You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1119 lines
30 KiB
1119 lines
30 KiB
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_rw.h"
|
|
|
|
|
|
kmem_zone_t *xfs_ili_zone; /* inode log item zone */
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given inode item.
|
|
*
|
|
* We need one iovec for the inode log format structure, one for the
|
|
* inode core, and possibly one for the inode data/extents/b-tree root
|
|
* and one for the inode attribute data/extents/b-tree root.
|
|
*/
|
|
STATIC uint
|
|
xfs_inode_item_size(
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
uint nvecs;
|
|
xfs_inode_t *ip;
|
|
|
|
ip = iip->ili_inode;
|
|
nvecs = 2;
|
|
|
|
/*
|
|
* Only log the data/extents/b-tree root if there is something
|
|
* left to log.
|
|
*/
|
|
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
|
|
|
|
switch (ip->i_d.di_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID);
|
|
if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
|
|
(ip->i_d.di_nextents > 0) &&
|
|
(ip->i_df.if_bytes > 0)) {
|
|
ASSERT(ip->i_df.if_u1.if_extents != NULL);
|
|
nvecs++;
|
|
} else {
|
|
iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
ASSERT(ip->i_df.if_ext_max ==
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID);
|
|
if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
|
|
(ip->i_df.if_broot_bytes > 0)) {
|
|
ASSERT(ip->i_df.if_broot != NULL);
|
|
nvecs++;
|
|
} else {
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
XFS_ILOG_DBROOT));
|
|
#ifdef XFS_TRANS_DEBUG
|
|
if (iip->ili_root_size > 0) {
|
|
ASSERT(iip->ili_root_size ==
|
|
ip->i_df.if_broot_bytes);
|
|
ASSERT(memcmp(iip->ili_orig_root,
|
|
ip->i_df.if_broot,
|
|
iip->ili_root_size) == 0);
|
|
} else {
|
|
ASSERT(ip->i_df.if_broot_bytes == 0);
|
|
}
|
|
#endif
|
|
iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID);
|
|
if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
|
|
(ip->i_df.if_bytes > 0)) {
|
|
ASSERT(ip->i_df.if_u1.if_data != NULL);
|
|
ASSERT(ip->i_d.di_size > 0);
|
|
nvecs++;
|
|
} else {
|
|
iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_DEV:
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEXT | XFS_ILOG_UUID);
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_UUID:
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEXT | XFS_ILOG_DEV);
|
|
break;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there are no attributes associated with this file,
|
|
* then there cannot be anything more to log.
|
|
* Clear all attribute-related log flags.
|
|
*/
|
|
if (!XFS_IFORK_Q(ip)) {
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
|
|
return nvecs;
|
|
}
|
|
|
|
/*
|
|
* Log any necessary attribute data.
|
|
*/
|
|
switch (ip->i_d.di_aformat) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
|
|
if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
|
|
(ip->i_d.di_anextents > 0) &&
|
|
(ip->i_afp->if_bytes > 0)) {
|
|
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
|
|
nvecs++;
|
|
} else {
|
|
iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
|
|
if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
|
|
(ip->i_afp->if_broot_bytes > 0)) {
|
|
ASSERT(ip->i_afp->if_broot != NULL);
|
|
nvecs++;
|
|
} else {
|
|
iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_format.ilf_fields &=
|
|
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
|
|
if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
|
|
(ip->i_afp->if_bytes > 0)) {
|
|
ASSERT(ip->i_afp->if_u1.if_data != NULL);
|
|
nvecs++;
|
|
} else {
|
|
iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
return nvecs;
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given inode log item. It fills the first item with an inode
|
|
* log format structure, the second with the on-disk inode structure,
|
|
* and a possible third and/or fourth with the inode data/extents/b-tree
|
|
* root and inode attributes data/extents/b-tree root.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_format(
|
|
xfs_inode_log_item_t *iip,
|
|
xfs_log_iovec_t *log_vector)
|
|
{
|
|
uint nvecs;
|
|
xfs_log_iovec_t *vecp;
|
|
xfs_inode_t *ip;
|
|
size_t data_bytes;
|
|
xfs_bmbt_rec_t *ext_buffer;
|
|
int nrecs;
|
|
xfs_mount_t *mp;
|
|
|
|
ip = iip->ili_inode;
|
|
vecp = log_vector;
|
|
|
|
vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
|
|
vecp->i_len = sizeof(xfs_inode_log_format_t);
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
|
|
vecp++;
|
|
nvecs = 1;
|
|
|
|
/*
|
|
* Clear i_update_core if the timestamps (or any other
|
|
* non-transactional modification) need flushing/logging
|
|
* and we're about to log them with the rest of the core.
