You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
732 lines
18 KiB
732 lines
18 KiB
/*
|
|
* Intel SMP support routines.
|
|
*
|
|
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
|
|
* (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <mach_apic.h>
|
|
|
|
/*
|
|
* Some notes on x86 processor bugs affecting SMP operation:
|
|
*
|
|
* Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
|
|
* The Linux implications for SMP are handled as follows:
|
|
*
|
|
* Pentium III / [Xeon]
|
|
* None of the E1AP-E3AP errata are visible to the user.
|
|
*
|
|
* E1AP. see PII A1AP
|
|
* E2AP. see PII A2AP
|
|
* E3AP. see PII A3AP
|
|
*
|
|
* Pentium II / [Xeon]
|
|
* None of the A1AP-A3AP errata are visible to the user.
|
|
*
|
|
* A1AP. see PPro 1AP
|
|
* A2AP. see PPro 2AP
|
|
* A3AP. see PPro 7AP
|
|
*
|
|
* Pentium Pro
|
|
* None of 1AP-9AP errata are visible to the normal user,
|
|
* except occasional delivery of 'spurious interrupt' as trap #15.
|
|
* This is very rare and a non-problem.
|
|
*
|
|
* 1AP. Linux maps APIC as non-cacheable
|
|
* 2AP. worked around in hardware
|
|
* 3AP. fixed in C0 and above steppings microcode update.
|
|
* Linux does not use excessive STARTUP_IPIs.
|
|
* 4AP. worked around in hardware
|
|
* 5AP. symmetric IO mode (normal Linux operation) not affected.
|
|
* 'noapic' mode has vector 0xf filled out properly.
|
|
* 6AP. 'noapic' mode might be affected - fixed in later steppings
|
|
* 7AP. We do not assume writes to the LVT deassering IRQs
|
|
* 8AP. We do not enable low power mode (deep sleep) during MP bootup
|
|
* 9AP. We do not use mixed mode
|
|
*
|
|
* Pentium
|
|
* There is a marginal case where REP MOVS on 100MHz SMP
|
|
* machines with B stepping processors can fail. XXX should provide
|
|
* an L1cache=Writethrough or L1cache=off option.
|
|
*
|
|
* B stepping CPUs may hang. There are hardware work arounds
|
|
* for this. We warn about it in case your board doesn't have the work
|
|
* arounds. Basically thats so I can tell anyone with a B stepping
|
|
* CPU and SMP problems "tough".
|
|
*
|
|
* Specific items [From Pentium Processor Specification Update]
|
|
*
|
|
* 1AP. Linux doesn't use remote read
|
|
* 2AP. Linux doesn't trust APIC errors
|
|
* 3AP. We work around this
|
|
* 4AP. Linux never generated 3 interrupts of the same priority
|
|
* to cause a lost local interrupt.
|
|
* 5AP. Remote read is never used
|
|
* 6AP. not affected - worked around in hardware
|
|
* 7AP. not affected - worked around in hardware
|
|
* 8AP. worked around in hardware - we get explicit CS errors if not
|
|
* 9AP. only 'noapic' mode affected. Might generate spurious
|
|
* interrupts, we log only the first one and count the
|
|
* rest silently.
|
|
* 10AP. not affected - worked around in hardware
|
|
* 11AP. Linux reads the APIC between writes to avoid this, as per
|
|
* the documentation. Make sure you preserve this as it affects
|
|
* the C stepping chips too.
|
|
* 12AP. not affected - worked around in hardware
|
|
* 13AP. not affected - worked around in hardware
|
|
* 14AP. we always deassert INIT during bootup
|
|
* 15AP. not affected - worked around in hardware
|
|
* 16AP. not affected - worked around in hardware
|
|
* 17AP. not affected - worked around in hardware
|
|
* 18AP. not affected - worked around in hardware
|
|
* 19AP. not affected - worked around in BIOS
|
|
*
|
|
* If this sounds worrying believe me these bugs are either ___RARE___,
|
|
* or are signal timing bugs worked around in hardware and there's
|
|
* about nothing of note with C stepping upwards.
|
|
*/
|
|
|
|
DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
|
|
|
|
/*
|
|
* the following functions deal with sending IPIs between CPUs.
