You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/ata/libata-scsi.c

3357 lines
84 KiB

/*
* libata-scsi.c - helper library for ATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from
* - http://www.t10.org/
* - http://www.t13.org/
*
*/
#include <linux/kernel.h>
#include <linux/blkdev.h>
#include <linux/spinlock.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport.h>
#include <linux/libata.h>
#include <linux/hdreg.h>
#include <asm/uaccess.h>
#include "libata.h"
#define SECTOR_SIZE 512
typedef unsigned int (*ata_xlat_func_t)(struct ata_queued_cmd *qc);
static struct ata_device * __ata_scsi_find_dev(struct ata_port *ap,
const struct scsi_device *scsidev);
static struct ata_device * ata_scsi_find_dev(struct ata_port *ap,
const struct scsi_device *scsidev);
static int ata_scsi_user_scan(struct Scsi_Host *shost, unsigned int channel,
unsigned int id, unsigned int lun);
#define RW_RECOVERY_MPAGE 0x1
#define RW_RECOVERY_MPAGE_LEN 12
#define CACHE_MPAGE 0x8
#define CACHE_MPAGE_LEN 20
#define CONTROL_MPAGE 0xa
#define CONTROL_MPAGE_LEN 12
#define ALL_MPAGES 0x3f
#define ALL_SUB_MPAGES 0xff
static const u8 def_rw_recovery_mpage[] = {
RW_RECOVERY_MPAGE,
RW_RECOVERY_MPAGE_LEN - 2,
(1 << 7) | /* AWRE, sat-r06 say it shall be 0 */
(1 << 6), /* ARRE (auto read reallocation) */
0, /* read retry count */
0, 0, 0, 0,
0, /* write retry count */
0, 0, 0
};
static const u8 def_cache_mpage[CACHE_MPAGE_LEN] = {
CACHE_MPAGE,
CACHE_MPAGE_LEN - 2,
0, /* contains WCE, needs to be 0 for logic */
0, 0, 0, 0, 0, 0, 0, 0, 0,
0, /* contains DRA, needs to be 0 for logic */
0, 0, 0, 0, 0, 0, 0
};
static const u8 def_control_mpage[CONTROL_MPAGE_LEN] = {
CONTROL_MPAGE,
CONTROL_MPAGE_LEN - 2,
2, /* DSENSE=0, GLTSD=1 */
0, /* [QAM+QERR may be 1, see 05-359r1] */
0, 0, 0, 0, 0xff, 0xff,
0, 30 /* extended self test time, see 05-359r1 */
};
/*
* libata transport template. libata doesn't do real transport stuff.
* It just needs the eh_timed_out hook.
*/
struct scsi_transport_template ata_scsi_transport_template = {
.eh_strategy_handler = ata_scsi_error,
.eh_timed_out = ata_scsi_timed_out,
.user_scan = ata_scsi_user_scan,
};
static void ata_scsi_invalid_field(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x24, 0x0);
/* "Invalid field in cbd" */
done(cmd);
}
/**
* ata_std_bios_param - generic bios head/sector/cylinder calculator used by sd.
* @sdev: SCSI device for which BIOS geometry is to be determined
* @bdev: block device associated with @sdev
* @capacity: capacity of SCSI device
* @geom: location to which geometry will be output
*
* Generic bios head/sector/cylinder calculator
* used by sd. Most BIOSes nowadays expect a XXX/255/16 (CHS)
* mapping. Some situations may arise where the disk is not
* bootable if this is not used.
*
* LOCKING:
* Defined by the SCSI layer. We don't really care.
*
* RETURNS:
* Zero.
*/
int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int geom[])
{
geom[0] = 255;
geom[1] = 63;
sector_div(capacity, 255*63);
geom[2] = capacity;
return 0;
}
/**
* ata_get_identity - Handler for HDIO_GET_IDENTITY ioctl
* @sdev: SCSI device to get identify data for
* @arg: User buffer area for identify data
*
* LOCKING:
* Defined by the SCSI layer. We don't really care.
*
* RETURNS:
* Zero on success, negative errno on error.
*/
static int ata_get_identity(struct scsi_device *sdev, void __user *arg)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *dev = ata_scsi_find_dev(ap, sdev);
u16 __user *dst = arg;
char buf[40];
if (!dev)
return -ENOMSG;
if (copy_to_user(dst, dev->id, ATA_ID_WORDS * sizeof(u16)))
return -EFAULT;
ata_id_string(dev->id, buf, ATA_ID_PROD, ATA_ID_PROD_LEN);
if (copy_to_user(dst + ATA_ID_PROD, buf, ATA_ID_PROD_LEN))
return -EFAULT;
ata_id_string(dev->id, buf, ATA_ID_FW_REV, ATA_ID_FW_REV_LEN);
if (copy_to_user(dst + ATA_ID_FW_REV, buf, ATA_ID_FW_REV_LEN))
return -EFAULT;
ata_id_string(dev->id, buf, ATA_ID_SERNO, ATA_ID_SERNO_LEN);
if (copy_to_user(dst + ATA_ID_SERNO, buf, ATA_ID_SERNO_LEN))
return -EFAULT;
return 0;
}
/**
* ata_cmd_ioctl - Handler for HDIO_DRIVE_CMD ioctl
* @scsidev: Device to which we are issuing command
* @arg: User provided data for issuing command
*
* LOCKING:
* Defined by the SCSI layer. We don't really care.
*
* RETURNS:
* Zero on success, negative errno on error.
*/
int ata_cmd_ioctl(struct scsi_device *scsidev, void __user *arg)
{
int rc = 0;
u8 scsi_cmd[MAX_COMMAND_SIZE];
u8 args[4], *argbuf = NULL, *sensebuf = NULL;
int argsize = 0;
enum dma_data_direction data_dir;
int cmd_result;
if (arg == NULL)
return -EINVAL;
if (copy_from_user(args, arg, sizeof(args)))
return -EFAULT;
sensebuf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
if (!sensebuf)
return -ENOMEM;
memset(scsi_cmd, 0, sizeof(scsi_cmd));
if (args[3]) {
argsize = SECTOR_SIZE * args[3];
argbuf = kmalloc(argsize, GFP_KERNEL);
if (argbuf == NULL) {
rc = -ENOMEM;
goto error;
}
scsi_cmd[1] = (4 << 1); /* PIO Data-in */
scsi_cmd[2] = 0x0e; /* no off.line or cc, read from dev,
block count in sector count field */
data_dir = DMA_FROM_DEVICE;
} else {
scsi_cmd[1] = (3 << 1); /* Non-data */
scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */
data_dir = DMA_NONE;
}
scsi_cmd[0] = ATA_16;
scsi_cmd[4] = args[2];
if (args[0] == WIN_SMART) { /* hack -- ide driver does this too... */
scsi_cmd[6] = args[3];
scsi_cmd[8] = args[1];
scsi_cmd[10] = 0x4f;
scsi_cmd[12] = 0xc2;
} else {
scsi_cmd[6] = args[1];
}
scsi_cmd[14] = args[0];
/* Good values for timeout and retries? Values below
from scsi_ioctl_send_command() for default case... */
cmd_result = scsi_execute(scsidev, scsi_cmd, data_dir, argbuf, argsize,
sensebuf, (10*HZ), 5, 0);
if (driver_byte(cmd_result) == DRIVER_SENSE) {/* sense data available */
u8 *desc = sensebuf + 8;
cmd_result &= ~(0xFF<<24); /* DRIVER_SENSE is not an error */
/* If we set cc then ATA pass-through will cause a
* check condition even if no error. Filter that. */
if (cmd_result & SAM_STAT_CHECK_CONDITION) {
struct scsi_sense_hdr sshdr;
scsi_normalize_sense(sensebuf, SCSI_SENSE_BUFFERSIZE,
&sshdr);
if (sshdr.sense_key==0 &&
sshdr.asc==0 && sshdr.ascq==0)
cmd_result &= ~SAM_STAT_CHECK_CONDITION;
}
/* Send userspace a few ATA registers (same as drivers/ide) */
if (sensebuf[0] == 0x72 && /* format is "descriptor" */
desc[0] == 0x09 ) { /* code is "ATA Descriptor" */
args[0] = desc[13]; /* status */
args[1] = desc[3]; /* error */
args[2] = desc[5]; /* sector count (0:7) */
if (copy_to_user(arg, args, sizeof(args)))
rc = -EFAULT;
}
}
if (cmd_result) {
rc = -EIO;
goto error;
}
if ((argbuf)
&& copy_to_user(arg + sizeof(args), argbuf, argsize))
rc = -EFAULT;
error:
kfree(sensebuf);
kfree(argbuf);
return rc;
}
/**
* ata_task_ioctl - Handler for HDIO_DRIVE_TASK ioctl
* @scsidev: Device to which we are issuing command
* @arg: User provided data for issuing command
*
* LOCKING:
* Defined by the SCSI layer. We don't really care.
*
* RETURNS:
* Zero on success, negative errno on error.
*/
int ata_task_ioctl(struct scsi_device *scsidev, void __user *arg)
{
int rc = 0;
u8 scsi_cmd[MAX_COMMAND_SIZE];
u8 args[7], *sensebuf = NULL;
int cmd_result;
if (arg == NULL)
return -EINVAL;
if (copy_from_user(args, arg, sizeof(args)))
return -EFAULT;
sensebuf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
if (!sensebuf)
return -ENOMEM;
memset(scsi_cmd, 0, sizeof(scsi_cmd));
scsi_cmd[0] = ATA_16;
scsi_cmd[1] = (3 << 1); /* Non-data */
scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */
scsi_cmd[4] = args[1];
scsi_cmd[6] = args[2];
scsi_cmd[8] = args[3];
scsi_cmd[10] = args[4];
scsi_cmd[12] = args[5];
scsi_cmd[14] = args[0];
/* Good values for timeout and retries? Values below
from scsi_ioctl_send_command() for default case... */
cmd_result = scsi_execute(scsidev, scsi_cmd, DMA_NONE, NULL, 0,
sensebuf, (10*HZ), 5, 0);
if (driver_byte(cmd_result) == DRIVER_SENSE) {/* sense data available */
u8 *desc = sensebuf + 8;
cmd_result &= ~(0xFF<<24); /* DRIVER_SENSE is not an error */
/* If we set cc then ATA pass-through will cause a
* check condition even if no error. Filter that. */
if (cmd_result & SAM_STAT_CHECK_CONDITION) {
struct scsi_sense_hdr sshdr;
scsi_normalize_sense(sensebuf, SCSI_SENSE_BUFFERSIZE,
&sshdr);
if (sshdr.sense_key==0 &&
sshdr.asc==0 && sshdr.ascq==0)
cmd_result &= ~SAM_STAT_CHECK_CONDITION;
}
/* Send userspace ATA registers */
if (sensebuf[0] == 0x72 && /* format is "descriptor" */
desc[0] == 0x09) {/* code is "ATA Descriptor" */
args[0] = desc[13]; /* status */
args[1] = desc[3]; /* error */
args[2] = desc[5]; /* sector count (0:7) */
args[3] = desc[7]; /* lbal */
args[4] = desc[9]; /* lbam */
args[5] = desc[11]; /* lbah */
args[6] = desc[12]; /* select */
if (copy_to_user(arg, args, sizeof(args)))
rc = -EFAULT;
}
}
if (cmd_result) {
rc = -EIO;
goto error;
}
error:
kfree(sensebuf);
return rc;
}
int ata_scsi_ioctl(struct scsi_device *scsidev, int cmd, void __user *arg)
{
int val = -EINVAL, rc = -EINVAL;
switch (cmd) {
case ATA_IOC_GET_IO32:
val = 0;
if (copy_to_user(arg, &val, 1))
return -EFAULT;
return 0;
case ATA_IOC_SET_IO32:
val = (unsigned long) arg;
if (val != 0)
return -EINVAL;
return 0;
case HDIO_GET_IDENTITY:
return ata_get_identity(scsidev, arg);
case HDIO_DRIVE_CMD:
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
return ata_cmd_ioctl(scsidev, arg);
case HDIO_DRIVE_TASK:
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
return ata_task_ioctl(scsidev, arg);
default:
rc = -ENOTTY;
break;
}
return rc;
}
/**
* ata_scsi_qc_new - acquire new ata_queued_cmd reference
* @dev: ATA device to which the new command is attached
* @cmd: SCSI command that originated this ATA command
* @done: SCSI command completion function
*
* Obtain a reference to an unused ata_queued_cmd structure,
* which is the basic libata structure representing a single
* ATA command sent to the hardware.