|
|
*
|
|
* This is the same logic as xfs_iflush() but this code can't
|
|
* run at the same time as xfs_iflush because we're in commit
|
|
* processing here and so we have the inode lock held in
|
|
* exclusive mode. Although it doesn't really matter
|
|
* for the timestamps if both routines were to grab the
|
|
* timestamps or not. That would be ok.
|
|
*
|
|
* We clear i_update_core before copying out the data.
|
|
* This is for coordination with our timestamp updates
|
|
* that don't hold the inode lock. They will always
|
|
* update the timestamps BEFORE setting i_update_core,
|
|
* so if we clear i_update_core after they set it we
|
|
* are guaranteed to see their updates to the timestamps
|
|
* either here. Likewise, if they set it after we clear it
|
|
* here, we'll see it either on the next commit of this
|
|
* inode or the next time the inode gets flushed via
|
|
* xfs_iflush(). This depends on strongly ordered memory
|
|
* semantics, but we have that. We use the SYNCHRONIZE
|
|
* macro to make sure that the compiler does not reorder
|
|
* the i_update_core access below the data copy below.
|
|
*/
|
|
if (ip->i_update_core) {
|
|
ip->i_update_core = 0;
|
|
SYNCHRONIZE();
|
|
}
|
|
|
|
/*
|
|
* We don't have to worry about re-ordering here because
|
|
* the update_size field is protected by the inode lock
|
|
* and we have that held in exclusive mode.
|
|
*/
|
|
if (ip->i_update_size)
|
|
ip->i_update_size = 0;
|
|
|
|
/*
|
|
* Make sure to get the latest atime from the Linux inode.
|
|
*/
|
|
xfs_synchronize_atime(ip);
|
|
|
|
/*
|
|
* make sure the linux inode is dirty
|
|
*/
|
|
xfs_mark_inode_dirty_sync(ip);
|
|
|
|
vecp->i_addr = (xfs_caddr_t)&ip->i_d;
|
|
vecp->i_len = sizeof(xfs_dinode_core_t);
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
|
|
vecp++;
|
|
nvecs++;
|
|
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
|
|
|
|
/*
|
|
* If this is really an old format inode, then we need to
|
|
* log it as such. This means that we have to copy the link
|
|
* count from the new field to the old. We don't have to worry
|
|
* about the new fields, because nothing trusts them as long as
|
|
* the old inode version number is there. If the superblock already
|
|
* has a new version number, then we don't bother converting back.
|
|
*/
|
|
mp = ip->i_mount;
|
|
ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
|
|
XFS_SB_VERSION_HASNLINK(&mp->m_sb));
|
|
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
|
|
if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
|
|
/*
|
|
* Convert it back.
|
|
*/
|
|
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
|
|
ip->i_d.di_onlink = ip->i_d.di_nlink;
|
|
} else {
|
|
/*
|
|
* The superblock version has already been bumped,
|
|
* so just make the conversion to the new inode
|
|
* format permanent.
|
|
*/
|
|
ip->i_d.di_version = XFS_DINODE_VERSION_2;
|
|
ip->i_d.di_onlink = 0;
|
|
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
|
|
}
|
|
}
|
|
|
|
switch (ip->i_d.di_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
|
|
ASSERT(ip->i_df.if_bytes > 0);
|
|
ASSERT(ip->i_df.if_u1.if_extents != NULL);
|
|
ASSERT(ip->i_d.di_nextents > 0);
|
|
ASSERT(iip->ili_extents_buf == NULL);
|
|
nrecs = ip->i_df.if_bytes /
|
|
(uint)sizeof(xfs_bmbt_rec_t);
|
|
ASSERT(nrecs > 0);
|
|
#ifdef XFS_NATIVE_HOST
|
|
if (nrecs == ip->i_d.di_nextents) {
|
|
/*
|
|
* There are no delayed allocation
|
|
* extents, so just point to the
|
|
* real extents array.
