) != 0)
|
|
return -ENOEXEC;
|
|
|
|
/* First of all, some simple consistency checks */
|
|
if ((ehp->e_type != ET_EXEC && ehp->e_type != ET_DYN) ||
|
|
!bprm->file->f_op->mmap) {
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* XXX Don't support N32 or 64bit binaries yet because they can
|
|
* XXX and do execute 64 bit instructions and expect all registers
|
|
* XXX to be 64 bit as well. We need to make the kernel save
|
|
* XXX all registers as 64bits on cpu's capable of this at
|
|
* XXX exception time plus frob the XTLB exception vector.
|
|
*/
|
|
if ((ehp->e_flags & EF_MIPS_ABI2))
|
|
return -ENOEXEC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is where the detailed check is performed. Irix binaries
|
|
* use interpreters with 'libc.so' in the name, so this function
|
|
* can differentiate between Linux and Irix binaries.
|
|
*/
|
|
static inline int look_for_irix_interpreter(char **name,
|
|
struct file **interpreter,
|
|
struct elfhdr *interp_elf_ex,
|
|
struct elf_phdr *epp,
|
|
struct linux_binprm *bprm, int pnum)
|
|
{
|
|
int i;
|
|
int retval = -EINVAL;
|
|
struct file *file = NULL;
|
|
|
|
*name = NULL;
|
|
for (i = 0; i < pnum; i++, epp++) {
|
|
if (epp->p_type != PT_INTERP)
|
|
continue;
|
|
|
|
/* It is illegal to have two interpreters for one executable. */
|
|
if (*name != NULL)
|
|
goto out;
|
|
|
|
*name = kmalloc(epp->p_filesz + strlen(IRIX_EMUL), GFP_KERNEL);
|
|
if (!*name)
|
|
return -ENOMEM;
|
|
|
|
strcpy(*name, IRIX_EMUL);
|
|
retval = kernel_read(bprm->file, epp->p_offset, (*name + 16),
|
|
epp->p_filesz);
|
|
if (retval < 0)
|
|
goto out;
|
|
|
|
file = open_exec(*name);
|
|
if (IS_ERR(file)) {
|
|
retval = PTR_ERR(file);
|
|
goto out;
|
|
}
|
|
retval = kernel_read(file, 0, bprm->buf, 128);
|
|
if (retval < 0)
|
|
goto dput_and_out;
|
|
|
|
*interp_elf_ex = *(struct elfhdr *) bprm->buf;
|
|
}
|
|
*interpreter = file;
|
|
return 0;
|
|
|
|
dput_and_out:
|
|
fput(file);
|
|
out:
|
|
kfree(*name);
|
|
return retval;
|
|
}
|
|
|
|
static inline int verify_irix_interpreter(struct elfhdr *ihp)
|
|
{
|
|
if (memcmp(ihp->e_ident, ELFMAG, SELFMAG) != 0)
|
|
return -ELIBBAD;
|
|
return 0;
|
|
}
|
|
|
|
#define EXEC_MAP_FLAGS (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE)
|
|
|
|
static inline void map_executable(struct file *fp, struct elf_phdr *epp, int pnum,
|
|
unsigned int *estack, unsigned int *laddr,
|
|
unsigned int *scode, unsigned int *ebss,
|
|
unsigned int *ecode, unsigned int *edata,
|
|
unsigned int *ebrk)
|
|
{
|
|
unsigned int tmp;
|
|
int i, prot;
|
|
|
|
for (i = 0; i < pnum; i++, epp++) {
|
|
if (epp->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
/* Map it. */
|
|
prot = (epp->p_flags & PF_R) ? PROT_READ : 0;
|
|
prot |= (epp->p_flags & PF_W) ? PROT_WRITE : 0;
|
|
prot |= (epp->p_flags & PF_X) ? PROT_EXEC : 0;
|
|
down_write(¤t->mm->mmap_sem);
|
|
(void) do_mmap(fp, (epp->p_vaddr & 0xfffff000),
|
|
(epp->p_filesz + (epp->p_vaddr & 0xfff)),
|
|
prot, EXEC_MAP_FLAGS,
|
|
(epp->p_offset & 0xfffff000));
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
/* Fixup location tracking vars. */
|
|
if ((epp->p_vaddr & 0xfffff000) < *estack)
|
|
*estack = (epp->p_vaddr & 0xfffff000);
|