*
* If a command was available, fill in the SCSI-specific
* portions of the structure with information on the
* current command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Command allocated, or %NULL if none available.
*/
static struct ata_queued_cmd *ata_scsi_qc_new(struct ata_device *dev,
struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
struct ata_queued_cmd *qc;
qc = ata_qc_new_init(dev);
if (qc) {
qc->scsicmd = cmd;
qc->scsidone = done;
if (cmd->use_sg) {
qc->__sg = (struct scatterlist *) cmd->request_buffer;
qc->n_elem = cmd->use_sg;
} else if (cmd->request_bufflen) {
qc->__sg = &qc->sgent;
qc->n_elem = 1;
}
} else {
cmd->result = (DID_OK << 16) | (QUEUE_FULL << 1);
done(cmd);
}
return qc;
}
/**
* ata_dump_status - user friendly display of error info
* @id: id of the port in question
* @tf: ptr to filled out taskfile
*
* Decode and dump the ATA error/status registers for the user so
* that they have some idea what really happened at the non
* make-believe layer.
*
* LOCKING:
* inherited from caller
*/
static void ata_dump_status(unsigned id, struct ata_taskfile *tf)
{
u8 stat = tf->command, err = tf->feature;
printk(KERN_WARNING "ata%u: status=0x%02x { ", id, stat);
if (stat & ATA_BUSY) {
printk("Busy }\n"); /* Data is not valid in this case */
} else {
if (stat & 0x40) printk("DriveReady ");
if (stat & 0x20) printk("DeviceFault ");
if (stat & 0x10) printk("SeekComplete ");
if (stat & 0x08) printk("DataRequest ");
if (stat & 0x04) printk("CorrectedError ");
if (stat & 0x02) printk("Index ");
if (stat & 0x01) printk("Error ");
printk("}\n");
if (err) {
printk(KERN_WARNING "ata%u: error=0x%02x { ", id, err);
if (err & 0x04) printk("DriveStatusError ");
if (err & 0x80) {
if (err & 0x04) printk("BadCRC ");
else printk("Sector ");
}
if (err & 0x40) printk("UncorrectableError ");
if (err & 0x10) printk("SectorIdNotFound ");
if (err & 0x02) printk("TrackZeroNotFound ");
if (err & 0x01) printk("AddrMarkNotFound ");
printk("}\n");
}
}
}
/**
* ata_scsi_device_suspend - suspend ATA device associated with sdev
* @sdev: the SCSI device to suspend
* @mesg: target power management message
*
* Request suspend EH action on the ATA device associated with
* @sdev and wait for the operation to complete.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_scsi_device_suspend(struct scsi_device *sdev, pm_message_t mesg)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *dev = ata_scsi_find_dev(ap, sdev);
unsigned long flags;
unsigned int action;
int rc = 0;
if (!dev)
goto out;
spin_lock_irqsave(ap->lock, flags);
/* wait for the previous resume to complete */
while (dev->flags & ATA_DFLAG_SUSPENDED) {
spin_unlock_irqrestore(ap->lock, flags);
ata_port_wait_eh(ap);
spin_lock_irqsave(ap->lock, flags);
}
/* if @sdev is already detached, nothing to do */
if (sdev->sdev_state == SDEV_OFFLINE ||
sdev->sdev_state == SDEV_CANCEL || sdev->sdev_state == SDEV_DEL)
goto out_unlock;
/* request suspend */
action = ATA_EH_SUSPEND;
if (mesg.event != PM_EVENT_SUSPEND)
action |= ATA_EH_PM_FREEZE;
ap->eh_info.dev_action[dev->devno] |= action;
ap->eh_info.flags |= ATA_EHI_QUIET;
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
/* wait for EH to do the job */
ata_port_wait_eh(ap);
spin_lock_irqsave(ap->lock, flags);
/* If @sdev is still attached but the associated ATA device
* isn't suspended, the operation failed.
*/
if (sdev->sdev_state != SDEV_OFFLINE &&
sdev->sdev_state != SDEV_CANCEL && sdev->sdev_state != SDEV_DEL &&
!(dev->flags & ATA_DFLAG_SUSPENDED))
rc = -EIO;
out_unlock:
spin_unlock_irqrestore(ap->lock, flags);
out:
if (rc == 0)
sdev->sdev_gendev.power.power_state = mesg;
return rc;
}
/**
* ata_scsi_device_resume - resume ATA device associated with sdev
* @sdev: the SCSI device to resume
*
* Request resume EH action on the ATA device associated with
* @sdev and return immediately. This enables parallel
* wakeup/spinup of devices.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0.
*/
int ata_scsi_device_resume(struct scsi_device *sdev)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *dev = ata_scsi_find_dev(ap, sdev);
struct ata_eh_info *ehi = &ap->eh_info;
unsigned long flags;
unsigned int action;
if (!dev)
goto out;
spin_lock_irqsave(ap->lock, flags);
/* if @sdev is already detached, nothing to do */
if (sdev->sdev_state == SDEV_OFFLINE ||
sdev->sdev_state == SDEV_CANCEL || sdev->sdev_state == SDEV_DEL)
goto out_unlock;
/* request resume */
action = ATA_EH_RESUME;
if (sdev->sdev_gendev.power.power_state.event == PM_EVENT_SUSPEND)
__ata_ehi_hotplugged(ehi);
else
action |= ATA_EH_PM_FREEZE | ATA_EH_SOFTRESET;
ehi->dev_action[dev->devno] |= action;
/* We don't want autopsy and verbose EH messages. Disable
* those if we're the only device on this link.
*/
if (ata_port_max_devices(ap) == 1)
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
ata_port_schedule_eh(ap);
out_unlock:
spin_unlock_irqrestore(ap->lock, flags);
out:
sdev->sdev_gendev.power.power_state = PMSG_ON;
return 0;
}
/**
* ata_to_sense_error - convert ATA error to SCSI error
* @id: ATA device number
* @drv_stat: value contained in ATA status register
* @drv_err: value contained in ATA error register
* @sk: the sense key we'll fill out
* @asc: the additional sense code we'll fill out
* @ascq: the additional sense code qualifier we'll fill out
* @verbose: be verbose
*
* Converts an ATA error into a SCSI error. Fill out pointers to
* SK, ASC, and ASCQ bytes for later use in fixed or descriptor
* format sense blocks.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 *sk,
u8 *asc, u8 *ascq, int verbose)
{
int i;
/* Based on the 3ware driver translation table */
static const unsigned char sense_table[][4] = {
/* BBD|ECC|ID|MAR */
{0xd1, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command
/* BBD|ECC|ID */
{0xd0, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command
/* ECC|MC|MARK */
{0x61, HARDWARE_ERROR, 0x00, 0x00}, // Device fault Hardware error
/* ICRC|ABRT */ /* NB: ICRC & !ABRT is BBD */
{0x84, ABORTED_COMMAND, 0x47, 0x00}, // Data CRC error SCSI parity error
/* MC|ID|ABRT|TRK0|MARK */
{0x37, NOT_READY, 0x04, 0x00}, // Unit offline Not ready
/* MCR|MARK */
{0x09, NOT_READY, 0x04, 0x00}, // Unrecovered disk error Not ready
/* Bad address mark */
{0x01, MEDIUM_ERROR, 0x13, 0x00}, // Address mark not found Address mark not found for data field
/* TRK0 */
{0x02, HARDWARE_ERROR, 0x00, 0x00}, // Track 0 not found Hardware error
/* Abort & !ICRC */
{0x04, ABORTED_COMMAND, 0x00, 0x00}, // Aborted command Aborted command
/* Media change request */
{0x08, NOT_READY, 0x04, 0x00}, // Media change request FIXME: faking offline
/* SRV */
{0x10, ABORTED_COMMAND, 0x14, 0x00}, // ID not found Recorded entity not found
/* Media change */
{0x08, NOT_READY, 0x04, 0x00}, // Media change FIXME: faking offline
/* ECC */
{0x40, MEDIUM_ERROR, 0x11, 0x04}, // Uncorrectable ECC error Unrecovered read error
/* BBD - block marked bad */
{0x80, MEDIUM_ERROR, 0x11, 0x04}, // Block marked bad Medium error, unrecovered read error
{0xFF, 0xFF, 0xFF, 0xFF}, // END mark
};
static const unsigned char stat_table[][4] = {
/* Must be first because BUSY means no other bits valid */
{0x80, ABORTED_COMMAND, 0x47, 0x00}, // Busy, fake parity for now
{0x20, HARDWARE_ERROR, 0x00, 0x00}, // Device fault
{0x08, ABORTED_COMMAND, 0x47, 0x00}, // Timed out in xfer, fake parity for now
{0x04, RECOVERED_ERROR, 0x11, 0x00}, // Recovered ECC error Medium error, recovered
{0xFF, 0xFF, 0xFF, 0xFF}, // END mark
};
/*
* Is this an error we can process/parse
*/
if (drv_stat & ATA_BUSY) {
drv_err = 0; /* Ignore the err bits, they're invalid */
}
if (drv_err) {
/* Look for drv_err */
for (i = 0; sense_table[i][0] != 0xFF; i++) {
/* Look for best matches first */
if ((sense_table[i][0] & drv_err) ==
sense_table[i][0]) {
*sk = sense_table[i][1];
*asc = sense_table[i][2];
*ascq = sense_table[i][3];
goto translate_done;
}
}
/* No immediate match */
if (verbose)
printk(KERN_WARNING "ata%u: no sense translation for "
"error 0x%02x\n", id, drv_err);
}
/* Fall back to interpreting status bits */
for (i = 0; stat_table[i][0] != 0xFF; i++) {
if (stat_table[i][0] & drv_stat) {
*sk = stat_table[i][1];
*asc = stat_table[i][2];
*ascq = stat_table[i][3];
goto translate_done;
}
}
/* No error? Undecoded? */
if (verbose)
printk(KERN_WARNING "ata%u: no sense translation for "
"status: 0x%02x\n", id, drv_stat);
/* We need a sensible error return here, which is tricky, and one
that won't cause people to do things like return a disk wrongly */
*sk = ABORTED_COMMAND;
*asc = 0x00;
*ascq = 0x00;
translate_done:
if (verbose)
printk(KERN_ERR "ata%u: translated ATA stat/err 0x%02x/%02x "
"to SCSI SK/ASC/ASCQ 0x%x/%02x/%02x\n",
id, drv_stat, drv_err, *sk, *asc, *ascq);
return;
}
/*
* ata_gen_passthru_sense - Generate check condition sense block.
* @qc: Command that completed.
*
* This function is specific to the ATA descriptor format sense
* block specified for the ATA pass through commands. Regardless
* of whether the command errored or not, return a sense
* block. Copy all controller registers into the sense
* block. Clear sense key, ASC & ASCQ if there is no error.