|
|
*/
|
|
vecp->i_addr =
|
|
(char *)(ip->i_df.if_u1.if_extents);
|
|
vecp->i_len = ip->i_df.if_bytes;
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* There are delayed allocation extents
|
|
* in the inode, or we need to convert
|
|
* the extents to on disk format.
|
|
* Use xfs_iextents_copy()
|
|
* to copy only the real extents into
|
|
* a separate buffer. We'll free the
|
|
* buffer in the unlock routine.
|
|
*/
|
|
ext_buffer = kmem_alloc(ip->i_df.if_bytes,
|
|
KM_SLEEP);
|
|
iip->ili_extents_buf = ext_buffer;
|
|
vecp->i_addr = (xfs_caddr_t)ext_buffer;
|
|
vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
|
|
XFS_DATA_FORK);
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
|
|
}
|
|
ASSERT(vecp->i_len <= ip->i_df.if_bytes);
|
|
iip->ili_format.ilf_dsize = vecp->i_len;
|
|
vecp++;
|
|
nvecs++;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
|
|
ASSERT(ip->i_df.if_broot_bytes > 0);
|
|
ASSERT(ip->i_df.if_broot != NULL);
|
|
vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
|
|
vecp->i_len = ip->i_df.if_broot_bytes;
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
|
|
vecp++;
|
|
nvecs++;
|
|
iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
|
|
ASSERT(ip->i_df.if_bytes > 0);
|
|
ASSERT(ip->i_df.if_u1.if_data != NULL);
|
|
ASSERT(ip->i_d.di_size > 0);
|
|
|
|
vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
|
|
/*
|
|
* Round i_bytes up to a word boundary.
|
|
* The underlying memory is guaranteed to
|
|
* to be there by xfs_idata_realloc().
|
|
*/
|
|
data_bytes = roundup(ip->i_df.if_bytes, 4);
|
|
ASSERT((ip->i_df.if_real_bytes == 0) ||
|
|
(ip->i_df.if_real_bytes == data_bytes));
|
|
vecp->i_len = (int)data_bytes;
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
|
|
vecp++;
|
|
nvecs++;
|
|
iip->ili_format.ilf_dsize = (unsigned)data_bytes;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_DEV:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
|
|
XFS_ILOG_DDATA | XFS_ILOG_UUID)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
|
|
iip->ili_format.ilf_u.ilfu_rdev =
|
|
ip->i_df.if_u2.if_rdev;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_UUID:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
|
|
XFS_ILOG_DDATA | XFS_ILOG_DEV)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
|
|
iip->ili_format.ilf_u.ilfu_uuid =
|
|
ip->i_df.if_u2.if_uuid;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there are no attributes associated with the file,
|
|
* then we're done.
|
|
* Assert that no attribute-related log flags are set.
|
|
*/
|
|
if (!XFS_IFORK_Q(ip)) {
|
|
ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
|
|
iip->ili_format.ilf_size = nvecs;
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
|
|
return;
|
|
}
|
|
|
|
switch (ip->i_d.di_aformat) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
|
|
ASSERT(ip->i_afp->if_bytes > 0);
|
|
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
|
|
ASSERT(ip->i_d.di_anextents > 0);
|
|
#ifdef DEBUG
|
|
nrecs = ip->i_afp->if_bytes /
|
|
(uint)sizeof(xfs_bmbt_rec_t);
|
|
#endif
|
|
ASSERT(nrecs > 0);
|
|
ASSERT(nrecs == ip->i_d.di_anextents);
|
|
#ifdef XFS_NATIVE_HOST
|
|
/*
|
|
* There are not delayed allocation extents
|
|
* for attributes, so just point at the array.
