You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
986 lines
25 KiB
986 lines
25 KiB
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Cross Partition Communication (XPC) partition support.
|
|
*
|
|
* This is the part of XPC that detects the presence/absence of
|
|
* other partitions. It provides a heartbeat and monitors the
|
|
* heartbeats of other partitions.
|
|
*
|
|
*/
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/nodemask.h>
|
|
#include <asm/uncached.h>
|
|
#include <asm/sn/bte.h>
|
|
#include <asm/sn/intr.h>
|
|
#include <asm/sn/sn_sal.h>
|
|
#include <asm/sn/nodepda.h>
|
|
#include <asm/sn/addrs.h>
|
|
#include "xpc.h"
|
|
|
|
|
|
/* XPC is exiting flag */
|
|
int xpc_exiting;
|
|
|
|
|
|
/* SH_IPI_ACCESS shub register value on startup */
|
|
static u64 xpc_sh1_IPI_access;
|
|
static u64 xpc_sh2_IPI_access0;
|
|
static u64 xpc_sh2_IPI_access1;
|
|
static u64 xpc_sh2_IPI_access2;
|
|
static u64 xpc_sh2_IPI_access3;
|
|
|
|
|
|
/* original protection values for each node */
|
|
u64 xpc_prot_vec[MAX_COMPACT_NODES];
|
|
|
|
|
|
/* this partition's reserved page */
|
|
struct xpc_rsvd_page *xpc_rsvd_page;
|
|
|
|
/* this partition's XPC variables (within the reserved page) */
|
|
struct xpc_vars *xpc_vars;
|
|
struct xpc_vars_part *xpc_vars_part;
|
|
|
|
|
|
/*
|
|
* For performance reasons, each entry of xpc_partitions[] is cacheline
|
|
* aligned. And xpc_partitions[] is padded with an additional entry at the
|
|
* end so that the last legitimate entry doesn't share its cacheline with
|
|
* another variable.
|
|
*/
|
|
struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1];
|
|
|
|
|
|
/*
|
|
* Generic buffer used to store a local copy of the remote partitions
|
|
* reserved page or XPC variables.
|
|
*
|
|
* xpc_discovery runs only once and is a seperate thread that is
|
|
* very likely going to be processing in parallel with receiving
|
|
* interrupts.
|
|
*/
|
|
char ____cacheline_aligned
|
|
xpc_remote_copy_buffer[XPC_RSVD_PAGE_ALIGNED_SIZE];
|
|
|
|
|
|
/* systune related variables */
|
|
int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
|
|
int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_TIMEOUT;
|
|
|
|
|
|
/*
|
|
* Given a nasid, get the physical address of the partition's reserved page
|
|
* for that nasid. This function returns 0 on any error.
|
|
*/
|
|
static u64
|
|
xpc_get_rsvd_page_pa(int nasid, u64 buf, u64 buf_size)
|
|
{
|
|
bte_result_t bte_res;
|
|
s64 status;
|
|
u64 cookie = 0;
|
|
u64 rp_pa = nasid; /* seed with nasid */
|
|
u64 len = 0;
|
|
|
|
|
|
while (1) {
|
|
|
|
status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa,
|
|
&len);
|
|
|
|
dev_dbg(xpc_part, "SAL returned with status=%li, cookie="
|
|
"0x%016lx, address=0x%016lx, len=0x%016lx\n",
|
|
status, cookie, rp_pa, len);
|
|
|
|
if (status != SALRET_MORE_PASSES) {
|
|
break;
|
|
}
|
|
|
|
if (len > buf_size) {
|
|
dev_err(xpc_part, "len (=0x%016lx) > buf_size\n", len);
|
|
status = SALRET_ERROR;
|
|
break;
|
|
}
|
|
|
|
bte_res = xp_bte_copy(rp_pa, ia64_tpa(buf), buf_size,
|
|
(BTE_NOTIFY | BTE_WACQUIRE), NULL);
|
|
if (bte_res != BTE_SUCCESS) {
|
|
dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res);
|
|
status = SALRET_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (status != SALRET_OK) {
|
|
rp_pa = 0;
|
|
}
|
|
dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa);
|
|
return rp_pa;
|
|
}
|
|
|
|
|
|
/*
|
|
* Fill the partition reserved page with the information needed by
|
|
* other partitions to discover we are alive and establish initial
|
|
* communications.