|
if (!*laddr)
|
|
*laddr = epp->p_vaddr - epp->p_offset;
|
|
if (epp->p_vaddr < *scode)
|
|
*scode = epp->p_vaddr;
|
|
|
|
tmp = epp->p_vaddr + epp->p_filesz;
|
|
if (tmp > *ebss)
|
|
*ebss = tmp;
|
|
if ((epp->p_flags & PF_X) && *ecode < tmp)
|
|
*ecode = tmp;
|
|
if (*edata < tmp)
|
|
*edata = tmp;
|
|
|
|
tmp = epp->p_vaddr + epp->p_memsz;
|
|
if (tmp > *ebrk)
|
|
*ebrk = tmp;
|
|
}
|
|
|
|
}
|
|
|
|
static inline int map_interpreter(struct elf_phdr *epp, struct elfhdr *ihp,
|
|
struct file *interp, unsigned int *iladdr,
|
|
int pnum, mm_segment_t old_fs,
|
|
unsigned int *eentry)
|
|
{
|
|
int i;
|
|
|
|
*eentry = 0xffffffff;
|
|
for (i = 0; i < pnum; i++, epp++) {
|
|
if (epp->p_type != PT_INTERP)
|
|
continue;
|
|
|
|
/* We should have fielded this error elsewhere... */
|
|
if (*eentry != 0xffffffff)
|
|
return -1;
|
|
|
|
set_fs(old_fs);
|
|
*eentry = load_irix_interp(ihp, interp, iladdr);
|
|
old_fs = get_fs();
|
|
set_fs(get_ds());
|
|
|
|
fput(interp);
|
|
|
|
if (*eentry == 0xffffffff)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* IRIX maps a page at 0x200000 that holds information about the
|
|
* process and the system, here we map the page and fill the
|
|
* structure
|
|
*/
|
|
static void irix_map_prda_page(void)
|
|
{
|
|
unsigned long v;
|
|
struct prda *pp;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
v = do_brk (PRDA_ADDRESS, PAGE_SIZE);
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
if (v < 0)
|
|
return;
|
|
|
|
pp = (struct prda *) v;
|
|
pp->prda_sys.t_pid = current->pid;
|
|
pp->prda_sys.t_prid = read_c0_prid();
|
|
pp->prda_sys.t_rpid = current->pid;
|
|
|
|
/* We leave the rest set to zero */
|
|
}
|
|
|
|
|
|
|
|
/* These are the functions used to load ELF style executables and shared
|
|
* libraries. There is no binary dependent code anywhere else.
|
|
*/
|
|
static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs)
|
|
{
|
|
struct elfhdr elf_ex, interp_elf_ex;
|
|
struct file *interpreter;
|
|
struct elf_phdr *elf_phdata, *elf_ihdr, *elf_ephdr;
|
|
unsigned int load_addr, elf_bss, elf_brk;
|
|
unsigned int elf_entry, interp_load_addr = 0;
|
|
unsigned int start_code, end_code, end_data, elf_stack;
|
|
int retval, has_interp, has_ephdr, size, i;
|
|
char *elf_interpreter;
|
|
mm_segment_t old_fs;
|
|
|
|
load_addr = 0;
|
|
has_interp = has_ephdr = 0;
|
|
elf_ihdr = elf_ephdr = NULL;
|
|
elf_ex = *((struct elfhdr *) bprm->buf);
|
|
retval = -ENOEXEC;
|
|
|
|
if (verify_binary(&elf_ex, bprm))
|
|
goto out;
|
|
|
|
/*
|
|
* Telling -o32 static binaries from Linux and Irix apart from each
|
|
* other is difficult. There are 2 differences to be noted for static
|
|
* binaries from the 2 operating systems:
|
|
*
|
|
* 1) Irix binaries have their .text section before their .init
|
|
* section. Linux binaries are just the opposite.
|
|
*
|
|
* 2) Irix binaries usually have <= 12 sections and Linux
|
|
* binaries have > 20.
|
|
*
|
|
* We will use Method #2 since Method #1 would require us to read in
|
|
* the section headers which is way too much overhead. This appears
|
|
* to work for everything we have ran into so far. If anyone has a
|
|
* better method to tell the binaries apart, I'm listening.