|
|
*/
|
|
vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
|
|
vecp->i_len = ip->i_afp->if_bytes;
|
|
#else
|
|
ASSERT(iip->ili_aextents_buf == NULL);
|
|
/*
|
|
* Need to endian flip before logging
|
|
*/
|
|
ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
|
|
KM_SLEEP);
|
|
iip->ili_aextents_buf = ext_buffer;
|
|
vecp->i_addr = (xfs_caddr_t)ext_buffer;
|
|
vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
|
|
XFS_ATTR_FORK);
|
|
#endif
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
|
|
iip->ili_format.ilf_asize = vecp->i_len;
|
|
vecp++;
|
|
nvecs++;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
|
|
ASSERT(ip->i_afp->if_broot_bytes > 0);
|
|
ASSERT(ip->i_afp->if_broot != NULL);
|
|
vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
|
|
vecp->i_len = ip->i_afp->if_broot_bytes;
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
|
|
vecp++;
|
|
nvecs++;
|
|
iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
ASSERT(!(iip->ili_format.ilf_fields &
|
|
(XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
|
|
ASSERT(ip->i_afp->if_bytes > 0);
|
|
ASSERT(ip->i_afp->if_u1.if_data != NULL);
|
|
|
|
vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
|
|
/*
|
|
* Round i_bytes up to a word boundary.
|
|
* The underlying memory is guaranteed to
|
|
* to be there by xfs_idata_realloc().
|
|
*/
|
|
data_bytes = roundup(ip->i_afp->if_bytes, 4);
|
|
ASSERT((ip->i_afp->if_real_bytes == 0) ||
|
|
(ip->i_afp->if_real_bytes == data_bytes));
|
|
vecp->i_len = (int)data_bytes;
|
|
XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
|
|
vecp++;
|
|
nvecs++;
|
|
iip->ili_format.ilf_asize = (unsigned)data_bytes;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
|
|
iip->ili_format.ilf_size = nvecs;
|
|
}
|
|
|
|
|
|
/*
|
|
* This is called to pin the inode associated with the inode log
|
|
* item in memory so it cannot be written out. Do this by calling
|
|
* xfs_ipin() to bump the pin count in the inode while holding the
|
|
* inode pin lock.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_pin(
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
|
|
xfs_ipin(iip->ili_inode);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is called to unpin the inode associated with the inode log
|
|
* item which was previously pinned with a call to xfs_inode_item_pin().
|
|
* Just call xfs_iunpin() on the inode to do this.
|
|
*/
|
|
/* ARGSUSED */
|
|
STATIC void
|
|
xfs_inode_item_unpin(
|
|
xfs_inode_log_item_t *iip,
|
|
int stale)
|
|
{
|
|
xfs_iunpin(iip->ili_inode);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
STATIC void
|
|
xfs_inode_item_unpin_remove(
|
|
xfs_inode_log_item_t *iip,
|
|
xfs_trans_t *tp)
|
|
{
|
|
xfs_iunpin(iip->ili_inode);
|
|
}
|
|
|
|
/*
|
|
* This is called to attempt to lock the inode associated with this
|
|
* inode log item, in preparation for the push routine which does the actual
|
|
* iflush. Don't sleep on the inode lock or the flush lock.
|
|
*
|
|
* If the flush lock is already held, indicating that the inode has
|
|
* been or is in the process of being flushed, then (ideally) we'd like to
|
|
* see if the inode's buffer is still incore, and if so give it a nudge.
|
|
* We delay doing so until the pushbuf routine, though, to avoid holding
|
|
* the AIL lock across a call to the blackhole which is the buffer cache.
|
|
* Also we don't want to sleep in any device strategy routines, which can happen
|
|
* if we do the subsequent bawrite in here.
|
|
*/
|
|
STATIC uint
|
|
xfs_inode_item_trylock(
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
register xfs_inode_t *ip;
|
|
|
|
ip = iip->ili_inode;
|
|
|
|
if (xfs_ipincount(ip) > 0) {
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
|
|
return XFS_ITEM_LOCKED;
|
|
}
|
|
|
|
if (!xfs_iflock_nowait(ip)) {
|
|
/*
|
|
* If someone else isn't already trying to push the inode
|
|
* buffer, we get to do it.