|
|
*/
|
|
struct xpc_rsvd_page *
|
|
xpc_rsvd_page_init(void)
|
|
{
|
|
struct xpc_rsvd_page *rp;
|
|
AMO_t *amos_page;
|
|
u64 rp_pa, next_cl, nasid_array = 0;
|
|
int i, ret;
|
|
|
|
|
|
/* get the local reserved page's address */
|
|
|
|
rp_pa = xpc_get_rsvd_page_pa(cnodeid_to_nasid(0),
|
|
(u64) xpc_remote_copy_buffer,
|
|
XPC_RSVD_PAGE_ALIGNED_SIZE);
|
|
if (rp_pa == 0) {
|
|
dev_err(xpc_part, "SAL failed to locate the reserved page\n");
|
|
return NULL;
|
|
}
|
|
rp = (struct xpc_rsvd_page *) __va(rp_pa);
|
|
|
|
if (rp->partid != sn_partition_id) {
|
|
dev_err(xpc_part, "the reserved page's partid of %d should be "
|
|
"%d\n", rp->partid, sn_partition_id);
|
|
return NULL;
|
|
}
|
|
|
|
rp->version = XPC_RP_VERSION;
|
|
|
|
/*
|
|
* Place the XPC variables on the cache line following the
|
|
* reserved page structure.
|
|
*/
|
|
next_cl = (u64) rp + XPC_RSVD_PAGE_ALIGNED_SIZE;
|
|
xpc_vars = (struct xpc_vars *) next_cl;
|
|
|
|
/*
|
|
* Before clearing xpc_vars, see if a page of AMOs had been previously
|
|
* allocated. If not we'll need to allocate one and set permissions
|
|
* so that cross-partition AMOs are allowed.
|
|
*
|
|
* The allocated AMO page needs MCA reporting to remain disabled after
|
|
* XPC has unloaded. To make this work, we keep a copy of the pointer
|
|
* to this page (i.e., amos_page) in the struct xpc_vars structure,
|
|
* which is pointed to by the reserved page, and re-use that saved copy
|
|
* on subsequent loads of XPC. This AMO page is never freed, and its
|
|
* memory protections are never restricted.
|
|
*/
|
|
if ((amos_page = xpc_vars->amos_page) == NULL) {
|
|
amos_page = (AMO_t *) TO_AMO(uncached_alloc_page(0));
|
|
if (amos_page == NULL) {
|
|
dev_err(xpc_part, "can't allocate page of AMOs\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Open up AMO-R/W to cpu. This is done for Shub 1.1 systems
|
|
* when xpc_allow_IPI_ops() is called via xpc_hb_init().
|
|
*/
|
|
if (!enable_shub_wars_1_1()) {
|
|
ret = sn_change_memprotect(ia64_tpa((u64) amos_page),
|
|
PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1,
|
|
&nasid_array);
|
|
if (ret != 0) {
|
|
dev_err(xpc_part, "can't change memory "
|
|
"protections\n");
|
|
uncached_free_page(__IA64_UNCACHED_OFFSET |
|
|
TO_PHYS((u64) amos_page));
|
|
return NULL;
|
|
}
|
|
}
|
|
} else if (!IS_AMO_ADDRESS((u64) amos_page)) {
|
|
/*
|
|
* EFI's XPBOOT can also set amos_page in the reserved page,
|
|
* but it happens to leave it as an uncached physical address
|
|
* and we need it to be an uncached virtual, so we'll have to
|
|
* convert it.
|
|
*/
|
|
if (!IS_AMO_PHYS_ADDRESS((u64) amos_page)) {
|
|
dev_err(xpc_part, "previously used amos_page address "
|
|
"is bad = 0x%p\n", (void *) amos_page);
|
|
return NULL;
|
|
}
|
|
amos_page = (AMO_t *) TO_AMO((u64) amos_page);
|
|
}
|
|
|
|
memset(xpc_vars, 0, sizeof(struct xpc_vars));
|
|
|
|
/*
|
|
* Place the XPC per partition specific variables on the cache line
|
|
* following the XPC variables structure.