|
|
*/
|
|
if (elf_ex.e_shnum > 20)
|
|
goto out;
|
|
|
|
print_elfhdr(&elf_ex);
|
|
|
|
/* Now read in all of the header information */
|
|
size = elf_ex.e_phentsize * elf_ex.e_phnum;
|
|
if (size > 65536)
|
|
goto out;
|
|
elf_phdata = kmalloc(size, GFP_KERNEL);
|
|
if (elf_phdata == NULL) {
|
|
retval = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
retval = kernel_read(bprm->file, elf_ex.e_phoff, (char *)elf_phdata, size);
|
|
if (retval < 0)
|
|
goto out_free_ph;
|
|
|
|
dump_phdrs(elf_phdata, elf_ex.e_phnum);
|
|
|
|
/* Set some things for later. */
|
|
for (i = 0; i < elf_ex.e_phnum; i++) {
|
|
switch (elf_phdata[i].p_type) {
|
|
case PT_INTERP:
|
|
has_interp = 1;
|
|
elf_ihdr = &elf_phdata[i];
|
|
break;
|
|
case PT_PHDR:
|
|
has_ephdr = 1;
|
|
elf_ephdr = &elf_phdata[i];
|
|
break;
|
|
};
|
|
}
|
|
|
|
pr_debug("\n");
|
|
|
|
elf_bss = 0;
|
|
elf_brk = 0;
|
|
|
|
elf_stack = 0xffffffff;
|
|
elf_interpreter = NULL;
|
|
start_code = 0xffffffff;
|
|
end_code = 0;
|
|
end_data = 0;
|
|
|
|
/*
|
|
* If we get a return value, we change the value to be ENOEXEC
|
|
* so that we can exit gracefully and the main binary format
|
|
* search loop in 'fs/exec.c' will move onto the next handler
|
|
* which should be the normal ELF binary handler.
|
|
*/
|
|
retval = look_for_irix_interpreter(&elf_interpreter, &interpreter,
|
|
&interp_elf_ex, elf_phdata, bprm,
|
|
elf_ex.e_phnum);
|
|
if (retval) {
|
|
retval = -ENOEXEC;
|
|
goto out_free_file;
|
|
}
|
|
|
|
if (elf_interpreter) {
|
|
retval = verify_irix_interpreter(&interp_elf_ex);
|
|
if (retval)
|
|
goto out_free_interp;
|
|
}
|
|
|
|
/* OK, we are done with that, now set up the arg stuff,
|
|
* and then start this sucker up.
|
|
*/
|
|
retval = -E2BIG;
|
|
if (!bprm->sh_bang && !bprm->p)
|
|
goto out_free_interp;
|
|
|
|
/* Flush all traces of the currently running executable */
|
|
retval = flush_old_exec(bprm);
|
|
if (retval)
|
|
goto out_free_dentry;
|
|
|
|
/* OK, This is the point of no return */
|
|
current->mm->end_data = 0;
|
|
current->mm->end_code = 0;
|
|
current->mm->mmap = NULL;
|
|
current->flags &= ~PF_FORKNOEXEC;
|
|
elf_entry = (unsigned int) elf_ex.e_entry;
|
|
|
|
/* Do this so that we can load the interpreter, if need be. We will
|
|
* change some of these later.
|
|
*/
|
|
setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
|
|
current->mm->start_stack = bprm->p;
|
|
|
|
/* At this point, we assume that the image should be loaded at
|
|
* fixed address, not at a variable address.
|
|
*/
|
|
old_fs = get_fs();
|
|
set_fs(get_ds());
|
|
|
|
map_executable(bprm->file, elf_phdata, elf_ex.e_phnum, &elf_stack,
|
|
&load_addr, &start_code, &elf_bss, &end_code,
|
|
&end_data, &elf_brk);
|
|
|
|
if (elf_interpreter) {
|
|
retval = map_interpreter(elf_phdata, &interp_elf_ex,
|
|
interpreter, &interp_load_addr,
|
|
elf_ex.e_phnum, old_fs, &elf_entry);
|
|
kfree(elf_interpreter);
|
|
if (retval) {
|
|
set_fs(old_fs);
|
|
printk("Unable to load IRIX ELF interpreter\n");
|
|
send_sig(SIGSEGV, current, 0);
|
|
retval = 0;
|
|
goto out_free_file;
|
|
}
|
|
}
|
|
|
|
set_fs(old_fs);
|
|
|
|
kfree(elf_phdata);
|
|
set_personality(PER_IRIX32);
|
|
set_binfmt(&irix_format);
|
|
compute_creds(bprm);
|
|
current->flags &= ~PF_FORKNOEXEC;
|
|
bprm->p = (unsigned long)
|
|
create_irix_tables((char *)bprm->p, bprm->argc, bprm->envc,
|
|
(elf_interpreter ? &elf_ex : NULL),
|
|
load_addr, interp_load_addr, regs, elf_ephdr);
|
|
current->mm->start_brk = current->mm->brk = elf_brk;
|
|
current->mm->end_code = end_code;
|
|
current->mm->start_code = start_code;
|
|
current->mm->end_data = end_data;
|
|
current->mm->start_stack = bprm->p;
|
|
|
|
/* Calling set_brk effectively mmaps the pages that we need for the
|
|
* bss and break sections.
|
|
*/
|
|
set_brk(elf_bss, elf_brk);
|
|
|
|
/*
|
|
* IRIX maps a page at 0x200000 which holds some system
|
|
* information. Programs depend on this.