|
|
*/
|
|
if (iip->ili_pushbuf_flag == 0) {
|
|
iip->ili_pushbuf_flag = 1;
|
|
#ifdef DEBUG
|
|
iip->ili_push_owner = current_pid();
|
|
#endif
|
|
/*
|
|
* Inode is left locked in shared mode.
|
|
* Pushbuf routine gets to unlock it.
|
|
*/
|
|
return XFS_ITEM_PUSHBUF;
|
|
} else {
|
|
/*
|
|
* We hold the AIL lock, so we must specify the
|
|
* NONOTIFY flag so that we won't double trip.
|
|
*/
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
|
|
return XFS_ITEM_FLUSHING;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/* Stale items should force out the iclog */
|
|
if (ip->i_flags & XFS_ISTALE) {
|
|
xfs_ifunlock(ip);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
ASSERT(iip->ili_format.ilf_fields != 0);
|
|
ASSERT(iip->ili_logged == 0);
|
|
ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
|
|
}
|
|
#endif
|
|
return XFS_ITEM_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Unlock the inode associated with the inode log item.
|
|
* Clear the fields of the inode and inode log item that
|
|
* are specific to the current transaction. If the
|
|
* hold flags is set, do not unlock the inode.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_unlock(
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
uint hold;
|
|
uint iolocked;
|
|
uint lock_flags;
|
|
xfs_inode_t *ip;
|
|
|
|
ASSERT(iip != NULL);
|
|
ASSERT(iip->ili_inode->i_itemp != NULL);
|
|
ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
|
|
ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
|
|
XFS_ILI_IOLOCKED_EXCL)) ||
|
|
ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
|
|
ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
|
|
XFS_ILI_IOLOCKED_SHARED)) ||
|
|
ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
|
|
/*
|
|
* Clear the transaction pointer in the inode.
|
|
*/
|
|
ip = iip->ili_inode;
|
|
ip->i_transp = NULL;
|
|
|
|
/*
|
|
* If the inode needed a separate buffer with which to log
|
|
* its extents, then free it now.
|
|
*/
|
|
if (iip->ili_extents_buf != NULL) {
|
|
ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
|
|
ASSERT(ip->i_d.di_nextents > 0);
|
|
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
|
|
ASSERT(ip->i_df.if_bytes > 0);
|
|
kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
|
|
iip->ili_extents_buf = NULL;
|
|
}
|
|
if (iip->ili_aextents_buf != NULL) {
|
|
ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
|
|
ASSERT(ip->i_d.di_anextents > 0);
|
|
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
|
|
ASSERT(ip->i_afp->if_bytes > 0);
|
|
kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
|
|
iip->ili_aextents_buf = NULL;
|
|
}
|
|
|
|
/*
|
|
* Figure out if we should unlock the inode or not.
|
|
*/
|
|
hold = iip->ili_flags & XFS_ILI_HOLD;
|
|
|
|
/*
|
|
* Before clearing out the flags, remember whether we
|
|
* are holding the inode's IO lock.
|
|
*/
|
|
iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
|
|
|
|
/*
|
|
* Clear out the fields of the inode log item particular
|
|
* to the current transaction.
|
|
*/
|
|
iip->ili_ilock_recur = 0;
|
|
iip->ili_iolock_recur = 0;
|
|
iip->ili_flags = 0;
|
|
|
|
/*
|
|
* Unlock the inode if XFS_ILI_HOLD was not set.
|
|
*/
|
|
if (!hold) {
|
|
lock_flags = XFS_ILOCK_EXCL;
|
|
if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
|
|
lock_flags |= XFS_IOLOCK_EXCL;
|
|
} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
|
|
lock_flags |= XFS_IOLOCK_SHARED;
|
|
}
|
|
xfs_iput(iip->ili_inode, lock_flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called to find out where the oldest active copy of the
|
|
* inode log item in the on disk log resides now that the last log
|
|
* write of it completed at the given lsn. Since we always re-log
|
|
* all dirty data in an inode, the latest copy in the on disk log
|
|
* is the only one that matters. Therefore, simply return the
|
|
* given lsn.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC xfs_lsn_t
|
|
xfs_inode_item_committed(
|
|
xfs_inode_log_item_t *iip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
return (lsn);
|
|
}
|
|
|
|
/*
|
|
* This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
|
|
* failed to get the inode flush lock but did get the inode locked SHARED.