*
* LOCKING:
* None.
*/
static void ata_gen_passthru_sense(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *cmd = qc->scsicmd;
struct ata_taskfile *tf = &qc->result_tf;
unsigned char *sb = cmd->sense_buffer;
unsigned char *desc = sb + 8;
int verbose = qc->ap->ops->error_handler == NULL;
memset(sb, 0, SCSI_SENSE_BUFFERSIZE);
cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
/*
* Use ata_to_sense_error() to map status register bits
* onto sense key, asc & ascq.
*/
if (qc->err_mask ||
tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) {
ata_to_sense_error(qc->ap->id, tf->command, tf->feature,
&sb[1], &sb[2], &sb[3], verbose);
sb[1] &= 0x0f;
}
/*
* Sense data is current and format is descriptor.
*/
sb[0] = 0x72;
desc[0] = 0x09;
/* set length of additional sense data */
sb[7] = 14;
desc[1] = 12;
/*
* Copy registers into sense buffer.
*/
desc[2] = 0x00;
desc[3] = tf->feature; /* == error reg */
desc[5] = tf->nsect;
desc[7] = tf->lbal;
desc[9] = tf->lbam;
desc[11] = tf->lbah;
desc[12] = tf->device;
desc[13] = tf->command; /* == status reg */
/*
* Fill in Extend bit, and the high order bytes
* if applicable.
*/
if (tf->flags & ATA_TFLAG_LBA48) {
desc[2] |= 0x01;
desc[4] = tf->hob_nsect;
desc[6] = tf->hob_lbal;
desc[8] = tf->hob_lbam;
desc[10] = tf->hob_lbah;
}
}
/**
* ata_gen_ata_sense - generate a SCSI fixed sense block
* @qc: Command that we are erroring out
*
* Generate sense block for a failed ATA command @qc. Descriptor
* format is used to accomodate LBA48 block address.
*
* LOCKING:
* None.
*/
static void ata_gen_ata_sense(struct ata_queued_cmd *qc)
{
struct ata_device *dev = qc->dev;
struct scsi_cmnd *cmd = qc->scsicmd;
struct ata_taskfile *tf = &qc->result_tf;
unsigned char *sb = cmd->sense_buffer;
unsigned char *desc = sb + 8;
int verbose = qc->ap->ops->error_handler == NULL;
u64 block;
memset(sb, 0, SCSI_SENSE_BUFFERSIZE);
cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
/* sense data is current and format is descriptor */
sb[0] = 0x72;
/* Use ata_to_sense_error() to map status register bits
* onto sense key, asc & ascq.
*/
if (qc->err_mask ||
tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) {
ata_to_sense_error(qc->ap->id, tf->command, tf->feature,
&sb[1], &sb[2], &sb[3], verbose);
sb[1] &= 0x0f;
}
block = ata_tf_read_block(&qc->result_tf, dev);
/* information sense data descriptor */
sb[7] = 12;
desc[0] = 0x00;
desc[1] = 10;
desc[2] |= 0x80; /* valid */
desc[6] = block >> 40;
desc[7] = block >> 32;
desc[8] = block >> 24;
desc[9] = block >> 16;
desc[10] = block >> 8;
desc[11] = block;
}
static void ata_scsi_sdev_config(struct scsi_device *sdev)
{
sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1;
}
static void ata_scsi_dev_config(struct scsi_device *sdev,
struct ata_device *dev)
{
/* configure max sectors */
blk_queue_max_sectors(sdev->request_queue, dev->max_sectors);
/* SATA DMA transfers must be multiples of 4 byte, so
* we need to pad ATAPI transfers using an extra sg.
* Decrement max hw segments accordingly.
*/
if (dev->class == ATA_DEV_ATAPI) {
request_queue_t *q = sdev->request_queue;
blk_queue_max_hw_segments(q, q->max_hw_segments - 1);
}
if (dev->flags & ATA_DFLAG_NCQ) {
int depth;
depth = min(sdev->host->can_queue, ata_id_queue_depth(dev->id));
depth = min(ATA_MAX_QUEUE - 1, depth);
scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, depth);
}
}
/**
* ata_scsi_slave_config - Set SCSI device attributes
* @sdev: SCSI device to examine
*
* This is called before we actually start reading
* and writing to the device, to configure certain
* SCSI mid-layer behaviors.
*
* LOCKING:
* Defined by SCSI layer. We don't really care.
*/
int ata_scsi_slave_config(struct scsi_device *sdev)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *dev = __ata_scsi_find_dev(ap, sdev);
ata_scsi_sdev_config(sdev);
blk_queue_max_phys_segments(sdev->request_queue, LIBATA_MAX_PRD);
if (dev)
ata_scsi_dev_config(sdev, dev);
return 0; /* scsi layer doesn't check return value, sigh */
}
/**
* ata_scsi_slave_destroy - SCSI device is about to be destroyed
* @sdev: SCSI device to be destroyed
*
* @sdev is about to be destroyed for hot/warm unplugging. If
* this unplugging was initiated by libata as indicated by NULL
* dev->sdev, this function doesn't have to do anything.
* Otherwise, SCSI layer initiated warm-unplug is in progress.
* Clear dev->sdev, schedule the device for ATA detach and invoke
* EH.
*
* LOCKING:
* Defined by SCSI layer. We don't really care.
*/
void ata_scsi_slave_destroy(struct scsi_device *sdev)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
unsigned long flags;
struct ata_device *dev;
if (!ap->ops->error_handler)
return;
spin_lock_irqsave(ap->lock, flags);
dev = __ata_scsi_find_dev(ap, sdev);
if (dev && dev->sdev) {
/* SCSI device already in CANCEL state, no need to offline it */
dev->sdev = NULL;
dev->flags |= ATA_DFLAG_DETACH;
ata_port_schedule_eh(ap);
}
spin_unlock_irqrestore(ap->lock, flags);
}
/**
* ata_scsi_change_queue_depth - SCSI callback for queue depth config
* @sdev: SCSI device to configure queue depth for
* @queue_depth: new queue depth
*
* This is libata standard hostt->change_queue_depth callback.
* SCSI will call into this callback when user tries to set queue
* depth via sysfs.
*
* LOCKING:
* SCSI layer (we don't care)
*
* RETURNS:
* Newly configured queue depth.
*/
int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *dev;
unsigned long flags;
int max_depth;
if (queue_depth < 1)
return sdev->queue_depth;
dev = ata_scsi_find_dev(ap, sdev);
if (!dev || !ata_dev_enabled(dev))
return sdev->queue_depth;
max_depth = min(sdev->host->can_queue, ata_id_queue_depth(dev->id));
max_depth = min(ATA_MAX_QUEUE - 1, max_depth);
if (queue_depth > max_depth)
queue_depth = max_depth;
scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, queue_depth);
spin_lock_irqsave(ap->lock, flags);
if (queue_depth > 1)
dev->flags &= ~ATA_DFLAG_NCQ_OFF;
else
dev->flags |= ATA_DFLAG_NCQ_OFF;
spin_unlock_irqrestore(ap->lock, flags);
return queue_depth;
}
/**
* ata_scsi_start_stop_xlat - Translate SCSI START STOP UNIT command
* @qc: Storage for translated ATA taskfile
*
* Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY
* (to start). Perhaps these commands should be preceded by
* CHECK POWER MODE to see what power mode the device is already in.
* [See SAT revision 5 at www.t10.org]
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *scmd = qc->scsicmd;
struct ata_taskfile *tf = &qc->tf;
const u8 *cdb = scmd->cmnd;
if (scmd->cmd_len < 5)
goto invalid_fld;
tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
tf->protocol = ATA_PROT_NODATA;
if (cdb[1] & 0x1) {
; /* ignore IMMED bit, violates sat-r05 */
}
if (cdb[4] & 0x2)
goto invalid_fld; /* LOEJ bit set not supported */
if (((cdb[4] >> 4) & 0xf) != 0)
goto invalid_fld; /* power conditions not supported */
if (cdb[4] & 0x1) {
tf->nsect = 1; /* 1 sector, lba=0 */
if (qc->dev->flags & ATA_DFLAG_LBA) {
tf->flags |= ATA_TFLAG_LBA;
tf->lbah = 0x0;
tf->lbam = 0x0;
tf->lbal = 0x0;
tf->device |= ATA_LBA;
} else {
/* CHS */
tf->lbal = 0x1; /* sect */
tf->lbam = 0x0; /* cyl low */
tf->lbah = 0x0; /* cyl high */
}
tf->command = ATA_CMD_VERIFY; /* READ VERIFY */
} else
/* Issue ATA STANDBY IMMEDIATE command */
tf->command = ATA_CMD_STANDBYNOW1;
/*
* Standby and Idle condition timers could be implemented but that
* would require libata to implement the Power condition mode page
* and allow the user to change it. Changing mode pages requires
* MODE SELECT to be implemented.
*/
return 0;
invalid_fld:
ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0);
/* "Invalid field in cbd" */
return 1;
}
/**
* ata_scsi_flush_xlat - Translate SCSI SYNCHRONIZE CACHE command
* @qc: Storage for translated ATA taskfile
*
* Sets up an ATA taskfile to issue FLUSH CACHE or
* FLUSH CACHE EXT.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc)
{
struct ata_taskfile *tf = &qc->tf;
tf->flags |= ATA_TFLAG_DEVICE;
tf->protocol = ATA_PROT_NODATA;
if (qc->dev->flags & ATA_DFLAG_FLUSH_EXT)
tf->command = ATA_CMD_FLUSH_EXT;
else
tf->command = ATA_CMD_FLUSH;
return 0;
}
/**
* scsi_6_lba_len - Get LBA and transfer length
* @cdb: SCSI command to translate
*
* Calculate LBA and transfer length for 6-byte commands.
*
* RETURNS:
* @plba: the LBA
* @plen: the transfer length
*/
static void scsi_6_lba_len(const u8 *cdb, u64 *plba, u32 *plen)
{
u64 lba = 0;
u32 len = 0;
VPRINTK("six-byte command\n");
lba |= ((u64)cdb[2]) << 8;
lba |= ((u64)cdb[3]);
len |= ((u32)cdb[4]);
*plba = lba;
*plen = len;
}
/**
* scsi_10_lba_len - Get LBA and transfer length
* @cdb: SCSI command to translate
*
* Calculate LBA and transfer length for 10-byte commands.
*
* RETURNS:
* @plba: the LBA
* @plen: the transfer length
*/
static void scsi_10_lba_len(const u8 *cdb, u64 *plba, u32 *plen)
{
u64 lba = 0;
u32 len = 0;
VPRINTK("ten-byte command\n");
lba |= ((u64)cdb[2]) << 24;
lba |= ((u64)cdb[3]) << 16;
lba |= ((u64)cdb[4]) << 8;
lba |= ((u64)cdb[5]);
len |= ((u32)cdb[7]) << 8;
len |= ((u32)cdb[8]);
*plba = lba;
*plen = len;
}
/**
* scsi_16_lba_len - Get LBA and transfer length
* @cdb: SCSI command to translate
*
* Calculate LBA and transfer length for 16-byte commands.