|
|
*
|
|
* We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
|
|
*/
|
|
|
|
static inline int __prepare_ICR (unsigned int shortcut, int vector)
|
|
{
|
|
unsigned int icr = shortcut | APIC_DEST_LOGICAL;
|
|
|
|
switch (vector) {
|
|
default:
|
|
icr |= APIC_DM_FIXED | vector;
|
|
break;
|
|
case NMI_VECTOR:
|
|
icr |= APIC_DM_NMI;
|
|
break;
|
|
}
|
|
return icr;
|
|
}
|
|
|
|
static inline int __prepare_ICR2 (unsigned int mask)
|
|
{
|
|
return SET_APIC_DEST_FIELD(mask);
|
|
}
|
|
|
|
void __send_IPI_shortcut(unsigned int shortcut, int vector)
|
|
{
|
|
/*
|
|
* Subtle. In the case of the 'never do double writes' workaround
|
|
* we have to lock out interrupts to be safe. As we don't care
|
|
* of the value read we use an atomic rmw access to avoid costly
|
|
* cli/sti. Otherwise we use an even cheaper single atomic write
|
|
* to the APIC.
|
|
*/
|
|
unsigned int cfg;
|
|
|
|
/*
|
|
* Wait for idle.
|
|
*/
|
|
apic_wait_icr_idle();
|
|
|
|
/*
|
|
* No need to touch the target chip field
|
|
*/
|
|
cfg = __prepare_ICR(shortcut, vector);
|
|
|
|
/*
|
|
* Send the IPI. The write to APIC_ICR fires this off.
|
|
*/
|
|
apic_write_around(APIC_ICR, cfg);
|
|
}
|
|
|
|
void fastcall send_IPI_self(int vector)
|
|
{
|
|
__send_IPI_shortcut(APIC_DEST_SELF, vector);
|
|
}
|
|
|
|
/*
|
|
* This is only used on smaller machines.
|
|
*/
|
|
void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
|
|
{
|
|
unsigned long mask = cpus_addr(cpumask)[0];
|
|
unsigned long cfg;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
|
|
/*
|
|
* Wait for idle.
|
|
*/
|
|
apic_wait_icr_idle();
|
|
|
|
/*
|
|
* prepare target chip field
|
|
*/
|
|
cfg = __prepare_ICR2(mask);
|
|
apic_write_around(APIC_ICR2, cfg);
|
|
|
|
/*
|
|
* program the ICR
|
|
*/
|
|
cfg = __prepare_ICR(0, vector);
|
|
|
|
/*
|
|
* Send the IPI. The write to APIC_ICR fires this off.
|
|
*/
|
|
apic_write_around(APIC_ICR, cfg);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void send_IPI_mask_sequence(cpumask_t mask, int vector)
|
|
{
|
|
unsigned long cfg, flags;
|
|
unsigned int query_cpu;
|
|
|
|
/*
|
|
* Hack. The clustered APIC addressing mode doesn't allow us to send
|
|
* to an arbitrary mask, so I do a unicasts to each CPU instead. This
|
|
* should be modified to do 1 message per cluster ID - mbligh
|
|
*/
|
|
|
|
local_irq_save(flags);
|
|
|
|
for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
|
|
if (cpu_isset(query_cpu, mask)) {
|
|
|
|
/*
|
|
* Wait for idle.
|
|
*/
|
|
apic_wait_icr_idle();
|
|
|
|
/*
|
|
* prepare target chip field
|
|
*/
|
|
cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
|
|
apic_write_around(APIC_ICR2, cfg);
|
|
|
|
/*
|
|
* program the ICR
|
|
*/
|
|
cfg = __prepare_ICR(0, vector);
|
|
|
|
/*
|
|
* Send the IPI. The write to APIC_ICR fires this off.
|
|
*/
|
|
apic_write_around(APIC_ICR, cfg);
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
|
|
|
|
/*
|
|
* Smarter SMP flushing macros.
|
|
* c/o Linus Torvalds.
|
|
*
|
|
* These mean you can really definitely utterly forget about
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
|
*
|
|
* Optimizations Manfred Spraul <manfred@colorfullife.com>
|
|
*/
|
|
|
|
static cpumask_t flush_cpumask;
|
|
static struct mm_struct * flush_mm;
|
|
static unsigned long flush_va;
|
|
static DEFINE_SPINLOCK(tlbstate_lock);
|
|
#define FLUSH_ALL 0xffffffff
|
|
|
|
/*
|
|
* We cannot call mmdrop() because we are in interrupt context,
|
|
* instead update mm->cpu_vm_mask.