|
|
* Here we're trying to see if the inode buffer is incore, and if so whether it's
|
|
* marked delayed write. If that's the case, we'll initiate a bawrite on that
|
|
* buffer to expedite the process.
|
|
*
|
|
* We aren't holding the AIL lock (or the flush lock) when this gets called,
|
|
* so it is inherently race-y.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_pushbuf(
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
xfs_inode_t *ip;
|
|
xfs_mount_t *mp;
|
|
xfs_buf_t *bp;
|
|
uint dopush;
|
|
|
|
ip = iip->ili_inode;
|
|
|
|
ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
|
|
|
|
/*
|
|
* The ili_pushbuf_flag keeps others from
|
|
* trying to duplicate our effort.
|
|
*/
|
|
ASSERT(iip->ili_pushbuf_flag != 0);
|
|
ASSERT(iip->ili_push_owner == current_pid());
|
|
|
|
/*
|
|
* If flushlock isn't locked anymore, chances are that the
|
|
* inode flush completed and the inode was taken off the AIL.
|
|
* So, just get out.
|
|
*/
|
|
if (!issemalocked(&(ip->i_flock)) ||
|
|
((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
|
|
iip->ili_pushbuf_flag = 0;
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
return;
|
|
}
|
|
|
|
mp = ip->i_mount;
|
|
bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
|
|
iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
|
|
|
|
if (bp != NULL) {
|
|
if (XFS_BUF_ISDELAYWRITE(bp)) {
|
|
/*
|
|
* We were racing with iflush because we don't hold
|
|
* the AIL lock or the flush lock. However, at this point,
|
|
* we have the buffer, and we know that it's dirty.
|
|
* So, it's possible that iflush raced with us, and
|
|
* this item is already taken off the AIL.
|
|
* If not, we can flush it async.
|
|
*/
|
|
dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
|
|
issemalocked(&(ip->i_flock)));
|
|
iip->ili_pushbuf_flag = 0;
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
xfs_buftrace("INODE ITEM PUSH", bp);
|
|
if (XFS_BUF_ISPINNED(bp)) {
|
|
xfs_log_force(mp, (xfs_lsn_t)0,
|
|
XFS_LOG_FORCE);
|
|
}
|
|
if (dopush) {
|
|
xfs_bawrite(mp, bp);
|
|
} else {
|
|
xfs_buf_relse(bp);
|
|
}
|
|
} else {
|
|
iip->ili_pushbuf_flag = 0;
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
xfs_buf_relse(bp);
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* We have to be careful about resetting pushbuf flag too early (above).
|
|
* Even though in theory we can do it as soon as we have the buflock,
|
|
* we don't want others to be doing work needlessly. They'll come to
|
|
* this function thinking that pushing the buffer is their
|
|
* responsibility only to find that the buffer is still locked by
|
|
* another doing the same thing
|
|
*/
|
|
iip->ili_pushbuf_flag = 0;
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* This is called to asynchronously write the inode associated with this
|
|
* inode log item out to disk. The inode will already have been locked by
|
|
* a successful call to xfs_inode_item_trylock().
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_push(
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
xfs_inode_t *ip;
|
|
|
|
ip = iip->ili_inode;
|
|
|
|
ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
|
|
ASSERT(issemalocked(&(ip->i_flock)));
|
|
/*
|
|
* Since we were able to lock the inode's flush lock and
|
|
* we found it on the AIL, the inode must be dirty. This
|
|
* is because the inode is removed from the AIL while still
|
|
* holding the flush lock in xfs_iflush_done(). Thus, if
|
|
* we found it in the AIL and were able to obtain the flush
|
|
* lock without sleeping, then there must not have been
|
|
* anyone in the process of flushing the inode.
|
|
*/
|
|
ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
|
|
iip->ili_format.ilf_fields != 0);
|
|
|
|
/*
|
|
* Write out the inode. The completion routine ('iflush_done') will
|
|
* pull it from the AIL, mark it clean, unlock the flush lock.
|
|
*/
|
|
(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX rcc - this one really has to do something. Probably needs
|
|
* to stamp in a new field in the incore inode.