|
|
*/
|
|
irix_map_prda_page();
|
|
|
|
padzero(elf_bss);
|
|
|
|
pr_debug("(start_brk) %lx\n" , (long) current->mm->start_brk);
|
|
pr_debug("(end_code) %lx\n" , (long) current->mm->end_code);
|
|
pr_debug("(start_code) %lx\n" , (long) current->mm->start_code);
|
|
pr_debug("(end_data) %lx\n" , (long) current->mm->end_data);
|
|
pr_debug("(start_stack) %lx\n" , (long) current->mm->start_stack);
|
|
pr_debug("(brk) %lx\n" , (long) current->mm->brk);
|
|
|
|
#if 0 /* XXX No fucking way dude... */
|
|
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
|
|
* and some applications "depend" upon this behavior.
|
|
* Since we do not have the power to recompile these, we
|
|
* emulate the SVr4 behavior. Sigh.
|
|
*/
|
|
down_write(¤t->mm->mmap_sem);
|
|
(void) do_mmap(NULL, 0, 4096, PROT_READ | PROT_EXEC,
|
|
MAP_FIXED | MAP_PRIVATE, 0);
|
|
up_write(¤t->mm->mmap_sem);
|
|
#endif
|
|
|
|
start_thread(regs, elf_entry, bprm->p);
|
|
if (current->ptrace & PT_PTRACED)
|
|
send_sig(SIGTRAP, current, 0);
|
|
return 0;
|
|
out:
|
|
return retval;
|
|
|
|
out_free_dentry:
|
|
allow_write_access(interpreter);
|
|
fput(interpreter);
|
|
out_free_interp:
|
|
kfree(elf_interpreter);
|
|
out_free_file:
|
|
out_free_ph:
|
|
kfree (elf_phdata);
|
|
goto out;
|
|
}
|
|
|
|
/* This is really simpleminded and specialized - we are loading an
|
|
* a.out library that is given an ELF header.
|
|
*/
|
|
static int load_irix_library(struct file *file)
|
|
{
|
|
struct elfhdr elf_ex;
|
|
struct elf_phdr *elf_phdata = NULL;
|
|
unsigned int len = 0;
|
|
int elf_bss = 0;
|
|
int retval;
|
|
unsigned int bss;
|
|
int error;
|
|
int i,j, k;
|
|
|
|
error = kernel_read(file, 0, (char *) &elf_ex, sizeof(elf_ex));
|
|
if (error != sizeof(elf_ex))
|
|
return -ENOEXEC;
|
|
|
|
if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
|
|
return -ENOEXEC;
|
|
|
|
/* First of all, some simple consistency checks. */
|
|
if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
|
|
!file->f_op->mmap)
|
|
return -ENOEXEC;
|
|
|
|
/* Now read in all of the header information. */
|
|
if (sizeof(struct elf_phdr) * elf_ex.e_phnum > PAGE_SIZE)
|
|
return -ENOEXEC;
|
|
|
|
elf_phdata = kmalloc(sizeof(struct elf_phdr) * elf_ex.e_phnum, GFP_KERNEL);
|
|
if (elf_phdata == NULL)
|
|
return -ENOMEM;
|
|
|
|
retval = kernel_read(file, elf_ex.e_phoff, (char *) elf_phdata,
|
|
sizeof(struct elf_phdr) * elf_ex.e_phnum);
|
|
|
|
j = 0;
|
|
for (i=0; i<elf_ex.e_phnum; i++)
|
|
if ((elf_phdata + i)->p_type == PT_LOAD) j++;
|
|
|
|
if (j != 1) {
|
|
kfree(elf_phdata);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
while (elf_phdata->p_type != PT_LOAD) elf_phdata++;
|
|
|
|
/* Now use mmap to map the library into memory. */
|
|
down_write(¤t->mm->mmap_sem);
|
|
error = do_mmap(file,
|
|
elf_phdata->p_vaddr & 0xfffff000,
|
|
elf_phdata->p_filesz + (elf_phdata->p_vaddr & 0xfff),
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
|
|
elf_phdata->p_offset & 0xfffff000);
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
k = elf_phdata->p_vaddr + elf_phdata->p_filesz;
|
|
if (k > elf_bss) elf_bss = k;
|
|
|
|
if (error != (elf_phdata->p_vaddr & 0xfffff000)) {
|
|
kfree(elf_phdata);
|
|
return error;
|
|
}
|
|
|
|
padzero(elf_bss);
|
|
|
|
len = (elf_phdata->p_filesz + elf_phdata->p_vaddr+ 0xfff) & 0xfffff000;
|
|
bss = elf_phdata->p_memsz + elf_phdata->p_vaddr;
|
|
if (bss > len) {
|
|
down_write(¤t->mm->mmap_sem);
|
|
do_brk(len, bss-len);
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
kfree(elf_phdata);
|
|
return 0;
|
|
}
|
|
|
|
/* Called through irix_syssgi() to map an elf image given an FD,
|
|
* a phdr ptr USER_PHDRP in userspace, and a count CNT telling how many
|
|
* phdrs there are in the USER_PHDRP array. We return the vaddr the
|
|
* first phdr was successfully mapped to.