|
|
*
|
|
* We need to reload %cr3 since the page tables may be going
|
|
* away from under us..
|
|
*/
|
|
static inline void leave_mm (unsigned long cpu)
|
|
{
|
|
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
|
|
BUG();
|
|
cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
|
|
load_cr3(swapper_pg_dir);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* The flush IPI assumes that a thread switch happens in this order:
|
|
* [cpu0: the cpu that switches]
|
|
* 1) switch_mm() either 1a) or 1b)
|
|
* 1a) thread switch to a different mm
|
|
* 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
|
|
* Stop ipi delivery for the old mm. This is not synchronized with
|
|
* the other cpus, but smp_invalidate_interrupt ignore flush ipis
|
|
* for the wrong mm, and in the worst case we perform a superflous
|
|
* tlb flush.
|
|
* 1a2) set cpu_tlbstate to TLBSTATE_OK
|
|
* Now the smp_invalidate_interrupt won't call leave_mm if cpu0
|
|
* was in lazy tlb mode.
|
|
* 1a3) update cpu_tlbstate[].active_mm
|
|
* Now cpu0 accepts tlb flushes for the new mm.
|
|
* 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
|
|
* Now the other cpus will send tlb flush ipis.
|
|
* 1a4) change cr3.
|
|
* 1b) thread switch without mm change
|
|
* cpu_tlbstate[].active_mm is correct, cpu0 already handles
|
|
* flush ipis.
|
|
* 1b1) set cpu_tlbstate to TLBSTATE_OK
|
|
* 1b2) test_and_set the cpu bit in cpu_vm_mask.
|
|
* Atomically set the bit [other cpus will start sending flush ipis],
|
|
* and test the bit.
|
|
* 1b3) if the bit was 0: leave_mm was called, flush the tlb.
|
|
* 2) switch %%esp, ie current
|
|
*
|
|
* The interrupt must handle 2 special cases:
|
|
* - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
|
|
* - the cpu performs speculative tlb reads, i.e. even if the cpu only
|
|
* runs in kernel space, the cpu could load tlb entries for user space
|
|
* pages.
|
|
*
|
|
* The good news is that cpu_tlbstate is local to each cpu, no
|
|
* write/read ordering problems.
|
|
*/
|
|
|
|
/*
|
|
* TLB flush IPI:
|
|
*
|
|
* 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
|
|
* 2) Leave the mm if we are in the lazy tlb mode.
|
|
*/
|
|
|
|
fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
|
|
{
|
|
unsigned long cpu;
|
|
|
|
cpu = get_cpu();
|
|
|
|
if (!cpu_isset(cpu, flush_cpumask))
|
|
goto out;
|
|
/*
|
|
* This was a BUG() but until someone can quote me the
|
|
* line from the intel manual that guarantees an IPI to
|
|
* multiple CPUs is retried _only_ on the erroring CPUs
|
|
* its staying as a return
|
|
*
|
|
* BUG();
|
|
*/
|
|
|
|
if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
|
|
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
|
|
if (flush_va == FLUSH_ALL)
|
|
local_flush_tlb();
|
|
else
|
|
__flush_tlb_one(flush_va);
|
|
} else
|
|
leave_mm(cpu);
|
|
}
|
|
ack_APIC_irq();
|
|
smp_mb__before_clear_bit();
|
|
cpu_clear(cpu, flush_cpumask);
|
|
smp_mb__after_clear_bit();
|
|
out:
|
|
put_cpu_no_resched();
|
|
}
|
|
|
|
static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
|
|
unsigned long va)
|
|
{
|
|
/*
|
|
* A couple of (to be removed) sanity checks:
|
|
*
|
|
* - current CPU must not be in mask
|
|
* - mask must exist :)
|
|
*/
|
|
BUG_ON(cpus_empty(cpumask));
|
|
BUG_ON(cpu_isset(smp_processor_id(), cpumask));
|
|
BUG_ON(!mm);
|
|
|
|
/* If a CPU which we ran on has gone down, OK. */
|
|
cpus_and(cpumask, cpumask, cpu_online_map);
|
|
if (cpus_empty(cpumask))
|
|
return;
|
|
|
|
/*
|
|
* i'm not happy about this global shared spinlock in the
|
|
* MM hot path, but we'll see how contended it is.
|
|
* AK: x86-64 has a faster method that could be ported.