|
|
*/
|
|
next_cl += XPC_VARS_ALIGNED_SIZE;
|
|
memset((u64 *) next_cl, 0, sizeof(struct xpc_vars_part) *
|
|
XP_MAX_PARTITIONS);
|
|
xpc_vars_part = (struct xpc_vars_part *) next_cl;
|
|
xpc_vars->vars_part_pa = __pa(next_cl);
|
|
|
|
xpc_vars->version = XPC_V_VERSION;
|
|
xpc_vars->act_nasid = cpuid_to_nasid(0);
|
|
xpc_vars->act_phys_cpuid = cpu_physical_id(0);
|
|
xpc_vars->amos_page = amos_page; /* save for next load of XPC */
|
|
|
|
|
|
/*
|
|
* Initialize the activation related AMO variables.
|
|
*/
|
|
xpc_vars->act_amos = xpc_IPI_init(XP_MAX_PARTITIONS);
|
|
for (i = 1; i < XP_NASID_MASK_WORDS; i++) {
|
|
xpc_IPI_init(i + XP_MAX_PARTITIONS);
|
|
}
|
|
/* export AMO page's physical address to other partitions */
|
|
xpc_vars->amos_page_pa = ia64_tpa((u64) xpc_vars->amos_page);
|
|
|
|
/*
|
|
* This signifies to the remote partition that our reserved
|
|
* page is initialized.
|
|
*/
|
|
rp->vars_pa = __pa(xpc_vars);
|
|
|
|
return rp;
|
|
}
|
|
|
|
|
|
/*
|
|
* Change protections to allow IPI operations (and AMO operations on
|
|
* Shub 1.1 systems).
|
|
*/
|
|
void
|
|
xpc_allow_IPI_ops(void)
|
|
{
|
|
int node;
|
|
int nasid;
|
|
|
|
|
|
// >>> Change SH_IPI_ACCESS code to use SAL call once it is available.
|
|
|
|
if (is_shub2()) {
|
|
xpc_sh2_IPI_access0 =
|
|
(u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
|
|
xpc_sh2_IPI_access1 =
|
|
(u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
|
|
xpc_sh2_IPI_access2 =
|
|
(u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
|
|
xpc_sh2_IPI_access3 =
|
|
(u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
|
|
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
|
|
-1UL);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
|
|
-1UL);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
|
|
-1UL);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
|
|
-1UL);
|
|
}
|
|
|
|
} else {
|
|
xpc_sh1_IPI_access =
|
|
(u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
|
|
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
|
|
-1UL);
|
|
|
|
/*
|
|
* Since the BIST collides with memory operations on
|
|
* SHUB 1.1 sn_change_memprotect() cannot be used.
|
|
*/
|
|
if (enable_shub_wars_1_1()) {
|
|
/* open up everything */
|
|
xpc_prot_vec[node] = (u64) HUB_L((u64 *)
|
|
GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQLP_MMR_DIR_PRIVEC0));
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQLP_MMR_DIR_PRIVEC0),
|
|
-1UL);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQRP_MMR_DIR_PRIVEC0),
|
|
-1UL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Restrict protections to disallow IPI operations (and AMO operations on
|
|
* Shub 1.1 systems).
|
|
*/
|
|
void
|
|
xpc_restrict_IPI_ops(void)
|
|
{
|
|
int node;
|
|
int nasid;
|
|
|
|
|
|
// >>> Change SH_IPI_ACCESS code to use SAL call once it is available.
|
|
|
|
if (is_shub2()) {
|
|
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
|
|
xpc_sh2_IPI_access0);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
|
|
xpc_sh2_IPI_access1);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
|
|
xpc_sh2_IPI_access2);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
|
|
xpc_sh2_IPI_access3);
|
|
}
|
|
|
|
} else {
|
|
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
|
|
xpc_sh1_IPI_access);
|
|
|
|
if (enable_shub_wars_1_1()) {
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQLP_MMR_DIR_PRIVEC0),
|
|
xpc_prot_vec[node]);
|
|
HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQRP_MMR_DIR_PRIVEC0),
|
|
xpc_prot_vec[node]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* At periodic intervals, scan through all active partitions and ensure
|
|
* their heartbeat is still active. If not, the partition is deactivated.