|
|
*/
|
|
unsigned long irix_mapelf(int fd, struct elf_phdr __user *user_phdrp, int cnt)
|
|
{
|
|
unsigned long type, vaddr, filesz, offset, flags;
|
|
struct elf_phdr __user *hp;
|
|
struct file *filp;
|
|
int i, retval;
|
|
|
|
pr_debug("irix_mapelf: fd[%d] user_phdrp[%p] cnt[%d]\n",
|
|
fd, user_phdrp, cnt);
|
|
|
|
/* First get the verification out of the way. */
|
|
hp = user_phdrp;
|
|
if (!access_ok(VERIFY_READ, hp, (sizeof(struct elf_phdr) * cnt))) {
|
|
pr_debug("irix_mapelf: bad pointer to ELF PHDR!\n");
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
dump_phdrs(user_phdrp, cnt);
|
|
|
|
for (i = 0; i < cnt; i++, hp++) {
|
|
if (__get_user(type, &hp->p_type))
|
|
return -EFAULT;
|
|
if (type != PT_LOAD) {
|
|
printk("irix_mapelf: One section is not PT_LOAD!\n");
|
|
return -ENOEXEC;
|
|
}
|
|
}
|
|
|
|
filp = fget(fd);
|
|
if (!filp)
|
|
return -EACCES;
|
|
if (!filp->f_op) {
|
|
printk("irix_mapelf: Bogon filp!\n");
|
|
fput(filp);
|
|
return -EACCES;
|
|
}
|
|
|
|
hp = user_phdrp;
|
|
for (i = 0; i < cnt; i++, hp++) {
|
|
int prot;
|
|
|
|
retval = __get_user(vaddr, &hp->p_vaddr);
|
|
retval |= __get_user(filesz, &hp->p_filesz);
|
|
retval |= __get_user(offset, &hp->p_offset);
|
|
retval |= __get_user(flags, &hp->p_flags);
|
|
if (retval)
|
|
return retval;
|
|
|
|
prot = (flags & PF_R) ? PROT_READ : 0;
|
|
prot |= (flags & PF_W) ? PROT_WRITE : 0;
|
|
prot |= (flags & PF_X) ? PROT_EXEC : 0;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
retval = do_mmap(filp, (vaddr & 0xfffff000),
|
|
(filesz + (vaddr & 0xfff)),
|
|
prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
|
|
(offset & 0xfffff000));
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
if (retval != (vaddr & 0xfffff000)) {
|
|
printk("irix_mapelf: do_mmap fails with %d!\n", retval);
|
|
fput(filp);
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
pr_debug("irix_mapelf: Success, returning %08lx\n",
|
|
(unsigned long) user_phdrp->p_vaddr);
|
|
|
|
fput(filp);
|
|
|
|
if (__get_user(vaddr, &user_phdrp->p_vaddr))
|
|
return -EFAULT;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
/*
|
|
* ELF core dumper
|
|
*
|
|
* Modelled on fs/exec.c:aout_core_dump()
|
|
* Jeremy Fitzhardinge <jeremy@sw.oz.au>
|
|
*/
|
|
|
|
/* These are the only things you should do on a core-file: use only these
|
|
* functions to write out all the necessary info.
|
|
*/
|
|
static int dump_write(struct file *file, const void __user *addr, int nr)
|
|
{
|
|
return file->f_op->write(file, (const char __user *) addr, nr, &file->f_pos) == nr;
|
|
}
|
|
|
|
static int dump_seek(struct file *file, off_t off)
|
|
{
|
|
if (file->f_op->llseek) {
|
|
if (file->f_op->llseek(file, off, 0) != off)
|
|
return 0;
|
|
} else
|
|
file->f_pos = off;
|
|
return 1;
|
|
}
|
|
|
|
/* Decide whether a segment is worth dumping; default is yes to be
|
|
* sure (missing info is worse than too much; etc).
|
|
* Personally I'd include everything, and use the coredump limit...
|
|
*
|
|
* I think we should skip something. But I am not sure how. H.J.
