You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/include/linux/regulator/machine.h

122 lines
3.5 KiB

/*
* machine.h -- SoC Regulator support, machine/board driver API.
*
* Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
*
* Author: Liam Girdwood <lg@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Regulator Machine/Board Interface.
*/
#ifndef __LINUX_REGULATOR_MACHINE_H_
#define __LINUX_REGULATOR_MACHINE_H_
#include <linux/regulator/consumer.h>
#include <linux/suspend.h>
struct regulator;
/*
* Regulator operation constraint flags. These flags are used to enable
* certain regulator operations and can be OR'ed together.
*
* VOLTAGE: Regulator output voltage can be changed by software on this
* board/machine.
* CURRENT: Regulator output current can be changed by software on this
* board/machine.
* MODE: Regulator operating mode can be changed by software on this
* board/machine.
* STATUS: Regulator can be enabled and disabled.
* DRMS: Dynamic Regulator Mode Switching is enabled for this regulator.
*/
#define REGULATOR_CHANGE_VOLTAGE 0x1
#define REGULATOR_CHANGE_CURRENT 0x2
#define REGULATOR_CHANGE_MODE 0x4
#define REGULATOR_CHANGE_STATUS 0x8
#define REGULATOR_CHANGE_DRMS 0x10
/**
* struct regulator_state - regulator state during low power syatem states
*
* This describes a regulators state during a system wide low power state.
*/
struct regulator_state {
int uV; /* suspend voltage */
unsigned int mode; /* suspend regulator operating mode */
int enabled; /* is regulator enabled in this suspend state */
};
/**
* struct regulation_constraints - regulator operating constraints.
*
* This struct describes regulator and board/machine specific constraints.
*/
struct regulation_constraints {
char *name;
/* voltage output range (inclusive) - for voltage control */
int min_uV;
int max_uV;
/* current output range (inclusive) - for current control */
int min_uA;
int max_uA;
/* valid regulator operating modes for this machine */
unsigned int valid_modes_mask;
/* valid operations for regulator on this machine */
unsigned int valid_ops_mask;
/* regulator input voltage - only if supply is another regulator */
int input_uV;
/* regulator suspend states for global PMIC STANDBY/HIBERNATE */
struct regulator_state state_disk;
struct regulator_state state_mem;
struct regulator_state state_standby;
suspend_state_t initial_state; /* suspend state to set at init */
/* constriant flags */
unsigned always_on:1; /* regulator never off when system is on */
unsigned boot_on:1; /* bootloader/firmware enabled regulator */
unsigned apply_uV:1; /* apply uV constraint iff min == max */
};
/**
* struct regulator_consumer_supply - supply -> device mapping
*
* This maps a supply name to a device.
*/
struct regulator_consumer_supply {
struct device *dev; /* consumer */
const char *supply; /* consumer supply - e.g. "vcc" */
};
/**
* struct regulator_init_data - regulator platform initialisation data.
*
* Initialisation constraints, our supply and consumers supplies.
*/
struct regulator_init_data {
struct device *supply_regulator_dev; /* or NULL for LINE */
struct regulation_constraints constraints;
int num_consumer_supplies;
struct regulator_consumer_supply *consumer_supplies;
/* optional regulator machine specific init */
int (*regulator_init)(void *driver_data);
void *driver_data; /* core does not touch this */
};
int regulator_suspend_prepare(suspend_state_t state);
#endif