*
* RETURNS:
* @plba: the LBA
* @plen: the transfer length
*/
static void scsi_16_lba_len(const u8 *cdb, u64 *plba, u32 *plen)
{
u64 lba = 0;
u32 len = 0;
VPRINTK("sixteen-byte command\n");
lba |= ((u64)cdb[2]) << 56;
lba |= ((u64)cdb[3]) << 48;
lba |= ((u64)cdb[4]) << 40;
lba |= ((u64)cdb[5]) << 32;
lba |= ((u64)cdb[6]) << 24;
lba |= ((u64)cdb[7]) << 16;
lba |= ((u64)cdb[8]) << 8;
lba |= ((u64)cdb[9]);
len |= ((u32)cdb[10]) << 24;
len |= ((u32)cdb[11]) << 16;
len |= ((u32)cdb[12]) << 8;
len |= ((u32)cdb[13]);
*plba = lba;
*plen = len;
}
/**
* ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one
* @qc: Storage for translated ATA taskfile
*
* Converts SCSI VERIFY command to an ATA READ VERIFY command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *scmd = qc->scsicmd;
struct ata_taskfile *tf = &qc->tf;
struct ata_device *dev = qc->dev;
u64 dev_sectors = qc->dev->n_sectors;
const u8 *cdb = scmd->cmnd;
u64 block;
u32 n_block;
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf->protocol = ATA_PROT_NODATA;
if (cdb[0] == VERIFY) {
if (scmd->cmd_len < 10)
goto invalid_fld;
scsi_10_lba_len(cdb, &block, &n_block);
} else if (cdb[0] == VERIFY_16) {
if (scmd->cmd_len < 16)
goto invalid_fld;
scsi_16_lba_len(cdb, &block, &n_block);
} else
goto invalid_fld;
if (!n_block)
goto nothing_to_do;
if (block >= dev_sectors)
goto out_of_range;
if ((block + n_block) > dev_sectors)
goto out_of_range;
if (dev->flags & ATA_DFLAG_LBA) {
tf->flags |= ATA_TFLAG_LBA;
if (lba_28_ok(block, n_block)) {
/* use LBA28 */
tf->command = ATA_CMD_VERIFY;
tf->device |= (block >> 24) & 0xf;
} else if (lba_48_ok(block, n_block)) {
if (!(dev->flags & ATA_DFLAG_LBA48))
goto out_of_range;
/* use LBA48 */
tf->flags |= ATA_TFLAG_LBA48;
tf->command = ATA_CMD_VERIFY_EXT;
tf->hob_nsect = (n_block >> 8) & 0xff;
tf->hob_lbah = (block >> 40) & 0xff;
tf->hob_lbam = (block >> 32) & 0xff;
tf->hob_lbal = (block >> 24) & 0xff;
} else
/* request too large even for LBA48 */
goto out_of_range;
tf->nsect = n_block & 0xff;
tf->lbah = (block >> 16) & 0xff;
tf->lbam = (block >> 8) & 0xff;
tf->lbal = block & 0xff;
tf->device |= ATA_LBA;
} else {
/* CHS */
u32 sect, head, cyl, track;
if (!lba_28_ok(block, n_block))
goto out_of_range;
/* Convert LBA to CHS */
track = (u32)block / dev->sectors;
cyl = track / dev->heads;
head = track % dev->heads;
sect = (u32)block % dev->sectors + 1;
DPRINTK("block %u track %u cyl %u head %u sect %u\n",
(u32)block, track, cyl, head, sect);
/* Check whether the converted CHS can fit.
Cylinder: 0-65535
Head: 0-15
Sector: 1-255*/
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
goto out_of_range;
tf->command = ATA_CMD_VERIFY;
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
tf->lbal = sect;
tf->lbam = cyl;
tf->lbah = cyl >> 8;
tf->device |= head;
}
return 0;
invalid_fld:
ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0);
/* "Invalid field in cbd" */
return 1;
out_of_range:
ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x21, 0x0);
/* "Logical Block Address out of range" */
return 1;
nothing_to_do:
scmd->result = SAM_STAT_GOOD;
return 1;
}
/**
* ata_scsi_rw_xlat - Translate SCSI r/w command into an ATA one
* @qc: Storage for translated ATA taskfile
*
* Converts any of six SCSI read/write commands into the
* ATA counterpart, including starting sector (LBA),
* sector count, and taking into account the device's LBA48
* support.
*
* Commands %READ_6, %READ_10, %READ_16, %WRITE_6, %WRITE_10, and
* %WRITE_16 are currently supported.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *scmd = qc->scsicmd;
const u8 *cdb = scmd->cmnd;
unsigned int tf_flags = 0;
u64 block;
u32 n_block;
int rc;
if (cdb[0] == WRITE_10 || cdb[0] == WRITE_6 || cdb[0] == WRITE_16)
tf_flags |= ATA_TFLAG_WRITE;
/* Calculate the SCSI LBA, transfer length and FUA. */
switch (cdb[0]) {
case READ_10:
case WRITE_10:
if (unlikely(scmd->cmd_len < 10))
goto invalid_fld;
scsi_10_lba_len(cdb, &block, &n_block);
if (unlikely(cdb[1] & (1 << 3)))
tf_flags |= ATA_TFLAG_FUA;
break;
case READ_6:
case WRITE_6:
if (unlikely(scmd->cmd_len < 6))
goto invalid_fld;
scsi_6_lba_len(cdb, &block, &n_block);
/* for 6-byte r/w commands, transfer length 0
* means 256 blocks of data, not 0 block.
*/
if (!n_block)
n_block = 256;
break;
case READ_16:
case WRITE_16:
if (unlikely(scmd->cmd_len < 16))
goto invalid_fld;
scsi_16_lba_len(cdb, &block, &n_block);
if (unlikely(cdb[1] & (1 << 3)))
tf_flags |= ATA_TFLAG_FUA;
break;
default:
DPRINTK("no-byte command\n");
goto invalid_fld;
}
/* Check and compose ATA command */
if (!n_block)
/* For 10-byte and 16-byte SCSI R/W commands, transfer
* length 0 means transfer 0 block of data.
* However, for ATA R/W commands, sector count 0 means
* 256 or 65536 sectors, not 0 sectors as in SCSI.
*
* WARNING: one or two older ATA drives treat 0 as 0...
*/
goto nothing_to_do;
qc->flags |= ATA_QCFLAG_IO;
qc->nbytes = n_block * ATA_SECT_SIZE;
rc = ata_build_rw_tf(&qc->tf, qc->dev, block, n_block, tf_flags,
qc->tag);
if (likely(rc == 0))
return 0;
if (rc == -ERANGE)
goto out_of_range;
/* treat all other errors as -EINVAL, fall through */
invalid_fld:
ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0);
/* "Invalid field in cbd" */
return 1;
out_of_range:
ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x21, 0x0);
/* "Logical Block Address out of range" */
return 1;
nothing_to_do:
scmd->result = SAM_STAT_GOOD;
return 1;
}
static void ata_scsi_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scsi_cmnd *cmd = qc->scsicmd;
u8 *cdb = cmd->cmnd;
int need_sense = (qc->err_mask != 0);
/* We snoop the SET_FEATURES - Write Cache ON/OFF command, and
* schedule EH_REVALIDATE operation to update the IDENTIFY DEVICE
* cache
*/
if (ap->ops->error_handler &&
!need_sense && (qc->tf.command == ATA_CMD_SET_FEATURES) &&
((qc->tf.feature == SETFEATURES_WC_ON) ||
(qc->tf.feature == SETFEATURES_WC_OFF))) {
ap->eh_info.action |= ATA_EH_REVALIDATE;
ata_port_schedule_eh(ap);
}
/* For ATA pass thru (SAT) commands, generate a sense block if
* user mandated it or if there's an error. Note that if we
* generate because the user forced us to, a check condition
* is generated and the ATA register values are returned
* whether the command completed successfully or not. If there
* was no error, SK, ASC and ASCQ will all be zero.
*/
if (((cdb[0] == ATA_16) || (cdb[0] == ATA_12)) &&
((cdb[2] & 0x20) || need_sense)) {
ata_gen_passthru_sense(qc);
} else {
if (!need_sense) {
cmd->result = SAM_STAT_GOOD;
} else {
/* TODO: decide which descriptor format to use
* for 48b LBA devices and call that here
* instead of the fixed desc, which is only
* good for smaller LBA (and maybe CHS?)
* devices.
*/
ata_gen_ata_sense(qc);
}
}
if (need_sense && !ap->ops->error_handler)
ata_dump_status(ap->id, &qc->result_tf);
qc->scsidone(cmd);
ata_qc_free(qc);
}
/**
* ata_scmd_need_defer - Check whether we need to defer scmd
* @dev: ATA device to which the command is addressed
* @is_io: Is the command IO (and thus possibly NCQ)?
*
* NCQ and non-NCQ commands cannot run together. As upper layer
* only knows the queue depth, we are responsible for maintaining
* exclusion. This function checks whether a new command can be
* issued to @dev.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* 1 if deferring is needed, 0 otherwise.
*/
static int ata_scmd_need_defer(struct ata_device *dev, int is_io)
{
struct ata_port *ap = dev->ap;
if (!(dev->flags & ATA_DFLAG_NCQ))
return 0;
if (is_io) {
if (!ata_tag_valid(ap->active_tag))
return 0;
} else {
if (!ata_tag_valid(ap->active_tag) && !ap->sactive)
return 0;
}
return 1;
}
/**
* ata_scsi_translate - Translate then issue SCSI command to ATA device
* @dev: ATA device to which the command is addressed
* @cmd: SCSI command to execute
* @done: SCSI command completion function
* @xlat_func: Actor which translates @cmd to an ATA taskfile
*
* Our ->queuecommand() function has decided that the SCSI
* command issued can be directly translated into an ATA
* command, rather than handled internally.
*
* This function sets up an ata_queued_cmd structure for the
* SCSI command, and sends that ata_queued_cmd to the hardware.
*
* The xlat_func argument (actor) returns 0 if ready to execute
* ATA command, else 1 to finish translation. If 1 is returned
* then cmd->result (and possibly cmd->sense_buffer) are assumed
* to be set reflecting an error condition or clean (early)
* termination.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* 0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command
* needs to be deferred.
*/
static int ata_scsi_translate(struct ata_device *dev, struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *),
ata_xlat_func_t xlat_func)
{
struct ata_queued_cmd *qc;
int is_io = xlat_func == ata_scsi_rw_xlat;
VPRINTK("ENTER\n");
if (unlikely(ata_scmd_need_defer(dev, is_io)))
goto defer;
qc = ata_scsi_qc_new(dev, cmd, done);
if (!qc)
goto err_mem;
/* data is present; dma-map it */
if (cmd->sc_data_direction == DMA_FROM_DEVICE ||
cmd->sc_data_direction == DMA_TO_DEVICE) {
if (unlikely(cmd->request_bufflen < 1)) {
ata_dev_printk(dev, KERN_WARNING,
"WARNING: zero len r/w req\n");
goto err_did;
}
if (cmd->use_sg)
ata_sg_init(qc, cmd->request_buffer, cmd->use_sg);
else
ata_sg_init_one(qc, cmd->request_buffer,
cmd->request_bufflen);
qc->dma_dir = cmd->sc_data_direction;
}
qc->complete_fn = ata_scsi_qc_complete;
if (xlat_func(qc))
goto early_finish;
/* select device, send command to hardware */
ata_qc_issue(qc);
VPRINTK("EXIT\n");
return 0;
early_finish:
ata_qc_free(qc);
done(cmd);
DPRINTK("EXIT - early finish (good or error)\n");
return 0;
err_did:
ata_qc_free(qc);
cmd->result = (DID_ERROR << 16);
done(cmd);
err_mem:
DPRINTK("EXIT - internal\n");
return 0;
defer:
DPRINTK("EXIT - defer\n");
return SCSI_MLQUEUE_DEVICE_BUSY;
}
/**
* ata_scsi_rbuf_get - Map response buffer.
* @cmd: SCSI command containing buffer to be mapped.
* @buf_out: Pointer to mapped area.
*
* Maps buffer contained within SCSI command @cmd.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Length of response buffer.