|
|
*/
|
|
void
|
|
xpc_check_remote_hb(void)
|
|
{
|
|
struct xpc_vars *remote_vars;
|
|
struct xpc_partition *part;
|
|
partid_t partid;
|
|
bte_result_t bres;
|
|
|
|
|
|
remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer;
|
|
|
|
for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
|
|
if (partid == sn_partition_id) {
|
|
continue;
|
|
}
|
|
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (part->act_state == XPC_P_INACTIVE ||
|
|
part->act_state == XPC_P_DEACTIVATING) {
|
|
continue;
|
|
}
|
|
|
|
/* pull the remote_hb cache line */
|
|
bres = xp_bte_copy(part->remote_vars_pa,
|
|
ia64_tpa((u64) remote_vars),
|
|
XPC_VARS_ALIGNED_SIZE,
|
|
(BTE_NOTIFY | BTE_WACQUIRE), NULL);
|
|
if (bres != BTE_SUCCESS) {
|
|
XPC_DEACTIVATE_PARTITION(part,
|
|
xpc_map_bte_errors(bres));
|
|
continue;
|
|
}
|
|
|
|
dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
|
|
" = %ld, kdb_status = %ld, HB_mask = 0x%lx\n", partid,
|
|
remote_vars->heartbeat, part->last_heartbeat,
|
|
remote_vars->kdb_status,
|
|
remote_vars->heartbeating_to_mask);
|
|
|
|
if (((remote_vars->heartbeat == part->last_heartbeat) &&
|
|
(remote_vars->kdb_status == 0)) ||
|
|
!XPC_HB_ALLOWED(sn_partition_id, remote_vars)) {
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat);
|
|
continue;
|
|
}
|
|
|
|
part->last_heartbeat = remote_vars->heartbeat;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Get a copy of the remote partition's rsvd page.
|
|
*
|
|
* remote_rp points to a buffer that is cacheline aligned for BTE copies and
|
|
* assumed to be of size XPC_RSVD_PAGE_ALIGNED_SIZE.
|
|
*/
|
|
static enum xpc_retval
|
|
xpc_get_remote_rp(int nasid, u64 *discovered_nasids,
|
|
struct xpc_rsvd_page *remote_rp, u64 *remote_rsvd_page_pa)
|
|
{
|
|
int bres, i;
|
|
|
|
|
|
/* get the reserved page's physical address */
|
|
|
|
*remote_rsvd_page_pa = xpc_get_rsvd_page_pa(nasid, (u64) remote_rp,
|
|
XPC_RSVD_PAGE_ALIGNED_SIZE);
|
|
if (*remote_rsvd_page_pa == 0) {
|
|
return xpcNoRsvdPageAddr;
|
|
}
|
|
|
|
|
|
/* pull over the reserved page structure */
|
|
|
|
bres = xp_bte_copy(*remote_rsvd_page_pa, ia64_tpa((u64) remote_rp),
|
|
XPC_RSVD_PAGE_ALIGNED_SIZE,
|
|
(BTE_NOTIFY | BTE_WACQUIRE), NULL);
|
|
if (bres != BTE_SUCCESS) {
|
|
return xpc_map_bte_errors(bres);
|
|
}
|
|
|
|
|
|
if (discovered_nasids != NULL) {
|
|
for (i = 0; i < XP_NASID_MASK_WORDS; i++) {
|
|
discovered_nasids[i] |= remote_rp->part_nasids[i];
|
|
}
|
|
}
|
|
|
|
|
|
/* check that the partid is for another partition */
|
|
|
|
if (remote_rp->partid < 1 ||
|
|
remote_rp->partid > (XP_MAX_PARTITIONS - 1)) {
|
|
return xpcInvalidPartid;
|
|
}
|
|
|
|
if (remote_rp->partid == sn_partition_id) {
|
|
return xpcLocalPartid;
|
|
}
|
|
|
|
|
|
if (XPC_VERSION_MAJOR(remote_rp->version) !=
|
|
XPC_VERSION_MAJOR(XPC_RP_VERSION)) {
|
|
return xpcBadVersion;
|
|
}
|
|
|
|
return xpcSuccess;
|
|
}
|
|
|
|
|
|
/*
|
|
* Get a copy of the remote partition's XPC variables.