|
|
*/
|
|
/* ARGSUSED */
|
|
STATIC void
|
|
xfs_inode_item_committing(
|
|
xfs_inode_log_item_t *iip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
iip->ili_last_lsn = lsn;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all buf log items.
|
|
*/
|
|
static struct xfs_item_ops xfs_inode_item_ops = {
|
|
.iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
|
|
.iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
|
|
xfs_inode_item_format,
|
|
.iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
|
|
.iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
|
|
.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
|
|
xfs_inode_item_unpin_remove,
|
|
.iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
|
|
.iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
|
|
.iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
|
|
xfs_inode_item_committed,
|
|
.iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
|
|
.iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
|
|
.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
|
|
xfs_inode_item_committing
|
|
};
|
|
|
|
|
|
/*
|
|
* Initialize the inode log item for a newly allocated (in-core) inode.
|
|
*/
|
|
void
|
|
xfs_inode_item_init(
|
|
xfs_inode_t *ip,
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_inode_log_item_t *iip;
|
|
|
|
ASSERT(ip->i_itemp == NULL);
|
|
iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
|
|
|
|
iip->ili_item.li_type = XFS_LI_INODE;
|
|
iip->ili_item.li_ops = &xfs_inode_item_ops;
|
|
iip->ili_item.li_mountp = mp;
|
|
iip->ili_inode = ip;
|
|
|
|
/*
|
|
We have zeroed memory. No need ...
|
|
iip->ili_extents_buf = NULL;
|
|
iip->ili_pushbuf_flag = 0;
|
|
*/
|
|
|
|
iip->ili_format.ilf_type = XFS_LI_INODE;
|
|
iip->ili_format.ilf_ino = ip->i_ino;
|
|
iip->ili_format.ilf_blkno = ip->i_blkno;
|
|
iip->ili_format.ilf_len = ip->i_len;
|
|
iip->ili_format.ilf_boffset = ip->i_boffset;
|
|
}
|
|
|
|
/*
|
|
* Free the inode log item and any memory hanging off of it.
|
|
*/
|
|
void
|
|
xfs_inode_item_destroy(
|
|
xfs_inode_t *ip)
|
|
{
|
|
#ifdef XFS_TRANS_DEBUG
|
|
if (ip->i_itemp->ili_root_size != 0) {
|
|
kmem_free(ip->i_itemp->ili_orig_root,
|
|
ip->i_itemp->ili_root_size);
|
|
}
|
|
#endif
|
|
kmem_zone_free(xfs_ili_zone, ip->i_itemp);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is the inode flushing I/O completion routine. It is called
|
|
* from interrupt level when the buffer containing the inode is
|
|
* flushed to disk. It is responsible for removing the inode item
|
|
* from the AIL if it has not been re-logged, and unlocking the inode's
|
|
* flush lock.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
xfs_iflush_done(
|
|
xfs_buf_t *bp,
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
xfs_inode_t *ip;
|
|
|
|
ip = iip->ili_inode;
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if it is
|
|
* actually there and its location in the log has not
|
|
* changed since we started the flush. Thus, we only bother
|
|
* if the ili_logged flag is set and the inode's lsn has not
|
|
* changed. First we check the lsn outside
|
|
* the lock since it's cheaper, and then we recheck while
|
|
* holding the lock before removing the inode from the AIL.
|
|
*/
|
|
if (iip->ili_logged &&
|
|
(iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
|
|
spin_lock(&ip->i_mount->m_ail_lock);
|
|
if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
|
|
/*
|
|
* xfs_trans_delete_ail() drops the AIL lock.
|
|
*/
|
|
xfs_trans_delete_ail(ip->i_mount,
|
|
(xfs_log_item_t*)iip);
|
|
} else {
|
|
spin_unlock(&ip->i_mount->m_ail_lock);
|
|
}
|
|
}
|
|
|
|
iip->ili_logged = 0;
|
|
|
|
/*
|
|
* Clear the ili_last_fields bits now that we know that the
|
|
* data corresponding to them is safely on disk.
|
|
*/
|
|
iip->ili_last_fields = 0;
|
|
|
|
/*
|
|
* Release the inode's flush lock since we're done with it.