*/
static unsigned int ata_scsi_rbuf_get(struct scsi_cmnd *cmd, u8 **buf_out)
{
u8 *buf;
unsigned int buflen;
if (cmd->use_sg) {
struct scatterlist *sg;
sg = (struct scatterlist *) cmd->request_buffer;
buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
buflen = sg->length;
} else {
buf = cmd->request_buffer;
buflen = cmd->request_bufflen;
}
*buf_out = buf;
return buflen;
}
/**
* ata_scsi_rbuf_put - Unmap response buffer.
* @cmd: SCSI command containing buffer to be unmapped.
* @buf: buffer to unmap
*
* Unmaps response buffer contained within @cmd.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static inline void ata_scsi_rbuf_put(struct scsi_cmnd *cmd, u8 *buf)
{
if (cmd->use_sg) {
struct scatterlist *sg;
sg = (struct scatterlist *) cmd->request_buffer;
kunmap_atomic(buf - sg->offset, KM_IRQ0);
}
}
/**
* ata_scsi_rbuf_fill - wrapper for SCSI command simulators
* @args: device IDENTIFY data / SCSI command of interest.
* @actor: Callback hook for desired SCSI command simulator
*
* Takes care of the hard work of simulating a SCSI command...
* Mapping the response buffer, calling the command's handler,
* and handling the handler's return value. This return value
* indicates whether the handler wishes the SCSI command to be
* completed successfully (0), or not (in which case cmd->result
* and sense buffer are assumed to be set).
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_scsi_rbuf_fill(struct ata_scsi_args *args,
unsigned int (*actor) (struct ata_scsi_args *args,
u8 *rbuf, unsigned int buflen))
{
u8 *rbuf;
unsigned int buflen, rc;
struct scsi_cmnd *cmd = args->cmd;
buflen = ata_scsi_rbuf_get(cmd, &rbuf);
memset(rbuf, 0, buflen);
rc = actor(args, rbuf, buflen);
ata_scsi_rbuf_put(cmd, rbuf);
if (rc == 0)
cmd->result = SAM_STAT_GOOD;
args->done(cmd);
}
/**
* ATA_SCSI_RBUF_SET - helper to set values in SCSI response buffer
* @idx: byte index into SCSI response buffer
* @val: value to set
*
* To be used by SCSI command simulator functions. This macros
* expects two local variables, u8 *rbuf and unsigned int buflen,
* are in scope.
*
* LOCKING:
* None.
*/
#define ATA_SCSI_RBUF_SET(idx, val) do { \
if ((idx) < buflen) rbuf[(idx)] = (u8)(val); \
} while (0)
/**
* ata_scsiop_inq_std - Simulate INQUIRY command
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Returns standard device identification data associated
* with non-VPD INQUIRY command output.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
u8 hdr[] = {
TYPE_DISK,
0,
0x5, /* claim SPC-3 version compatibility */
2,
95 - 4
};
/* set scsi removeable (RMB) bit per ata bit */
if (ata_id_removeable(args->id))
hdr[1] |= (1 << 7);
VPRINTK("ENTER\n");
memcpy(rbuf, hdr, sizeof(hdr));
if (buflen > 35) {
memcpy(&rbuf[8], "ATA ", 8);
ata_id_string(args->id, &rbuf[16], ATA_ID_PROD, 16);
ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV, 4);
if (rbuf[32] == 0 || rbuf[32] == ' ')
memcpy(&rbuf[32], "n/a ", 4);
}
if (buflen > 63) {
const u8 versions[] = {
0x60, /* SAM-3 (no version claimed) */
0x03,
0x20, /* SBC-2 (no version claimed) */
0x02,
0x60 /* SPC-3 (no version claimed) */
};
memcpy(rbuf + 59, versions, sizeof(versions));
}
return 0;
}
/**
* ata_scsiop_inq_00 - Simulate INQUIRY VPD page 0, list of pages
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Returns list of inquiry VPD pages available.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
unsigned int ata_scsiop_inq_00(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
const u8 pages[] = {
0x00, /* page 0x00, this page */
0x80, /* page 0x80, unit serial no page */
0x83 /* page 0x83, device ident page */
};
rbuf[3] = sizeof(pages); /* number of supported VPD pages */
if (buflen > 6)
memcpy(rbuf + 4, pages, sizeof(pages));
return 0;
}
/**
* ata_scsiop_inq_80 - Simulate INQUIRY VPD page 80, device serial number
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Returns ATA device serial number.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
unsigned int ata_scsiop_inq_80(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
const u8 hdr[] = {
0,
0x80, /* this page code */
0,
ATA_ID_SERNO_LEN, /* page len */
};
memcpy(rbuf, hdr, sizeof(hdr));
if (buflen > (ATA_ID_SERNO_LEN + 4 - 1))
ata_id_string(args->id, (unsigned char *) &rbuf[4],
ATA_ID_SERNO, ATA_ID_SERNO_LEN);
return 0;
}
/**
* ata_scsiop_inq_83 - Simulate INQUIRY VPD page 83, device identity
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Yields two logical unit device identification designators:
* - vendor specific ASCII containing the ATA serial number
* - SAT defined "t10 vendor id based" containing ASCII vendor
* name ("ATA "), model and serial numbers.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
unsigned int ata_scsiop_inq_83(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
int num;
const int sat_model_serial_desc_len = 68;
rbuf[1] = 0x83; /* this page code */
num = 4;
if (buflen > (ATA_ID_SERNO_LEN + num + 3)) {
/* piv=0, assoc=lu, code_set=ACSII, designator=vendor */
rbuf[num + 0] = 2;
rbuf[num + 3] = ATA_ID_SERNO_LEN;
num += 4;
ata_id_string(args->id, (unsigned char *) rbuf + num,
ATA_ID_SERNO, ATA_ID_SERNO_LEN);
num += ATA_ID_SERNO_LEN;
}
if (buflen > (sat_model_serial_desc_len + num + 3)) {
/* SAT defined lu model and serial numbers descriptor */
/* piv=0, assoc=lu, code_set=ACSII, designator=t10 vendor id */
rbuf[num + 0] = 2;
rbuf[num + 1] = 1;
rbuf[num + 3] = sat_model_serial_desc_len;
num += 4;
memcpy(rbuf + num, "ATA ", 8);
num += 8;
ata_id_string(args->id, (unsigned char *) rbuf + num,
ATA_ID_PROD, ATA_ID_PROD_LEN);
num += ATA_ID_PROD_LEN;
ata_id_string(args->id, (unsigned char *) rbuf + num,
ATA_ID_SERNO, ATA_ID_SERNO_LEN);
num += ATA_ID_SERNO_LEN;
}
rbuf[3] = num - 4; /* page len (assume less than 256 bytes) */
return 0;
}
/**
* ata_scsiop_noop - Command handler that simply returns success.
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* No operation. Simply returns success to caller, to indicate
* that the caller should successfully complete this SCSI command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
unsigned int ata_scsiop_noop(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
VPRINTK("ENTER\n");
return 0;
}
/**
* ata_msense_push - Push data onto MODE SENSE data output buffer
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
* @buf: Pointer to BLOB being added to output buffer
* @buflen: Length of BLOB
*
* Store MODE SENSE data on an output buffer.
*
* LOCKING:
* None.
*/
static void ata_msense_push(u8 **ptr_io, const u8 *last,
const u8 *buf, unsigned int buflen)
{
u8 *ptr = *ptr_io;
if ((ptr + buflen - 1) > last)
return;
memcpy(ptr, buf, buflen);
ptr += buflen;
*ptr_io = ptr;
}
/**
* ata_msense_caching - Simulate MODE SENSE caching info page
* @id: device IDENTIFY data
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
*
* Generate a caching info page, which conditionally indicates
* write caching to the SCSI layer, depending on device
* capabilities.
*
* LOCKING:
* None.
*/
static unsigned int ata_msense_caching(u16 *id, u8 **ptr_io,
const u8 *last)
{
u8 page[CACHE_MPAGE_LEN];
memcpy(page, def_cache_mpage, sizeof(page));
if (ata_id_wcache_enabled(id))
page[2] |= (1 << 2); /* write cache enable */
if (!ata_id_rahead_enabled(id))
page[12] |= (1 << 5); /* disable read ahead */
ata_msense_push(ptr_io, last, page, sizeof(page));
return sizeof(page);
}
/**
* ata_msense_ctl_mode - Simulate MODE SENSE control mode page
* @dev: Device associated with this MODE SENSE command
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
*
* Generate a generic MODE SENSE control mode page.
*
* LOCKING:
* None.
*/
static unsigned int ata_msense_ctl_mode(u8 **ptr_io, const u8 *last)
{
ata_msense_push(ptr_io, last, def_control_mpage,
sizeof(def_control_mpage));
return sizeof(def_control_mpage);
}
/**
* ata_msense_rw_recovery - Simulate MODE SENSE r/w error recovery page
* @dev: Device associated with this MODE SENSE command
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
*
* Generate a generic MODE SENSE r/w error recovery page.
*
* LOCKING:
* None.
*/
static unsigned int ata_msense_rw_recovery(u8 **ptr_io, const u8 *last)
{
ata_msense_push(ptr_io, last, def_rw_recovery_mpage,
sizeof(def_rw_recovery_mpage));
return sizeof(def_rw_recovery_mpage);
}
/*
* We can turn this into a real blacklist if it's needed, for now just
* blacklist any Maxtor BANC1G10 revision firmware
*/
static int ata_dev_supports_fua(u16 *id)
{
unsigned char model[ATA_ID_PROD_LEN + 1], fw[ATA_ID_FW_REV_LEN + 1];
if (!libata_fua)
return 0;
if (!ata_id_has_fua(id))
return 0;
ata_id_c_string(id, model, ATA_ID_PROD, sizeof(model));
ata_id_c_string(id, fw, ATA_ID_FW_REV, sizeof(fw));
if (strcmp(model, "Maxtor"))
return 1;
if (strcmp(fw, "BANC1G10"))
return 1;
return 0; /* blacklisted */
}
/**
* ata_scsiop_mode_sense - Simulate MODE SENSE 6, 10 commands
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Simulate MODE SENSE commands. Assume this is invoked for direct
* access devices (e.g. disks) only. There should be no block
* descriptor for other device types.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
unsigned int ata_scsiop_mode_sense(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
struct ata_device *dev = args->dev;
u8 *scsicmd = args->cmd->cmnd, *p, *last;
const u8 sat_blk_desc[] = {
0, 0, 0, 0, /* number of blocks: sat unspecified */
0,
0, 0x2, 0x0 /* block length: 512 bytes */
};
u8 pg, spg;
unsigned int ebd, page_control, six_byte, output_len, alloc_len, minlen;
u8 dpofua;
VPRINTK("ENTER\n");
six_byte = (scsicmd[0] == MODE_SENSE);
ebd = !(scsicmd[1] & 0x8); /* dbd bit inverted == edb */
/*
* LLBA bit in msense(10) ignored (compliant)
*/
page_control = scsicmd[2] >> 6;
switch (page_control) {
case 0: /* current */
break; /* supported */
case 3: /* saved */
goto saving_not_supp;
case 1: /* changeable */
case 2: /* defaults */
default:
goto invalid_fld;
}
if (six_byte) {
output_len = 4 + (ebd ? 8 : 0);
alloc_len = scsicmd[4];
} else {
output_len = 8 + (ebd ? 8 : 0);
alloc_len = (scsicmd[7] << 8) + scsicmd[8];
}
minlen = (alloc_len < buflen) ? alloc_len : buflen;
p = rbuf + output_len;
last = rbuf + minlen - 1;
pg = scsicmd[2] & 0x3f;
spg = scsicmd[3];
/*
* No mode subpages supported (yet) but asking for _all_
* subpages may be valid
*/
if (spg && (spg != ALL_SUB_MPAGES))
goto invalid_fld;
switch(pg) {
case RW_RECOVERY_MPAGE:
output_len += ata_msense_rw_recovery(&p, last);
break;
case CACHE_MPAGE:
output_len += ata_msense_caching(args->id, &p, last);
break;
case CONTROL_MPAGE: {
output_len += ata_msense_ctl_mode(&p, last);
break;
}
case ALL_MPAGES:
output_len += ata_msense_rw_recovery(&p, last);
output_len += ata_msense_caching(args->id, &p, last);
output_len += ata_msense_ctl_mode(&p, last);
break;
default: /* invalid page code */
goto invalid_fld;
}
if (minlen < 1)
return 0;
dpofua = 0;
if (ata_dev_supports_fua(args->id) && (dev->flags & ATA_DFLAG_LBA48) &&
(!(dev->flags & ATA_DFLAG_PIO) || dev->multi_count))
dpofua = 1 << 4;
if (six_byte) {
output_len--;
rbuf[0] = output_len;
if (minlen > 2)
rbuf[2] |= dpofua;
if (ebd) {
if (minlen > 3)
rbuf[3] = sizeof(sat_blk_desc);
if (minlen > 11)
memcpy(rbuf + 4, sat_blk_desc,
sizeof(sat_blk_desc));
}
} else {
output_len -= 2;
rbuf[0] = output_len >> 8;
if (minlen > 1)
rbuf[1] = output_len;
if (minlen > 3)
rbuf[3] |= dpofua;
if (ebd) {
if (minlen > 7)
rbuf[7] = sizeof(sat_blk_desc);
if (minlen > 15)
memcpy(rbuf + 8, sat_blk_desc,
sizeof(sat_blk_desc));
}
}
return 0;
invalid_fld:
ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x24, 0x0);
/* "Invalid field in cbd" */
return 1;
saving_not_supp:
ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x39, 0x0);
/* "Saving parameters not supported" */
return 1;
}
/**
* ata_scsiop_read_cap - Simulate READ CAPACITY[ 16] commands
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Simulate READ CAPACITY commands.