|
|
*/
|
|
static inline int maydump(struct vm_area_struct *vma)
|
|
{
|
|
if (!(vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC)))
|
|
return 0;
|
|
#if 1
|
|
if (vma->vm_flags & (VM_WRITE|VM_GROWSUP|VM_GROWSDOWN))
|
|
return 1;
|
|
if (vma->vm_flags & (VM_READ|VM_EXEC|VM_EXECUTABLE|VM_SHARED))
|
|
return 0;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/* An ELF note in memory. */
|
|
struct memelfnote
|
|
{
|
|
const char *name;
|
|
int type;
|
|
unsigned int datasz;
|
|
void *data;
|
|
};
|
|
|
|
static int notesize(struct memelfnote *en)
|
|
{
|
|
int sz;
|
|
|
|
sz = sizeof(struct elf_note);
|
|
sz += roundup(strlen(en->name) + 1, 4);
|
|
sz += roundup(en->datasz, 4);
|
|
|
|
return sz;
|
|
}
|
|
|
|
#define DUMP_WRITE(addr, nr) \
|
|
if (!dump_write(file, (addr), (nr))) \
|
|
goto end_coredump;
|
|
#define DUMP_SEEK(off) \
|
|
if (!dump_seek(file, (off))) \
|
|
goto end_coredump;
|
|
|
|
static int writenote(struct memelfnote *men, struct file *file)
|
|
{
|
|
struct elf_note en;
|
|
|
|
en.n_namesz = strlen(men->name) + 1;
|
|
en.n_descsz = men->datasz;
|
|
en.n_type = men->type;
|
|
|
|
DUMP_WRITE(&en, sizeof(en));
|
|
DUMP_WRITE(men->name, en.n_namesz);
|
|
/* XXX - cast from long long to long to avoid need for libgcc.a */
|
|
DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */
|
|
DUMP_WRITE(men->data, men->datasz);
|
|
DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */
|
|
|
|
return 1;
|
|
|
|
end_coredump:
|
|
return 0;
|
|
}
|
|
#undef DUMP_WRITE
|
|
#undef DUMP_SEEK
|
|
|
|
#define DUMP_WRITE(addr, nr) \
|
|
if (!dump_write(file, (addr), (nr))) \
|
|
goto end_coredump;
|
|
#define DUMP_SEEK(off) \
|
|
if (!dump_seek(file, (off))) \
|
|
goto end_coredump;
|
|
|
|
/* Actual dumper.
|
|
*
|
|
* This is a two-pass process; first we find the offsets of the bits,
|
|
* and then they are actually written out. If we run out of core limit
|
|
* we just truncate.
|
|
*/
|
|
static int irix_core_dump(long signr, struct pt_regs * regs, struct file *file)
|
|
{
|
|
int has_dumped = 0;
|
|
mm_segment_t fs;
|
|
int segs;
|
|
int i;
|
|
size_t size;
|
|
struct vm_area_struct *vma;
|
|
struct elfhdr elf;
|
|
off_t offset = 0, dataoff;
|
|
int limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
|
|
int numnote = 3;
|
|
struct memelfnote notes[3];
|
|
struct elf_prstatus prstatus; /* NT_PRSTATUS */
|
|
elf_fpregset_t fpu; /* NT_PRFPREG */
|
|
struct elf_prpsinfo psinfo; /* NT_PRPSINFO */
|
|
|
|
/* Count what's needed to dump, up to the limit of coredump size. */
|
|
segs = 0;
|
|
size = 0;
|
|
for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
|
|
if (maydump(vma))
|
|
{
|
|
int sz = vma->vm_end-vma->vm_start;
|
|
|
|
if (size+sz >= limit)
|
|
break;
|
|
else
|
|
size += sz;
|
|
}
|
|
|
|
segs++;
|
|
}
|
|
pr_debug("irix_core_dump: %d segs taking %d bytes\n", segs, size);
|
|
|
|
/* Set up header. */
|
|
memcpy(elf.e_ident, ELFMAG, SELFMAG);
|
|
elf.e_ident[EI_CLASS] = ELFCLASS32;
|
|
elf.e_ident[EI_DATA] = ELFDATA2LSB;
|
|
elf.e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf.e_ident[EI_OSABI] = ELF_OSABI;
|
|
memset(elf.e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
|
|
|
|
elf.e_type = ET_CORE;
|
|
elf.e_machine = ELF_ARCH;
|
|
elf.e_version = EV_CURRENT;
|
|
elf.e_entry = 0;
|
|
elf.e_phoff = sizeof(elf);
|
|
elf.e_shoff = 0;
|
|
elf.e_flags = 0;
|
|
elf.e_ehsize = sizeof(elf);
|
|
elf.e_phentsize = sizeof(struct elf_phdr);
|
|
elf.e_phnum = segs+1; /* Include notes. */
|
|
elf.e_shentsize = 0;
|
|
elf.e_shnum = 0;
|
|
elf.e_shstrndx = 0;
|
|
|
|
fs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
|
|
has_dumped = 1;
|
|
current->flags |= PF_DUMPCORE;
|
|
|
|
DUMP_WRITE(&elf, sizeof(elf));
|
|
offset += sizeof(elf); /* Elf header. */
|
|
offset += (segs+1) * sizeof(struct elf_phdr); /* Program headers. */
|
|
|
|
/* Set up the notes in similar form to SVR4 core dumps made
|
|
* with info from their /proc.
