You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/net/sctp/socket.c

5756 lines
164 KiB

/* SCTP kernel reference Implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001-2003 Intel Corp.
* Copyright (c) 2001-2002 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel reference Implementation
*
* These functions interface with the sockets layer to implement the
* SCTP Extensions for the Sockets API.
*
* Note that the descriptions from the specification are USER level
* functions--this file is the functions which populate the struct proto
* for SCTP which is the BOTTOM of the sockets interface.
*
* The SCTP reference implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* The SCTP reference implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <lksctp-developers@lists.sourceforge.net>
*
* Or submit a bug report through the following website:
* http://www.sf.net/projects/lksctp
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Narasimha Budihal <narsi@refcode.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Xingang Guo <xingang.guo@intel.com>
* Daisy Chang <daisyc@us.ibm.com>
* Sridhar Samudrala <samudrala@us.ibm.com>
* Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
* Ardelle Fan <ardelle.fan@intel.com>
* Ryan Layer <rmlayer@us.ibm.com>
* Anup Pemmaiah <pemmaiah@cc.usu.edu>
* Kevin Gao <kevin.gao@intel.com>
*
* Any bugs reported given to us we will try to fix... any fixes shared will
* be incorporated into the next SCTP release.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/time.h>
#include <linux/ip.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/crypto.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/route.h>
#include <net/ipv6.h>
#include <net/inet_common.h>
#include <linux/socket.h> /* for sa_family_t */
#include <net/sock.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
/* WARNING: Please do not remove the SCTP_STATIC attribute to
* any of the functions below as they are used to export functions
* used by a project regression testsuite.
*/
/* Forward declarations for internal helper functions. */
static int sctp_writeable(struct sock *sk);
static void sctp_wfree(struct sk_buff *skb);
static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
size_t msg_len);
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
static int sctp_wait_for_accept(struct sock *sk, long timeo);
static void sctp_wait_for_close(struct sock *sk, long timeo);
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len);
static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk);
static int sctp_do_bind(struct sock *, union sctp_addr *, int);
static int sctp_autobind(struct sock *sk);
static void sctp_sock_migrate(struct sock *, struct sock *,
struct sctp_association *, sctp_socket_type_t);
static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
extern kmem_cache_t *sctp_bucket_cachep;
/* Get the sndbuf space available at the time on the association. */
static inline int sctp_wspace(struct sctp_association *asoc)
{
struct sock *sk = asoc->base.sk;
int amt = 0;
if (asoc->ep->sndbuf_policy) {
/* make sure that no association uses more than sk_sndbuf */
amt = sk->sk_sndbuf - asoc->sndbuf_used;
} else {
/* do socket level accounting */
amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
}
if (amt < 0)
amt = 0;
return amt;
}
/* Increment the used sndbuf space count of the corresponding association by
* the size of the outgoing data chunk.
* Also, set the skb destructor for sndbuf accounting later.
*
* Since it is always 1-1 between chunk and skb, and also a new skb is always
* allocated for chunk bundling in sctp_packet_transmit(), we can use the
* destructor in the data chunk skb for the purpose of the sndbuf space
* tracking.
*/
static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
{
struct sctp_association *asoc = chunk->asoc;
struct sock *sk = asoc->base.sk;
/* The sndbuf space is tracked per association. */
sctp_association_hold(asoc);
skb_set_owner_w(chunk->skb, sk);
chunk->skb->destructor = sctp_wfree;
/* Save the chunk pointer in skb for sctp_wfree to use later. */
*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
sizeof(struct sk_buff) +
sizeof(struct sctp_chunk);
atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
}
/* Verify that this is a valid address. */
static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
int len)
{
struct sctp_af *af;
/* Verify basic sockaddr. */
af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
if (!af)
return -EINVAL;
/* Is this a valid SCTP address? */
if (!af->addr_valid(addr, sctp_sk(sk), NULL))
return -EINVAL;
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
return -EINVAL;
return 0;
}
/* Look up the association by its id. If this is not a UDP-style
* socket, the ID field is always ignored.