*
* LOCKING:
* None.
*/
unsigned int ata_scsiop_read_cap(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
u64 last_lba = args->dev->n_sectors - 1; /* LBA of the last block */
VPRINTK("ENTER\n");
if (args->cmd->cmnd[0] == READ_CAPACITY) {
if (last_lba >= 0xffffffffULL)
last_lba = 0xffffffff;
/* sector count, 32-bit */
ATA_SCSI_RBUF_SET(0, last_lba >> (8 * 3));
ATA_SCSI_RBUF_SET(1, last_lba >> (8 * 2));
ATA_SCSI_RBUF_SET(2, last_lba >> (8 * 1));
ATA_SCSI_RBUF_SET(3, last_lba);
/* sector size */
ATA_SCSI_RBUF_SET(6, ATA_SECT_SIZE >> 8);
ATA_SCSI_RBUF_SET(7, ATA_SECT_SIZE);
} else {
/* sector count, 64-bit */
ATA_SCSI_RBUF_SET(0, last_lba >> (8 * 7));
ATA_SCSI_RBUF_SET(1, last_lba >> (8 * 6));
ATA_SCSI_RBUF_SET(2, last_lba >> (8 * 5));
ATA_SCSI_RBUF_SET(3, last_lba >> (8 * 4));
ATA_SCSI_RBUF_SET(4, last_lba >> (8 * 3));
ATA_SCSI_RBUF_SET(5, last_lba >> (8 * 2));
ATA_SCSI_RBUF_SET(6, last_lba >> (8 * 1));
ATA_SCSI_RBUF_SET(7, last_lba);
/* sector size */
ATA_SCSI_RBUF_SET(10, ATA_SECT_SIZE >> 8);
ATA_SCSI_RBUF_SET(11, ATA_SECT_SIZE);
}
return 0;
}
/**
* ata_scsiop_report_luns - Simulate REPORT LUNS command
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Simulate REPORT LUNS command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
unsigned int ata_scsiop_report_luns(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
VPRINTK("ENTER\n");
rbuf[3] = 8; /* just one lun, LUN 0, size 8 bytes */
return 0;
}
/**
* ata_scsi_set_sense - Set SCSI sense data and status
* @cmd: SCSI request to be handled
* @sk: SCSI-defined sense key
* @asc: SCSI-defined additional sense code
* @ascq: SCSI-defined additional sense code qualifier
*
* Helper function that builds a valid fixed format, current
* response code and the given sense key (sk), additional sense
* code (asc) and additional sense code qualifier (ascq) with
* a SCSI command status of %SAM_STAT_CHECK_CONDITION and
* DRIVER_SENSE set in the upper bits of scsi_cmnd::result .
*
* LOCKING:
* Not required
*/
void ata_scsi_set_sense(struct scsi_cmnd *cmd, u8 sk, u8 asc, u8 ascq)
{
cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
cmd->sense_buffer[0] = 0x70; /* fixed format, current */
cmd->sense_buffer[2] = sk;
cmd->sense_buffer[7] = 18 - 8; /* additional sense length */
cmd->sense_buffer[12] = asc;
cmd->sense_buffer[13] = ascq;
}
/**
* ata_scsi_badcmd - End a SCSI request with an error
* @cmd: SCSI request to be handled
* @done: SCSI command completion function
* @asc: SCSI-defined additional sense code
* @ascq: SCSI-defined additional sense code qualifier
*
* Helper function that completes a SCSI command with
* %SAM_STAT_CHECK_CONDITION, with a sense key %ILLEGAL_REQUEST
* and the specified additional sense codes.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_scsi_badcmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), u8 asc, u8 ascq)
{
DPRINTK("ENTER\n");
ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, asc, ascq);
done(cmd);
}
static void atapi_sense_complete(struct ata_queued_cmd *qc)
{
if (qc->err_mask && ((qc->err_mask & AC_ERR_DEV) == 0)) {
/* FIXME: not quite right; we don't want the
* translation of taskfile registers into
* a sense descriptors, since that's only
* correct for ATA, not ATAPI
*/
ata_gen_passthru_sense(qc);
}
qc->scsidone(qc->scsicmd);
ata_qc_free(qc);
}
/* is it pointless to prefer PIO for "safety reasons"? */
static inline int ata_pio_use_silly(struct ata_port *ap)
{
return (ap->flags & ATA_FLAG_PIO_DMA);
}
static void atapi_request_sense(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scsi_cmnd *cmd = qc->scsicmd;
DPRINTK("ATAPI request sense\n");
/* FIXME: is this needed? */
memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
ap->ops->tf_read(ap, &qc->tf);
/* fill these in, for the case where they are -not- overwritten */
cmd->sense_buffer[0] = 0x70;
cmd->sense_buffer[2] = qc->tf.feature >> 4;
ata_qc_reinit(qc);
ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer));
qc->dma_dir = DMA_FROM_DEVICE;
memset(&qc->cdb, 0, qc->dev->cdb_len);
qc->cdb[0] = REQUEST_SENSE;
qc->cdb[4] = SCSI_SENSE_BUFFERSIZE;
qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
qc->tf.command = ATA_CMD_PACKET;
if (ata_pio_use_silly(ap)) {
qc->tf.protocol = ATA_PROT_ATAPI_DMA;
qc->tf.feature |= ATAPI_PKT_DMA;
} else {
qc->tf.protocol = ATA_PROT_ATAPI;
qc->tf.lbam = (8 * 1024) & 0xff;
qc->tf.lbah = (8 * 1024) >> 8;
}
qc->nbytes = SCSI_SENSE_BUFFERSIZE;
qc->complete_fn = atapi_sense_complete;
ata_qc_issue(qc);
DPRINTK("EXIT\n");
}
static void atapi_qc_complete(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *cmd = qc->scsicmd;
unsigned int err_mask = qc->err_mask;
VPRINTK("ENTER, err_mask 0x%X\n", err_mask);
/* handle completion from new EH */
if (unlikely(qc->ap->ops->error_handler &&
(err_mask || qc->flags & ATA_QCFLAG_SENSE_VALID))) {
if (!(qc->flags & ATA_QCFLAG_SENSE_VALID)) {
/* FIXME: not quite right; we don't want the
* translation of taskfile registers into a
* sense descriptors, since that's only
* correct for ATA, not ATAPI
*/
ata_gen_passthru_sense(qc);
}
/* SCSI EH automatically locks door if sdev->locked is
* set. Sometimes door lock request continues to
* fail, for example, when no media is present. This
* creates a loop - SCSI EH issues door lock which
* fails and gets invoked again to acquire sense data
* for the failed command.
*
* If door lock fails, always clear sdev->locked to
* avoid this infinite loop.
*/
if (qc->cdb[0] == ALLOW_MEDIUM_REMOVAL)
qc->dev->sdev->locked = 0;
qc->scsicmd->result = SAM_STAT_CHECK_CONDITION;
qc->scsidone(cmd);
ata_qc_free(qc);
return;
}
/* successful completion or old EH failure path */
if (unlikely(err_mask & AC_ERR_DEV)) {
cmd->result = SAM_STAT_CHECK_CONDITION;
atapi_request_sense(qc);
return;
} else if (unlikely(err_mask)) {
/* FIXME: not quite right; we don't want the
* translation of taskfile registers into
* a sense descriptors, since that's only
* correct for ATA, not ATAPI
*/
ata_gen_passthru_sense(qc);
} else {
u8 *scsicmd = cmd->cmnd;
if ((scsicmd[0] == INQUIRY) && ((scsicmd[1] & 0x03) == 0)) {
u8 *buf = NULL;
unsigned int buflen;
buflen = ata_scsi_rbuf_get(cmd, &buf);
/* ATAPI devices typically report zero for their SCSI version,
* and sometimes deviate from the spec WRT response data
* format. If SCSI version is reported as zero like normal,
* then we make the following fixups: 1) Fake MMC-5 version,
* to indicate to the Linux scsi midlayer this is a modern
* device. 2) Ensure response data format / ATAPI information
* are always correct.
*/
if (buf[2] == 0) {
buf[2] = 0x5;
buf[3] = 0x32;
}
ata_scsi_rbuf_put(cmd, buf);
}
cmd->result = SAM_STAT_GOOD;
}
qc->scsidone(cmd);
ata_qc_free(qc);
}
/**
* atapi_xlat - Initialize PACKET taskfile
* @qc: command structure to be initialized
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, non-zero on failure.