|
|
*
|
|
* remote_vars points to a buffer that is cacheline aligned for BTE copies and
|
|
* assumed to be of size XPC_VARS_ALIGNED_SIZE.
|
|
*/
|
|
static enum xpc_retval
|
|
xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars)
|
|
{
|
|
int bres;
|
|
|
|
|
|
if (remote_vars_pa == 0) {
|
|
return xpcVarsNotSet;
|
|
}
|
|
|
|
|
|
/* pull over the cross partition variables */
|
|
|
|
bres = xp_bte_copy(remote_vars_pa, ia64_tpa((u64) remote_vars),
|
|
XPC_VARS_ALIGNED_SIZE,
|
|
(BTE_NOTIFY | BTE_WACQUIRE), NULL);
|
|
if (bres != BTE_SUCCESS) {
|
|
return xpc_map_bte_errors(bres);
|
|
}
|
|
|
|
if (XPC_VERSION_MAJOR(remote_vars->version) !=
|
|
XPC_VERSION_MAJOR(XPC_V_VERSION)) {
|
|
return xpcBadVersion;
|
|
}
|
|
|
|
return xpcSuccess;
|
|
}
|
|
|
|
|
|
/*
|
|
* Prior code has determine the nasid which generated an IPI. Inspect
|
|
* that nasid to determine if its partition needs to be activated or
|
|
* deactivated.
|
|
*
|
|
* A partition is consider "awaiting activation" if our partition
|
|
* flags indicate it is not active and it has a heartbeat. A
|
|
* partition is considered "awaiting deactivation" if our partition
|
|
* flags indicate it is active but it has no heartbeat or it is not
|
|
* sending its heartbeat to us.
|
|
*
|
|
* To determine the heartbeat, the remote nasid must have a properly
|
|
* initialized reserved page.
|
|
*/
|
|
static void
|
|
xpc_identify_act_IRQ_req(int nasid)
|
|
{
|
|
struct xpc_rsvd_page *remote_rp;
|
|
struct xpc_vars *remote_vars;
|
|
u64 remote_rsvd_page_pa;
|
|
u64 remote_vars_pa;
|
|
partid_t partid;
|
|
struct xpc_partition *part;
|
|
enum xpc_retval ret;
|
|
|
|
|
|
/* pull over the reserved page structure */
|
|
|
|
remote_rp = (struct xpc_rsvd_page *) xpc_remote_copy_buffer;
|
|
|
|
ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rsvd_page_pa);
|
|
if (ret != xpcSuccess) {
|
|
dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
|
|
"which sent interrupt, reason=%d\n", nasid, ret);
|
|
return;
|
|
}
|
|
|
|
remote_vars_pa = remote_rp->vars_pa;
|
|
partid = remote_rp->partid;
|
|
part = &xpc_partitions[partid];
|
|
|
|
|
|
/* pull over the cross partition variables */
|
|
|
|
remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer;
|
|
|
|
ret = xpc_get_remote_vars(remote_vars_pa, remote_vars);
|
|
if (ret != xpcSuccess) {
|
|
|
|
dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
|
|
"which sent interrupt, reason=%d\n", nasid, ret);
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
return;
|
|
}
|
|
|
|
|
|
part->act_IRQ_rcvd++;
|
|
|
|
dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
|
|
"%ld:0x%lx\n", (int) nasid, (int) partid, part->act_IRQ_rcvd,
|
|
remote_vars->heartbeat, remote_vars->heartbeating_to_mask);
|
|
|
|
|
|
if (part->act_state == XPC_P_INACTIVE) {
|
|
|
|
part->remote_rp_pa = remote_rsvd_page_pa;
|
|
dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n",
|
|
part->remote_rp_pa);
|
|
|
|
part->remote_vars_pa = remote_vars_pa;
|
|
dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
|
|
part->remote_vars_pa);
|
|
|
|
part->last_heartbeat = remote_vars->heartbeat;
|
|
dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n",
|
|
part->last_heartbeat);
|
|
|
|
part->remote_vars_part_pa = remote_vars->vars_part_pa;
|
|
dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
|
|
part->remote_vars_part_pa);
|
|
|
|
part->remote_act_nasid = remote_vars->act_nasid;
|
|
dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n",
|
|
part->remote_act_nasid);
|
|
|
|
part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid;
|
|
dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n",
|
|
part->remote_act_phys_cpuid);
|
|
|
|
part->remote_amos_page_pa = remote_vars->amos_page_pa;
|
|
dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
|
|
part->remote_amos_page_pa);
|
|
|
|
xpc_activate_partition(part);
|
|
|
|
} else if (part->remote_amos_page_pa != remote_vars->amos_page_pa ||
|
|
!XPC_HB_ALLOWED(sn_partition_id, remote_vars)) {
|
|
|
|
part->reactivate_nasid = nasid;
|
|
XPC_DEACTIVATE_PARTITION(part, xpcReactivating);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Loop through the activation AMO variables and process any bits
|
|
* which are set. Each bit indicates a nasid sending a partition
|
|
* activation or deactivation request.