|
|
*/
|
|
spin_lock(&tlbstate_lock);
|
|
|
|
flush_mm = mm;
|
|
flush_va = va;
|
|
#if NR_CPUS <= BITS_PER_LONG
|
|
atomic_set_mask(cpumask, &flush_cpumask);
|
|
#else
|
|
{
|
|
int k;
|
|
unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
|
|
unsigned long *cpu_mask = (unsigned long *)&cpumask;
|
|
for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
|
|
atomic_set_mask(cpu_mask[k], &flush_mask[k]);
|
|
}
|
|
#endif
|
|
/*
|
|
* We have to send the IPI only to
|
|
* CPUs affected.
|
|
*/
|
|
send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
|
|
|
|
while (!cpus_empty(flush_cpumask))
|
|
/* nothing. lockup detection does not belong here */
|
|
cpu_relax();
|
|
|
|
flush_mm = NULL;
|
|
flush_va = 0;
|
|
spin_unlock(&tlbstate_lock);
|
|
}
|
|
|
|
void flush_tlb_current_task(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
local_flush_tlb();
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_mm (struct mm_struct * mm)
|
|
{
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
local_flush_tlb();
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
if (current->active_mm == mm) {
|
|
if(current->mm)
|
|
__flush_tlb_one(va);
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, va);
|
|
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL(flush_tlb_page);
|
|
|
|
static void do_flush_tlb_all(void* info)
|
|
{
|
|
unsigned long cpu = smp_processor_id();
|
|
|
|
__flush_tlb_all();
|
|
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
|
|
leave_mm(cpu);
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
|
|
}
|
|
|
|
/*
|
|
* this function sends a 'reschedule' IPI to another CPU.
|
|
* it goes straight through and wastes no time serializing
|
|
* anything. Worst case is that we lose a reschedule ...
|
|
*/
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
WARN_ON(cpu_is_offline(cpu));
|
|
send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
|
|
}
|
|
|
|
/*
|
|
* Structure and data for smp_call_function(). This is designed to minimise
|
|
* static memory requirements. It also looks cleaner.
|
|
*/
|
|
static DEFINE_SPINLOCK(call_lock);
|
|
|
|
struct call_data_struct {
|
|
void (*func) (void *info);
|
|
void *info;
|
|
atomic_t started;
|
|
atomic_t finished;
|
|
int wait;
|
|
};
|
|
|
|
void lock_ipi_call_lock(void)
|
|
{
|
|
spin_lock_irq(&call_lock);
|
|
}
|
|
|
|
void unlock_ipi_call_lock(void)
|
|
{
|
|
spin_unlock_irq(&call_lock);
|
|
}
|
|
|
|
static struct call_data_struct *call_data;
|
|
|
|
/**
|
|
* smp_call_function(): Run a function on all other CPUs.
|
|
* @func: The function to run. This must be fast and non-blocking.
|
|
* @info: An arbitrary pointer to pass to the function.
|
|
* @nonatomic: currently unused.
|
|
* @wait: If true, wait (atomically) until function has completed on other CPUs.
|
|
*
|
|
* Returns 0 on success, else a negative status code. Does not return until
|
|
* remote CPUs are nearly ready to execute <<func>> or are or have executed.
|
|
*
|
|
* You must not call this function with disabled interrupts or from a
|
|
* hardware interrupt handler or from a bottom half handler.
|
|
*/
|
|
int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
|
|
int wait)
|
|
{
|
|
struct call_data_struct data;
|
|
int cpus;
|
|
|
|
/* Holding any lock stops cpus from going down. */
|
|
spin_lock(&call_lock);
|
|
cpus = num_online_cpus() - 1;
|
|
if (!cpus) {
|
|
spin_unlock(&call_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Can deadlock when called with interrupts disabled */
|
|
WARN_ON(irqs_disabled());
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
atomic_set(&data.started, 0);
|
|
data.wait = wait;
|
|
if (wait)
|
|
atomic_set(&data.finished, 0);
|
|
|
|
call_data = &data;
|
|
mb();
|
|
|
|
/* Send a message to all other CPUs and wait for them to respond */
|
|
send_IPI_allbutself(CALL_FUNCTION_VECTOR);
|
|
|
|
/* Wait for response */
|
|
while (atomic_read(&data.started) != cpus)
|
|
cpu_relax();
|
|
|
|
if (wait)
|
|
while (atomic_read(&data.finished) != cpus)
|
|
cpu_relax();
|
|
spin_unlock(&call_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(smp_call_function);
|
|
|
|
static void stop_this_cpu (void * dummy)
|
|
{
|
|
/*
|
|
* Remove this CPU:
|
|
*/
|
|
cpu_clear(smp_processor_id(), cpu_online_map);
|
|
local_irq_disable();
|
|
disable_local_APIC();
|
|
if (cpu_data[smp_processor_id()].hlt_works_ok)
|
|
for(;;) halt();
|
|
for (;;);
|
|
}
|
|
|
|
/*
|
|
* this function calls the 'stop' function on all other CPUs in the system.