*/
static unsigned int atapi_xlat(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *scmd = qc->scsicmd;
struct ata_device *dev = qc->dev;
int using_pio = (dev->flags & ATA_DFLAG_PIO);
int nodata = (scmd->sc_data_direction == DMA_NONE);
if (!using_pio)
/* Check whether ATAPI DMA is safe */
if (ata_check_atapi_dma(qc))
using_pio = 1;
memset(qc->cdb, 0, dev->cdb_len);
memcpy(qc->cdb, scmd->cmnd, scmd->cmd_len);
qc->complete_fn = atapi_qc_complete;
qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
if (scmd->sc_data_direction == DMA_TO_DEVICE) {
qc->tf.flags |= ATA_TFLAG_WRITE;
DPRINTK("direction: write\n");
}
qc->tf.command = ATA_CMD_PACKET;
/* no data, or PIO data xfer */
if (using_pio || nodata) {
if (nodata)
qc->tf.protocol = ATA_PROT_ATAPI_NODATA;
else
qc->tf.protocol = ATA_PROT_ATAPI;
qc->tf.lbam = (8 * 1024) & 0xff;
qc->tf.lbah = (8 * 1024) >> 8;
}
/* DMA data xfer */
else {
qc->tf.protocol = ATA_PROT_ATAPI_DMA;
qc->tf.feature |= ATAPI_PKT_DMA;
if (atapi_dmadir && (scmd->sc_data_direction != DMA_TO_DEVICE))
/* some SATA bridges need us to indicate data xfer direction */
qc->tf.feature |= ATAPI_DMADIR;
}
qc->nbytes = scmd->request_bufflen;
return 0;
}
static struct ata_device * ata_find_dev(struct ata_port *ap, int id)
{
if (likely(id < ATA_MAX_DEVICES))
return &ap->device[id];
return NULL;
}
static struct ata_device * __ata_scsi_find_dev(struct ata_port *ap,
const struct scsi_device *scsidev)
{
/* skip commands not addressed to targets we simulate */
if (unlikely(scsidev->channel || scsidev->lun))
return NULL;
return ata_find_dev(ap, scsidev->id);
}
/**
* ata_scsi_dev_enabled - determine if device is enabled
* @dev: ATA device
*
* Determine if commands should be sent to the specified device.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* 0 if commands are not allowed / 1 if commands are allowed
*/
static int ata_scsi_dev_enabled(struct ata_device *dev)
{
if (unlikely(!ata_dev_enabled(dev)))
return 0;
if (!atapi_enabled || (dev->ap->flags & ATA_FLAG_NO_ATAPI)) {
if (unlikely(dev->class == ATA_DEV_ATAPI)) {
ata_dev_printk(dev, KERN_WARNING,
"WARNING: ATAPI is %s, device ignored.\n",
atapi_enabled ? "not supported with this driver" : "disabled");
return 0;
}
}
return 1;
}
/**
* ata_scsi_find_dev - lookup ata_device from scsi_cmnd
* @ap: ATA port to which the device is attached
* @scsidev: SCSI device from which we derive the ATA device
*
* Given various information provided in struct scsi_cmnd,
* map that onto an ATA bus, and using that mapping
* determine which ata_device is associated with the
* SCSI command to be sent.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Associated ATA device, or %NULL if not found.
*/
static struct ata_device *
ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev)
{
struct ata_device *dev = __ata_scsi_find_dev(ap, scsidev);
if (unlikely(!dev || !ata_scsi_dev_enabled(dev)))
return NULL;
return dev;
}
/*
* ata_scsi_map_proto - Map pass-thru protocol value to taskfile value.
* @byte1: Byte 1 from pass-thru CDB.
*
* RETURNS:
* ATA_PROT_UNKNOWN if mapping failed/unimplemented, protocol otherwise.
*/
static u8
ata_scsi_map_proto(u8 byte1)
{
switch((byte1 & 0x1e) >> 1) {
case 3: /* Non-data */
return ATA_PROT_NODATA;
case 6: /* DMA */
return ATA_PROT_DMA;
case 4: /* PIO Data-in */
case 5: /* PIO Data-out */
return ATA_PROT_PIO;
case 10: /* Device Reset */
case 0: /* Hard Reset */
case 1: /* SRST */
case 2: /* Bus Idle */
case 7: /* Packet */
case 8: /* DMA Queued */
case 9: /* Device Diagnostic */
case 11: /* UDMA Data-in */
case 12: /* UDMA Data-Out */
case 13: /* FPDMA */
default: /* Reserved */
break;
}
return ATA_PROT_UNKNOWN;
}
/**
* ata_scsi_pass_thru - convert ATA pass-thru CDB to taskfile
* @qc: command structure to be initialized
*
* Handles either 12 or 16-byte versions of the CDB.
*
* RETURNS:
* Zero on success, non-zero on failure.
*/
static unsigned int ata_scsi_pass_thru(struct ata_queued_cmd *qc)
{
struct ata_taskfile *tf = &(qc->tf);
struct scsi_cmnd *scmd = qc->scsicmd;
struct ata_device *dev = qc->dev;
const u8 *cdb = scmd->cmnd;
if ((tf->protocol = ata_scsi_map_proto(cdb[1])) == ATA_PROT_UNKNOWN)
goto invalid_fld;
/* We may not issue DMA commands if no DMA mode is set */
if (tf->protocol == ATA_PROT_DMA && dev->dma_mode == 0)
goto invalid_fld;
if (cdb[1] & 0xe0)
/* PIO multi not supported yet */
goto invalid_fld;
/*
* 12 and 16 byte CDBs use different offsets to
* provide the various register values.
*/
if (cdb[0] == ATA_16) {
/*
* 16-byte CDB - may contain extended commands.
*
* If that is the case, copy the upper byte register values.
*/
if (cdb[1] & 0x01) {
tf->hob_feature = cdb[3];
tf->hob_nsect = cdb[5];
tf->hob_lbal = cdb[7];
tf->hob_lbam = cdb[9];
tf->hob_lbah = cdb[11];
tf->flags |= ATA_TFLAG_LBA48;
} else
tf->flags &= ~ATA_TFLAG_LBA48;
/*
* Always copy low byte, device and command registers.
*/
tf->feature = cdb[4];
tf->nsect = cdb[6];
tf->lbal = cdb[8];
tf->lbam = cdb[10];
tf->lbah = cdb[12];
tf->device = cdb[13];
tf->command = cdb[14];
} else {
/*
* 12-byte CDB - incapable of extended commands.
*/
tf->flags &= ~ATA_TFLAG_LBA48;
tf->feature = cdb[3];
tf->nsect = cdb[4];
tf->lbal = cdb[5];
tf->lbam = cdb[6];
tf->lbah = cdb[7];
tf->device = cdb[8];
tf->command = cdb[9];
}
/*
* If slave is possible, enforce correct master/slave bit
*/
if (qc->ap->flags & ATA_FLAG_SLAVE_POSS)
tf->device = qc->dev->devno ?
tf->device | ATA_DEV1 : tf->device & ~ATA_DEV1;
/*
* Filter SET_FEATURES - XFER MODE command -- otherwise,
* SET_FEATURES - XFER MODE must be preceded/succeeded
* by an update to hardware-specific registers for each
* controller (i.e. the reason for ->set_piomode(),
* ->set_dmamode(), and ->post_set_mode() hooks).
*/
if ((tf->command == ATA_CMD_SET_FEATURES)
&& (tf->feature == SETFEATURES_XFER))
goto invalid_fld;
/*
* Set flags so that all registers will be written,
* and pass on write indication (used for PIO/DMA
* setup.)
*/
tf->flags |= (ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE);
if (scmd->sc_data_direction == DMA_TO_DEVICE)
tf->flags |= ATA_TFLAG_WRITE;
/*
* Set transfer length.
*
* TODO: find out if we need to do more here to
* cover scatter/gather case.
*/
qc->nbytes = scmd->request_bufflen;
/* request result TF */
qc->flags |= ATA_QCFLAG_RESULT_TF;
return 0;
invalid_fld:
ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x00);
/* "Invalid field in cdb" */
return 1;
}
/**
* ata_get_xlat_func - check if SCSI to ATA translation is possible
* @dev: ATA device
* @cmd: SCSI command opcode to consider
*
* Look up the SCSI command given, and determine whether the
* SCSI command is to be translated or simulated.
*
* RETURNS:
* Pointer to translation function if possible, %NULL if not.
*/
static inline ata_xlat_func_t ata_get_xlat_func(struct ata_device *dev, u8 cmd)
{
switch (cmd) {
case READ_6:
case READ_10:
case READ_16:
case WRITE_6:
case WRITE_10:
case WRITE_16:
return ata_scsi_rw_xlat;
case SYNCHRONIZE_CACHE:
if (ata_try_flush_cache(dev))
return ata_scsi_flush_xlat;
break;
case VERIFY:
case VERIFY_16:
return ata_scsi_verify_xlat;
case ATA_12:
case ATA_16:
return ata_scsi_pass_thru;
case START_STOP:
return ata_scsi_start_stop_xlat;
}
return NULL;
}
/**
* ata_scsi_dump_cdb - dump SCSI command contents to dmesg
* @ap: ATA port to which the command was being sent
* @cmd: SCSI command to dump
*
* Prints the contents of a SCSI command via printk().
*/
static inline void ata_scsi_dump_cdb(struct ata_port *ap,
struct scsi_cmnd *cmd)
{
#ifdef ATA_DEBUG
struct scsi_device *scsidev = cmd->device;
u8 *scsicmd = cmd->cmnd;
DPRINTK("CDB (%u:%d,%d,%d) %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
ap->id,
scsidev->channel, scsidev->id, scsidev->lun,
scsicmd[0], scsicmd[1], scsicmd[2], scsicmd[3],
scsicmd[4], scsicmd[5], scsicmd[6], scsicmd[7],
scsicmd[8]);
#endif
}
static inline int __ata_scsi_queuecmd(struct scsi_cmnd *scmd,
void (*done)(struct scsi_cmnd *),
struct ata_device *dev)
{
int rc = 0;
if (unlikely(!scmd->cmd_len)) {
ata_dev_printk(dev, KERN_WARNING, "WARNING: zero len CDB\n");
scmd->result = DID_ERROR << 16;
done(scmd);
return 0;
}
if (dev->class == ATA_DEV_ATA) {
ata_xlat_func_t xlat_func = ata_get_xlat_func(dev,
scmd->cmnd[0]);
if (xlat_func)
rc = ata_scsi_translate(dev, scmd, done, xlat_func);
else
ata_scsi_simulate(dev, scmd, done);
} else
rc = ata_scsi_translate(dev, scmd, done, atapi_xlat);
return rc;
}
/**
* ata_scsi_queuecmd - Issue SCSI cdb to libata-managed device
* @cmd: SCSI command to be sent
* @done: Completion function, called when command is complete
*
* In some cases, this function translates SCSI commands into
* ATA taskfiles, and queues the taskfiles to be sent to
* hardware. In other cases, this function simulates a
* SCSI device by evaluating and responding to certain
* SCSI commands. This creates the overall effect of
* ATA and ATAPI devices appearing as SCSI devices.
*
* LOCKING:
* Releases scsi-layer-held lock, and obtains host lock.
*
* RETURNS:
* Return value from __ata_scsi_queuecmd() if @cmd can be queued,
* 0 otherwise.
*/
int ata_scsi_queuecmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct ata_port *ap;
struct ata_device *dev;
struct scsi_device *scsidev = cmd->device;
struct Scsi_Host *shost = scsidev->host;
int rc = 0;
ap = ata_shost_to_port(shost);
spin_unlock(shost->host_lock);
spin_lock(ap->lock);
ata_scsi_dump_cdb(ap, cmd);
dev = ata_scsi_find_dev(ap, scsidev);
if (likely(dev))
rc = __ata_scsi_queuecmd(cmd, done, dev);
else {
cmd->result = (DID_BAD_TARGET << 16);
done(cmd);
}
spin_unlock(ap->lock);
spin_lock(shost->host_lock);
return rc;
}
/**
* ata_scsi_simulate - simulate SCSI command on ATA device
* @dev: the target device
* @cmd: SCSI command being sent to device.
* @done: SCSI command completion function.