|
|
*/
|
|
xfs_ifunlock(ip);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is the inode flushing abort routine. It is called
|
|
* from xfs_iflush when the filesystem is shutting down to clean
|
|
* up the inode state.
|
|
* It is responsible for removing the inode item
|
|
* from the AIL if it has not been re-logged, and unlocking the inode's
|
|
* flush lock.
|
|
*/
|
|
void
|
|
xfs_iflush_abort(
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_inode_log_item_t *iip;
|
|
xfs_mount_t *mp;
|
|
|
|
iip = ip->i_itemp;
|
|
mp = ip->i_mount;
|
|
if (iip) {
|
|
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
|
|
spin_lock(&mp->m_ail_lock);
|
|
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
|
|
/*
|
|
* xfs_trans_delete_ail() drops the AIL lock.
|
|
*/
|
|
xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip);
|
|
} else
|
|
spin_unlock(&mp->m_ail_lock);
|
|
}
|
|
iip->ili_logged = 0;
|
|
/*
|
|
* Clear the ili_last_fields bits now that we know that the
|
|
* data corresponding to them is safely on disk.
|
|
*/
|
|
iip->ili_last_fields = 0;
|
|
/*
|
|
* Clear the inode logging fields so no more flushes are
|
|
* attempted.
|
|
*/
|
|
iip->ili_format.ilf_fields = 0;
|
|
}
|
|
/*
|
|
* Release the inode's flush lock since we're done with it.
|
|
*/
|
|
xfs_ifunlock(ip);
|
|
}
|
|
|
|
void
|
|
xfs_istale_done(
|
|
xfs_buf_t *bp,
|
|
xfs_inode_log_item_t *iip)
|
|
{
|
|
xfs_iflush_abort(iip->ili_inode);
|
|
}
|
|
|
|
/*
|
|
* convert an xfs_inode_log_format struct from either 32 or 64 bit versions
|
|
* (which can have different field alignments) to the native version
|
|
*/
|
|
int
|
|
xfs_inode_item_format_convert(
|
|
xfs_log_iovec_t *buf,
|
|
xfs_inode_log_format_t *in_f)
|
|
{
|
|
if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
|
|
xfs_inode_log_format_32_t *in_f32;
|
|
|
|
in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
|
|
in_f->ilf_type = in_f32->ilf_type;
|
|
in_f->ilf_size = in_f32->ilf_size;
|
|
in_f->ilf_fields = in_f32->ilf_fields;
|
|
in_f->ilf_asize = in_f32->ilf_asize;
|
|
in_f->ilf_dsize = in_f32->ilf_dsize;
|
|
in_f->ilf_ino = in_f32->ilf_ino;
|
|
/* copy biggest field of ilf_u */
|
|
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
|
|
in_f32->ilf_u.ilfu_uuid.__u_bits,
|
|
sizeof(uuid_t));
|
|
in_f->ilf_blkno = in_f32->ilf_blkno;
|
|
in_f->ilf_len = in_f32->ilf_len;
|
|
in_f->ilf_boffset = in_f32->ilf_boffset;
|
|
return 0;
|
|
} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
|
|
xfs_inode_log_format_64_t *in_f64;
|
|
|
|
in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
|
|
in_f->ilf_type = in_f64->ilf_type;
|
|
in_f->ilf_size = in_f64->ilf_size;
|
|
in_f->ilf_fields = in_f64->ilf_fields;
|
|
in_f->ilf_asize = in_f64->ilf_asize;
|
|
in_f->ilf_dsize = in_f64->ilf_dsize;
|
|
in_f->ilf_ino = in_f64->ilf_ino;
|
|
/* copy biggest field of ilf_u */
|
|
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
|
|
in_f64->ilf_u.ilfu_uuid.__u_bits,
|
|
sizeof(uuid_t));
|
|
in_f->ilf_blkno = in_f64->ilf_blkno;
|
|
in_f->ilf_len = in_f64->ilf_len;
|
|
in_f->ilf_boffset = in_f64->ilf_boffset;
|
|
return 0;
|
|
}
|
|
return EFSCORRUPTED;
|
|
}
|
|
|