|
|
*/
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
smp_call_function(stop_this_cpu, NULL, 1, 0);
|
|
|
|
local_irq_disable();
|
|
disable_local_APIC();
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* Reschedule call back. Nothing to do,
|
|
* all the work is done automatically when
|
|
* we return from the interrupt.
|
|
*/
|
|
fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
fastcall void smp_call_function_interrupt(struct pt_regs *regs)
|
|
{
|
|
void (*func) (void *info) = call_data->func;
|
|
void *info = call_data->info;
|
|
int wait = call_data->wait;
|
|
|
|
ack_APIC_irq();
|
|
/*
|
|
* Notify initiating CPU that I've grabbed the data and am
|
|
* about to execute the function
|
|
*/
|
|
mb();
|
|
atomic_inc(&call_data->started);
|
|
/*
|
|
* At this point the info structure may be out of scope unless wait==1
|
|
*/
|
|
irq_enter();
|
|
(*func)(info);
|
|
irq_exit();
|
|
|
|
if (wait) {
|
|
mb();
|
|
atomic_inc(&call_data->finished);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this function sends a 'generic call function' IPI to one other CPU
|
|
* in the system.
|
|
*
|
|
* cpu is a standard Linux logical CPU number.
|
|
*/
|
|
static void
|
|
__smp_call_function_single(int cpu, void (*func) (void *info), void *info,
|
|
int nonatomic, int wait)
|
|
{
|
|
struct call_data_struct data;
|
|
int cpus = 1;
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
atomic_set(&data.started, 0);
|
|
data.wait = wait;
|
|
if (wait)
|
|
atomic_set(&data.finished, 0);
|
|
|
|
call_data = &data;
|
|
wmb();
|
|
/* Send a message to all other CPUs and wait for them to respond */
|
|
send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
|
|
|
|
/* Wait for response */
|
|
while (atomic_read(&data.started) != cpus)
|
|
cpu_relax();
|
|
|
|
if (!wait)
|
|
return;
|
|
|
|
while (atomic_read(&data.finished) != cpus)
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* smp_call_function_single - Run a function on another CPU
|
|
* @func: The function to run. This must be fast and non-blocking.
|
|
* @info: An arbitrary pointer to pass to the function.
|
|
* @nonatomic: Currently unused.
|
|
* @wait: If true, wait until function has completed on other CPUs.
|
|
*
|
|
* Retrurns 0 on success, else a negative status code.
|
|
*
|
|
* Does not return until the remote CPU is nearly ready to execute <func>
|
|
* or is or has executed.
|
|
*/
|
|
|
|
int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
|
|
int nonatomic, int wait)
|
|
{
|
|
/* prevent preemption and reschedule on another processor */
|
|
int me = get_cpu();
|
|
if (cpu == me) {
|
|
WARN_ON(1);
|
|
put_cpu();
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Can deadlock when called with interrupts disabled */
|
|
WARN_ON(irqs_disabled());
|
|
|
|
spin_lock_bh(&call_lock);
|
|
__smp_call_function_single(cpu, func, info, nonatomic, wait);
|
|
spin_unlock_bh(&call_lock);
|
|
put_cpu();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(smp_call_function_single);
|
|
|
|
static int convert_apicid_to_cpu(int apic_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (x86_cpu_to_apicid[i] == apic_id)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int safe_smp_processor_id(void)
|
|
{
|
|
int apicid, cpuid;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_APIC))
|
|
return 0;
|
|
|
|
apicid = hard_smp_processor_id();
|
|
if (apicid == BAD_APICID)
|
|
return 0;
|
|
|
|
cpuid = convert_apicid_to_cpu(apicid);
|
|
|
|
return cpuid >= 0 ? cpuid : 0;
|
|
}
|
|
|