*
* Interprets and directly executes a select list of SCSI commands
* that can be handled internally.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
struct ata_scsi_args args;
const u8 *scsicmd = cmd->cmnd;
args.dev = dev;
args.id = dev->id;
args.cmd = cmd;
args.done = done;
switch(scsicmd[0]) {
/* no-op's, complete with success */
case SYNCHRONIZE_CACHE:
case REZERO_UNIT:
case SEEK_6:
case SEEK_10:
case TEST_UNIT_READY:
case FORMAT_UNIT: /* FIXME: correct? */
case SEND_DIAGNOSTIC: /* FIXME: correct? */
ata_scsi_rbuf_fill(&args, ata_scsiop_noop);
break;
case INQUIRY:
if (scsicmd[1] & 2) /* is CmdDt set? */
ata_scsi_invalid_field(cmd, done);
else if ((scsicmd[1] & 1) == 0) /* is EVPD clear? */
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_std);
else if (scsicmd[2] == 0x00)
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_00);
else if (scsicmd[2] == 0x80)
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_80);
else if (scsicmd[2] == 0x83)
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_83);
else
ata_scsi_invalid_field(cmd, done);
break;
case MODE_SENSE:
case MODE_SENSE_10:
ata_scsi_rbuf_fill(&args, ata_scsiop_mode_sense);
break;
case MODE_SELECT: /* unconditionally return */
case MODE_SELECT_10: /* bad-field-in-cdb */
ata_scsi_invalid_field(cmd, done);
break;
case READ_CAPACITY:
ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap);
break;
case SERVICE_ACTION_IN:
if ((scsicmd[1] & 0x1f) == SAI_READ_CAPACITY_16)
ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap);
else
ata_scsi_invalid_field(cmd, done);
break;
case REPORT_LUNS:
ata_scsi_rbuf_fill(&args, ata_scsiop_report_luns);
break;
/* mandatory commands we haven't implemented yet */
case REQUEST_SENSE:
/* all other commands */
default:
ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x20, 0x0);
/* "Invalid command operation code" */
done(cmd);
break;
}
}
void ata_scsi_scan_host(struct ata_port *ap)
{
unsigned int i;
if (ap->flags & ATA_FLAG_DISABLED)
return;
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
struct scsi_device *sdev;
if (!ata_dev_enabled(dev) || dev->sdev)
continue;
sdev = __scsi_add_device(ap->scsi_host, 0, i, 0, NULL);
if (!IS_ERR(sdev)) {
dev->sdev = sdev;
scsi_device_put(sdev);
}
}
}
/**
* ata_scsi_offline_dev - offline attached SCSI device
* @dev: ATA device to offline attached SCSI device for
*
* This function is called from ata_eh_hotplug() and responsible
* for taking the SCSI device attached to @dev offline. This
* function is called with host lock which protects dev->sdev
* against clearing.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* 1 if attached SCSI device exists, 0 otherwise.
*/
int ata_scsi_offline_dev(struct ata_device *dev)
{
if (dev->sdev) {
scsi_device_set_state(dev->sdev, SDEV_OFFLINE);
return 1;
}
return 0;
}
/**
* ata_scsi_remove_dev - remove attached SCSI device
* @dev: ATA device to remove attached SCSI device for
*
* This function is called from ata_eh_scsi_hotplug() and
* responsible for removing the SCSI device attached to @dev.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
static void ata_scsi_remove_dev(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
struct scsi_device *sdev;
unsigned long flags;
/* Alas, we need to grab scan_mutex to ensure SCSI device
* state doesn't change underneath us and thus
* scsi_device_get() always succeeds. The mutex locking can
* be removed if there is __scsi_device_get() interface which
* increments reference counts regardless of device state.
*/
mutex_lock(&ap->scsi_host->scan_mutex);
spin_lock_irqsave(ap->lock, flags);
/* clearing dev->sdev is protected by host lock */
sdev = dev->sdev;
dev->sdev = NULL;
if (sdev) {
/* If user initiated unplug races with us, sdev can go
* away underneath us after the host lock and
* scan_mutex are released. Hold onto it.
*/
if (scsi_device_get(sdev) == 0) {
/* The following ensures the attached sdev is
* offline on return from ata_scsi_offline_dev()
* regardless it wins or loses the race
* against this function.
*/
scsi_device_set_state(sdev, SDEV_OFFLINE);
} else {
WARN_ON(1);
sdev = NULL;
}
}
spin_unlock_irqrestore(ap->lock, flags);
mutex_unlock(&ap->scsi_host->scan_mutex);
if (sdev) {
ata_dev_printk(dev, KERN_INFO, "detaching (SCSI %s)\n",
sdev->sdev_gendev.bus_id);
scsi_remove_device(sdev);
scsi_device_put(sdev);
}
}
/**
* ata_scsi_hotplug - SCSI part of hotplug
* @work: Pointer to ATA port to perform SCSI hotplug on
*
* Perform SCSI part of hotplug. It's executed from a separate
* workqueue after EH completes. This is necessary because SCSI
* hot plugging requires working EH and hot unplugging is
* synchronized with hot plugging with a mutex.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_scsi_hotplug(struct work_struct *work)
{
struct ata_port *ap =
container_of(work, struct ata_port, hotplug_task.work);
int i;
if (ap->pflags & ATA_PFLAG_UNLOADING) {
DPRINTK("ENTER/EXIT - unloading\n");
return;
}
DPRINTK("ENTER\n");
/* unplug detached devices */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
unsigned long flags;
if (!(dev->flags & ATA_DFLAG_DETACHED))
continue;
spin_lock_irqsave(ap->lock, flags);
dev->flags &= ~ATA_DFLAG_DETACHED;
spin_unlock_irqrestore(ap->lock, flags);
ata_scsi_remove_dev(dev);
}
/* scan for new ones */
ata_scsi_scan_host(ap);
/* If we scanned while EH was in progress, scan would have
* failed silently. Requeue if there are enabled but
* unattached devices.
*/
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
if (ata_dev_enabled(dev) && !dev->sdev) {
queue_delayed_work(ata_aux_wq, &ap->hotplug_task,
round_jiffies_relative(HZ));
break;
}
}
DPRINTK("EXIT\n");
}
/**
* ata_scsi_user_scan - indication for user-initiated bus scan
* @shost: SCSI host to scan
* @channel: Channel to scan
* @id: ID to scan
* @lun: LUN to scan
*
* This function is called when user explicitly requests bus
* scan. Set probe pending flag and invoke EH.
*
* LOCKING:
* SCSI layer (we don't care)
*
* RETURNS:
* Zero.
*/
static int ata_scsi_user_scan(struct Scsi_Host *shost, unsigned int channel,
unsigned int id, unsigned int lun)
{
struct ata_port *ap = ata_shost_to_port(shost);
unsigned long flags;
int rc = 0;
if (!ap->ops->error_handler)
return -EOPNOTSUPP;
if ((channel != SCAN_WILD_CARD && channel != 0) ||
(lun != SCAN_WILD_CARD && lun != 0))
return -EINVAL;
spin_lock_irqsave(ap->lock, flags);
if (id == SCAN_WILD_CARD) {
ap->eh_info.probe_mask |= (1 << ATA_MAX_DEVICES) - 1;
ap->eh_info.action |= ATA_EH_SOFTRESET;
} else {
struct ata_device *dev = ata_find_dev(ap, id);
if (dev) {
ap->eh_info.probe_mask |= 1 << dev->devno;
ap->eh_info.action |= ATA_EH_SOFTRESET;
ap->eh_info.flags |= ATA_EHI_RESUME_LINK;
} else
rc = -EINVAL;
}
if (rc == 0) {
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
ata_port_wait_eh(ap);
} else
spin_unlock_irqrestore(ap->lock, flags);
return rc;
}
/**
* ata_scsi_dev_rescan - initiate scsi_rescan_device()
* @work: Pointer to ATA port to perform scsi_rescan_device()
*
* After ATA pass thru (SAT) commands are executed successfully,
* libata need to propagate the changes to SCSI layer. This
* function must be executed from ata_aux_wq such that sdev
* attach/detach don't race with rescan.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_scsi_dev_rescan(struct work_struct *work)
{
struct ata_port *ap =
container_of(work, struct ata_port, scsi_rescan_task);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(ap->lock, flags);
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
struct scsi_device *sdev = dev->sdev;
if (!ata_dev_enabled(dev) || !sdev)
continue;
if (scsi_device_get(sdev))
continue;
spin_unlock_irqrestore(ap->lock, flags);
scsi_rescan_device(&(sdev->sdev_gendev));
scsi_device_put(sdev);
spin_lock_irqsave(ap->lock, flags);
}
spin_unlock_irqrestore(ap->lock, flags);
}
/**
* ata_sas_port_alloc - Allocate port for a SAS attached SATA device
* @host: ATA host container for all SAS ports
* @port_info: Information from low-level host driver
* @shost: SCSI host that the scsi device is attached to
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* ata_port pointer on success / NULL on failure.
*/
struct ata_port *ata_sas_port_alloc(struct ata_host *host,
struct ata_port_info *port_info,
struct Scsi_Host *shost)
{
struct ata_port *ap = kzalloc(sizeof(*ap), GFP_KERNEL);
struct ata_probe_ent *ent;
if (!ap)
return NULL;
ent = ata_probe_ent_alloc(host->dev, port_info);
if (!ent) {
kfree(ap);
return NULL;
}
ata_port_init(ap, host, ent, 0);
ap->lock = shost->host_lock;
kfree(ent);
return ap;
}
EXPORT_SYMBOL_GPL(ata_sas_port_alloc);
/**
* ata_sas_port_start - Set port up for dma.
* @ap: Port to initialize
*
* Called just after data structures for each port are
* initialized. Allocates DMA pad.
*
* May be used as the port_start() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
int ata_sas_port_start(struct ata_port *ap)
{
return ata_pad_alloc(ap, ap->dev);
}
EXPORT_SYMBOL_GPL(ata_sas_port_start);
/**
* ata_port_stop - Undo ata_sas_port_start()
* @ap: Port to shut down
*
* Frees the DMA pad.
*
* May be used as the port_stop() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_sas_port_stop(struct ata_port *ap)
{
ata_pad_free(ap, ap->dev);
}
EXPORT_SYMBOL_GPL(ata_sas_port_stop);
/**
* ata_sas_port_init - Initialize a SATA device
* @ap: SATA port to initialize
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, non-zero on error.
*/
int ata_sas_port_init(struct ata_port *ap)
{
int rc = ap->ops->port_start(ap);
if (!rc)
rc = ata_bus_probe(ap);
return rc;
}
EXPORT_SYMBOL_GPL(ata_sas_port_init);
/**
* ata_sas_port_destroy - Destroy a SATA port allocated by ata_sas_port_alloc
* @ap: SATA port to destroy
*
*/
void ata_sas_port_destroy(struct ata_port *ap)
{
if (ap->ops->port_stop)
ap->ops->port_stop(ap);
kfree(ap);
}
EXPORT_SYMBOL_GPL(ata_sas_port_destroy);
/**
* ata_sas_slave_configure - Default slave_config routine for libata devices
* @sdev: SCSI device to configure
* @ap: ATA port to which SCSI device is attached
*
* RETURNS:
* Zero.
*/
int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap)
{
ata_scsi_sdev_config(sdev);
ata_scsi_dev_config(sdev, ap->device);
return 0;
}
EXPORT_SYMBOL_GPL(ata_sas_slave_configure);
/**
* ata_sas_queuecmd - Issue SCSI cdb to libata-managed device
* @cmd: SCSI command to be sent
* @done: Completion function, called when command is complete
* @ap: ATA port to which the command is being sent
*
* RETURNS:
* Return value from __ata_scsi_queuecmd() if @cmd can be queued,
* 0 otherwise.
*/
int ata_sas_queuecmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *),
struct ata_port *ap)
{
int rc = 0;
ata_scsi_dump_cdb(ap, cmd);
if (likely(ata_scsi_dev_enabled(ap->device)))
rc = __ata_scsi_queuecmd(cmd, done, ap->device);
else {
cmd->result = (DID_BAD_TARGET << 16);
done(cmd);
}
return rc;
}
EXPORT_SYMBOL_GPL(ata_sas_queuecmd);