|
|
*
|
|
* Return #of IRQs detected.
|
|
*/
|
|
int
|
|
xpc_identify_act_IRQ_sender(void)
|
|
{
|
|
int word, bit;
|
|
u64 nasid_mask;
|
|
u64 nasid; /* remote nasid */
|
|
int n_IRQs_detected = 0;
|
|
AMO_t *act_amos;
|
|
struct xpc_rsvd_page *rp = (struct xpc_rsvd_page *) xpc_rsvd_page;
|
|
|
|
|
|
act_amos = xpc_vars->act_amos;
|
|
|
|
|
|
/* scan through act AMO variable looking for non-zero entries */
|
|
for (word = 0; word < XP_NASID_MASK_WORDS; word++) {
|
|
|
|
nasid_mask = xpc_IPI_receive(&act_amos[word]);
|
|
if (nasid_mask == 0) {
|
|
/* no IRQs from nasids in this variable */
|
|
continue;
|
|
}
|
|
|
|
dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word,
|
|
nasid_mask);
|
|
|
|
|
|
/*
|
|
* If this nasid has been added to the machine since
|
|
* our partition was reset, this will retain the
|
|
* remote nasid in our reserved pages machine mask.
|
|
* This is used in the event of module reload.
|
|
*/
|
|
rp->mach_nasids[word] |= nasid_mask;
|
|
|
|
|
|
/* locate the nasid(s) which sent interrupts */
|
|
|
|
for (bit = 0; bit < (8 * sizeof(u64)); bit++) {
|
|
if (nasid_mask & (1UL << bit)) {
|
|
n_IRQs_detected++;
|
|
nasid = XPC_NASID_FROM_W_B(word, bit);
|
|
dev_dbg(xpc_part, "interrupt from nasid %ld\n",
|
|
nasid);
|
|
xpc_identify_act_IRQ_req(nasid);
|
|
}
|
|
}
|
|
}
|
|
return n_IRQs_detected;
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark specified partition as active.
|
|
*/
|
|
enum xpc_retval
|
|
xpc_mark_partition_active(struct xpc_partition *part)
|
|
{
|
|
unsigned long irq_flags;
|
|
enum xpc_retval ret;
|
|
|
|
|
|
dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part));
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
if (part->act_state == XPC_P_ACTIVATING) {
|
|
part->act_state = XPC_P_ACTIVE;
|
|
ret = xpcSuccess;
|
|
} else {
|
|
DBUG_ON(part->reason == xpcSuccess);
|
|
ret = part->reason;
|
|
}
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Notify XPC that the partition is down.
|
|
*/
|
|
void
|
|
xpc_deactivate_partition(const int line, struct xpc_partition *part,
|
|
enum xpc_retval reason)
|
|
{
|
|
unsigned long irq_flags;
|
|
partid_t partid = XPC_PARTID(part);
|
|
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
|
|
if (part->act_state == XPC_P_INACTIVE) {
|
|
XPC_SET_REASON(part, reason, line);
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
if (reason == xpcReactivating) {
|
|
/* we interrupt ourselves to reactivate partition */
|
|
xpc_IPI_send_reactivate(part);
|
|
}
|
|
return;
|
|
}
|
|
if (part->act_state == XPC_P_DEACTIVATING) {
|
|
if ((part->reason == xpcUnloading && reason != xpcUnloading) ||
|
|
reason == xpcReactivating) {
|
|
XPC_SET_REASON(part, reason, line);
|
|
}
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
return;
|
|
}
|
|
|
|
part->act_state = XPC_P_DEACTIVATING;
|
|
XPC_SET_REASON(part, reason, line);
|
|
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
|
|
XPC_DISALLOW_HB(partid, xpc_vars);
|
|
|
|
dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", partid,
|
|
reason);
|
|
|
|
xpc_partition_down(part, reason);
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark specified partition as active.