|
|
*/
|
|
memset(&psinfo, 0, sizeof(psinfo));
|
|
memset(&prstatus, 0, sizeof(prstatus));
|
|
|
|
notes[0].name = "CORE";
|
|
notes[0].type = NT_PRSTATUS;
|
|
notes[0].datasz = sizeof(prstatus);
|
|
notes[0].data = &prstatus;
|
|
prstatus.pr_info.si_signo = prstatus.pr_cursig = signr;
|
|
prstatus.pr_sigpend = current->pending.signal.sig[0];
|
|
prstatus.pr_sighold = current->blocked.sig[0];
|
|
psinfo.pr_pid = prstatus.pr_pid = current->pid;
|
|
psinfo.pr_ppid = prstatus.pr_ppid = current->parent->pid;
|
|
psinfo.pr_pgrp = prstatus.pr_pgrp = process_group(current);
|
|
psinfo.pr_sid = prstatus.pr_sid = process_session(current);
|
|
if (current->pid == current->tgid) {
|
|
/*
|
|
* This is the record for the group leader. Add in the
|
|
* cumulative times of previous dead threads. This total
|
|
* won't include the time of each live thread whose state
|
|
* is included in the core dump. The final total reported
|
|
* to our parent process when it calls wait4 will include
|
|
* those sums as well as the little bit more time it takes
|
|
* this and each other thread to finish dying after the
|
|
* core dump synchronization phase.
|
|
*/
|
|
jiffies_to_timeval(current->utime + current->signal->utime,
|
|
&prstatus.pr_utime);
|
|
jiffies_to_timeval(current->stime + current->signal->stime,
|
|
&prstatus.pr_stime);
|
|
} else {
|
|
jiffies_to_timeval(current->utime, &prstatus.pr_utime);
|
|
jiffies_to_timeval(current->stime, &prstatus.pr_stime);
|
|
}
|
|
jiffies_to_timeval(current->signal->cutime, &prstatus.pr_cutime);
|
|
jiffies_to_timeval(current->signal->cstime, &prstatus.pr_cstime);
|
|
|
|
if (sizeof(elf_gregset_t) != sizeof(struct pt_regs)) {
|
|
printk("sizeof(elf_gregset_t) (%d) != sizeof(struct pt_regs) "
|
|
"(%d)\n", sizeof(elf_gregset_t), sizeof(struct pt_regs));
|
|
} else {
|
|
*(struct pt_regs *)&prstatus.pr_reg = *regs;
|
|
}
|
|
|
|
notes[1].name = "CORE";
|
|
notes[1].type = NT_PRPSINFO;
|
|
notes[1].datasz = sizeof(psinfo);
|
|
notes[1].data = &psinfo;
|
|
i = current->state ? ffz(~current->state) + 1 : 0;
|
|
psinfo.pr_state = i;
|
|
psinfo.pr_sname = (i < 0 || i > 5) ? '.' : "RSDZTD"[i];
|
|
psinfo.pr_zomb = psinfo.pr_sname == 'Z';
|
|
psinfo.pr_nice = task_nice(current);
|
|
psinfo.pr_flag = current->flags;
|
|
psinfo.pr_uid = current->uid;
|
|
psinfo.pr_gid = current->gid;
|
|
{
|
|
int i, len;
|
|
|
|
set_fs(fs);
|
|
|
|
len = current->mm->arg_end - current->mm->arg_start;
|
|
len = len >= ELF_PRARGSZ ? ELF_PRARGSZ : len;
|
|
(void *) copy_from_user(&psinfo.pr_psargs,
|
|
(const char __user *)current->mm->arg_start, len);
|
|
for (i = 0; i < len; i++)
|
|
if (psinfo.pr_psargs[i] == 0)
|
|
psinfo.pr_psargs[i] = ' ';
|
|
psinfo.pr_psargs[len] = 0;
|
|
|
|
set_fs(KERNEL_DS);
|
|
}
|
|
strlcpy(psinfo.pr_fname, current->comm, sizeof(psinfo.pr_fname));
|
|
|
|
/* Try to dump the FPU. */
|
|
prstatus.pr_fpvalid = dump_fpu (regs, &fpu);
|
|
if (!prstatus.pr_fpvalid) {