|
|
*/
|
|
void
|
|
xpc_mark_partition_inactive(struct xpc_partition *part)
|
|
{
|
|
unsigned long irq_flags;
|
|
|
|
|
|
dev_dbg(xpc_part, "setting partition %d to INACTIVE\n",
|
|
XPC_PARTID(part));
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
part->act_state = XPC_P_INACTIVE;
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
part->remote_rp_pa = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* SAL has provided a partition and machine mask. The partition mask
|
|
* contains a bit for each even nasid in our partition. The machine
|
|
* mask contains a bit for each even nasid in the entire machine.
|
|
*
|
|
* Using those two bit arrays, we can determine which nasids are
|
|
* known in the machine. Each should also have a reserved page
|
|
* initialized if they are available for partitioning.
|
|
*/
|
|
void
|
|
xpc_discovery(void)
|
|
{
|
|
void *remote_rp_base;
|
|
struct xpc_rsvd_page *remote_rp;
|
|
struct xpc_vars *remote_vars;
|
|
u64 remote_rsvd_page_pa;
|
|
u64 remote_vars_pa;
|
|
int region;
|
|
int max_regions;
|
|
int nasid;
|
|
struct xpc_rsvd_page *rp;
|
|
partid_t partid;
|
|
struct xpc_partition *part;
|
|
u64 *discovered_nasids;
|
|
enum xpc_retval ret;
|
|
|
|
|
|
remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RSVD_PAGE_ALIGNED_SIZE,
|
|
GFP_KERNEL, &remote_rp_base);
|
|
if (remote_rp == NULL) {
|
|
return;
|
|
}
|
|
remote_vars = (struct xpc_vars *) remote_rp;
|
|
|
|
|
|
discovered_nasids = kmalloc(sizeof(u64) * XP_NASID_MASK_WORDS,
|
|
GFP_KERNEL);
|
|
if (discovered_nasids == NULL) {
|
|
kfree(remote_rp_base);
|
|
return;
|
|
}
|
|
memset(discovered_nasids, 0, sizeof(u64) * XP_NASID_MASK_WORDS);
|
|
|
|
rp = (struct xpc_rsvd_page *) xpc_rsvd_page;
|
|
|
|
/*
|
|
* The term 'region' in this context refers to the minimum number of
|
|
* nodes that can comprise an access protection grouping. The access
|
|
* protection is in regards to memory, IOI and IPI.
|
|
*/
|
|
//>>> move the next two #defines into either include/asm-ia64/sn/arch.h or
|
|
//>>> include/asm-ia64/sn/addrs.h
|
|
#define SH1_MAX_REGIONS 64
|
|
#define SH2_MAX_REGIONS 256
|
|
max_regions = is_shub2() ? SH2_MAX_REGIONS : SH1_MAX_REGIONS;
|
|
|
|
for (region = 0; region < max_regions; region++) {
|
|
|
|
if ((volatile int) xpc_exiting) {
|
|
break;
|
|
}
|
|
|
|
dev_dbg(xpc_part, "searching region %d\n", region);
|
|
|
|
for (nasid = (region * sn_region_size * 2);
|
|
nasid < ((region + 1) * sn_region_size * 2);
|
|
nasid += 2) {
|
|
|
|
if ((volatile int) xpc_exiting) {
|
|
break;
|
|
}
|
|
|
|
dev_dbg(xpc_part, "checking nasid %d\n", nasid);
|
|
|
|
|
|
if (XPC_NASID_IN_ARRAY(nasid, rp->part_nasids)) {
|
|
dev_dbg(xpc_part, "PROM indicates Nasid %d is "
|
|
"part of the local partition; skipping "
|
|
"region\n", nasid);
|
|
break;
|
|
}
|
|
|
|
if (!(XPC_NASID_IN_ARRAY(nasid, rp->mach_nasids))) {
|
|
dev_dbg(xpc_part, "PROM indicates Nasid %d was "
|
|
"not on Numa-Link network at reset\n",
|
|
nasid);
|
|
continue;
|
|
}
|
|
|
|
if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) {
|
|
dev_dbg(xpc_part, "Nasid %d is part of a "
|
|
"partition which was previously "