|
|
numnote--;
|
|
} else {
|
|
notes[2].name = "CORE";
|
|
notes[2].type = NT_PRFPREG;
|
|
notes[2].datasz = sizeof(fpu);
|
|
notes[2].data = &fpu;
|
|
}
|
|
|
|
/* Write notes phdr entry. */
|
|
{
|
|
struct elf_phdr phdr;
|
|
int sz = 0;
|
|
|
|
for (i = 0; i < numnote; i++)
|
|
sz += notesize(¬es[i]);
|
|
|
|
phdr.p_type = PT_NOTE;
|
|
phdr.p_offset = offset;
|
|
phdr.p_vaddr = 0;
|
|
phdr.p_paddr = 0;
|
|
phdr.p_filesz = sz;
|
|
phdr.p_memsz = 0;
|
|
phdr.p_flags = 0;
|
|
phdr.p_align = 0;
|
|
|
|
offset += phdr.p_filesz;
|
|
DUMP_WRITE(&phdr, sizeof(phdr));
|
|
}
|
|
|
|
/* Page-align dumped data. */
|
|
dataoff = offset = roundup(offset, PAGE_SIZE);
|
|
|
|
/* Write program headers for segments dump. */
|
|
for (vma = current->mm->mmap, i = 0;
|
|
i < segs && vma != NULL; vma = vma->vm_next) {
|
|
struct elf_phdr phdr;
|
|
size_t sz;
|
|
|
|
i++;
|
|
|
|
sz = vma->vm_end - vma->vm_start;
|
|
|
|
phdr.p_type = PT_LOAD;
|
|
phdr.p_offset = offset;
|
|
phdr.p_vaddr = vma->vm_start;
|
|
phdr.p_paddr = 0;
|
|
phdr.p_filesz = maydump(vma) ? sz : 0;
|
|
phdr.p_memsz = sz;
|
|
offset += phdr.p_filesz;
|
|
phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
|
|
if (vma->vm_flags & VM_WRITE)
|
|
phdr.p_flags |= PF_W;
|
|
if (vma->vm_flags & VM_EXEC)
|
|
phdr.p_flags |= PF_X;
|
|
phdr.p_align = PAGE_SIZE;
|
|
|
|
DUMP_WRITE(&phdr, sizeof(phdr));
|
|
}
|
|
|
|
for (i = 0; i < numnote; i++)
|
|
if (!writenote(¬es[i], file))
|
|
goto end_coredump;
|
|
|
|
set_fs(fs);
|
|
|
|
DUMP_SEEK(dataoff);
|
|
|
|
for (i = 0, vma = current->mm->mmap;
|
|
i < segs && vma != NULL;
|
|
vma = vma->vm_next) {
|
|
unsigned long addr = vma->vm_start;
|
|
unsigned long len = vma->vm_end - vma->vm_start;
|
|
|
|
if (!maydump(vma))
|
|
continue;
|
|
i++;
|
|
pr_debug("elf_core_dump: writing %08lx %lx\n", addr, len);
|
|
DUMP_WRITE((void __user *)addr, len);
|
|
}
|
|
|
|
if ((off_t) file->f_pos != offset) {
|
|
/* Sanity check. */
|
|
printk("elf_core_dump: file->f_pos (%ld) != offset (%ld)\n",
|
|
(off_t) file->f_pos, offset);
|
|
}
|
|
|
|
end_coredump:
|
|
set_fs(fs);
|
|
return has_dumped;
|
|
}
|
|
|
|
static int __init init_irix_binfmt(void)
|
|
{
|
|
extern int init_inventory(void);
|
|
extern asmlinkage unsigned long sys_call_table;
|
|
extern asmlinkage unsigned long sys_call_table_irix5;
|
|
|
|
init_inventory();
|
|
|
|
/*
|
|
* Copy the IRIX5 syscall table (8000 bytes) into the main syscall
|
|
* table. The IRIX5 calls are located by an offset of 8000 bytes
|
|
* from the beginning of the main table.
|
|
*/
|
|
memcpy((void *) ((unsigned long) &sys_call_table + 8000),
|
|
&sys_call_table_irix5, 8000);
|
|
|
|
return register_binfmt(&irix_format);
|
|
}
|
|
|
|
static void __exit exit_irix_binfmt(void)
|
|
{
|
|
/*
|
|
* Remove the Irix ELF loader.
|
|
*/
|
|
unregister_binfmt(&irix_format);
|
|
}
|
|
|
|
module_init(init_irix_binfmt)
|
|
module_exit(exit_irix_binfmt)
|
|
|