|
|
"discovered\n", nasid);
|
|
continue;
|
|
}
|
|
|
|
|
|
/* pull over the reserved page structure */
|
|
|
|
ret = xpc_get_remote_rp(nasid, discovered_nasids,
|
|
remote_rp, &remote_rsvd_page_pa);
|
|
if (ret != xpcSuccess) {
|
|
dev_dbg(xpc_part, "unable to get reserved page "
|
|
"from nasid %d, reason=%d\n", nasid,
|
|
ret);
|
|
|
|
if (ret == xpcLocalPartid) {
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
remote_vars_pa = remote_rp->vars_pa;
|
|
|
|
partid = remote_rp->partid;
|
|
part = &xpc_partitions[partid];
|
|
|
|
|
|
/* pull over the cross partition variables */
|
|
|
|
ret = xpc_get_remote_vars(remote_vars_pa, remote_vars);
|
|
if (ret != xpcSuccess) {
|
|
dev_dbg(xpc_part, "unable to get XPC variables "
|
|
"from nasid %d, reason=%d\n", nasid,
|
|
ret);
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
continue;
|
|
}
|
|
|
|
if (part->act_state != XPC_P_INACTIVE) {
|
|
dev_dbg(xpc_part, "partition %d on nasid %d is "
|
|
"already activating\n", partid, nasid);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Register the remote partition's AMOs with SAL so it
|
|
* can handle and cleanup errors within that address
|
|
* range should the remote partition go down. We don't
|
|
* unregister this range because it is difficult to
|
|
* tell when outstanding writes to the remote partition
|
|
* are finished and thus when it is thus safe to
|
|
* unregister. This should not result in wasted space
|
|
* in the SAL xp_addr_region table because we should
|
|
* get the same page for remote_act_amos_pa after
|
|
* module reloads and system reboots.
|
|
*/
|
|
if (sn_register_xp_addr_region(
|
|
remote_vars->amos_page_pa,
|
|
PAGE_SIZE, 1) < 0) {
|
|
dev_dbg(xpc_part, "partition %d failed to "
|
|
"register xp_addr region 0x%016lx\n",
|
|
partid, remote_vars->amos_page_pa);
|
|
|
|
XPC_SET_REASON(part, xpcPhysAddrRegFailed,
|
|
__LINE__);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The remote nasid is valid and available.
|
|
* Send an interrupt to that nasid to notify
|
|
* it that we are ready to begin activation.
|
|
*/
|
|
dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, "
|
|
"nasid %d, phys_cpuid 0x%x\n",
|
|
remote_vars->amos_page_pa,
|
|
remote_vars->act_nasid,
|
|
remote_vars->act_phys_cpuid);
|
|
|
|
xpc_IPI_send_activate(remote_vars);
|
|
}
|
|
}
|
|
|
|
kfree(discovered_nasids);
|
|
kfree(remote_rp_base);
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a partid, get the nasids owned by that partition from the
|
|
* remote partition's reserved page.
|
|
*/
|
|
enum xpc_retval
|
|
xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask)
|
|
{
|
|
struct xpc_partition *part;
|
|
u64 part_nasid_pa;
|
|
int bte_res;
|
|
|
|
|
|
part = &xpc_partitions[partid];
|
|
if (part->remote_rp_pa == 0) {
|
|
return xpcPartitionDown;
|
|
}
|
|
|
|
part_nasid_pa = part->remote_rp_pa +
|
|
(u64) &((struct xpc_rsvd_page *) 0)->part_nasids;
|
|
|
|
bte_res = xp_bte_copy(part_nasid_pa, ia64_tpa((u64) nasid_mask),
|
|
L1_CACHE_ALIGN(XP_NASID_MASK_BYTES),
|
|
(BTE_NOTIFY | BTE_WACQUIRE), NULL);
|
|
|
|
return xpc_map_bte_errors(bte_res);
|
|
}
|
|
|
|
|