*/
struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
{
struct sctp_association *asoc = NULL;
/* If this is not a UDP-style socket, assoc id should be ignored. */
if (!sctp_style(sk, UDP)) {
/* Return NULL if the socket state is not ESTABLISHED. It
* could be a TCP-style listening socket or a socket which
* hasn't yet called connect() to establish an association.
*/
if (!sctp_sstate(sk, ESTABLISHED))
return NULL;
/* Get the first and the only association from the list. */
if (!list_empty(&sctp_sk(sk)->ep->asocs))
asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
struct sctp_association, asocs);
return asoc;
}
/* Otherwise this is a UDP-style socket. */
if (!id || (id == (sctp_assoc_t)-1))
return NULL;
spin_lock_bh(&sctp_assocs_id_lock);
asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
spin_unlock_bh(&sctp_assocs_id_lock);
if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
return NULL;
return asoc;
}
/* Look up the transport from an address and an assoc id. If both address and
* id are specified, the associations matching the address and the id should be
* the same.
*/
static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
struct sockaddr_storage *addr,
sctp_assoc_t id)
{
struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
struct sctp_transport *transport;
union sctp_addr *laddr = (union sctp_addr *)addr;
laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
(union sctp_addr *)addr,
&transport);
laddr->v4.sin_port = htons(laddr->v4.sin_port);
if (!addr_asoc)
return NULL;
id_asoc = sctp_id2assoc(sk, id);
if (id_asoc && (id_asoc != addr_asoc))
return NULL;
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
(union sctp_addr *)addr);
return transport;
}
/* API 3.1.2 bind() - UDP Style Syntax
* The syntax of bind() is,
*
* ret = bind(int sd, struct sockaddr *addr, int addrlen);
*
* sd - the socket descriptor returned by socket().
* addr - the address structure (struct sockaddr_in or struct
* sockaddr_in6 [RFC 2553]),
* addr_len - the size of the address structure.
*/
SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
{
int retval = 0;
sctp_lock_sock(sk);
SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
sk, addr, addr_len);
/* Disallow binding twice. */
if (!sctp_sk(sk)->ep->base.bind_addr.port)
retval = sctp_do_bind(sk, (union sctp_addr *)addr,
addr_len);
else
retval = -EINVAL;
sctp_release_sock(sk);
return retval;
}
static long sctp_get_port_local(struct sock *, union sctp_addr *);
/* Verify this is a valid sockaddr. */
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len)
{
struct sctp_af *af;
/* Check minimum size. */
if (len < sizeof (struct sockaddr))
return NULL;
/* Does this PF support this AF? */
if (!opt->pf->af_supported(addr->sa.sa_family, opt))
return NULL;
/* If we get this far, af is valid. */
af = sctp_get_af_specific(addr->sa.sa_family);
if (len < af->sockaddr_len)
return NULL;
return af;
}
/* Bind a local address either to an endpoint or to an association. */
SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
struct sctp_af *af;
unsigned short snum;
int ret = 0;
/* Common sockaddr verification. */
af = sctp_sockaddr_af(sp, addr, len);
if (!af) {
SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
sk, addr, len);
return -EINVAL;
}
snum = ntohs(addr->v4.sin_port);
SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
", port: %d, new port: %d, len: %d)\n",
sk,
addr,
bp->port, snum,
len);
/* PF specific bind() address verification. */
if (!sp->pf->bind_verify(sp, addr))
return -EADDRNOTAVAIL;
/* We must either be unbound, or bind to the same port. */
if (bp->port && (snum != bp->port)) {
SCTP_DEBUG_PRINTK("sctp_do_bind:"
" New port %d does not match existing port "
"%d.\n", snum, bp->port);
return -EINVAL;
}
if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
/* Make sure we are allowed to bind here.
* The function sctp_get_port_local() does duplicate address
* detection.
*/
if ((ret = sctp_get_port_local(sk, addr))) {
if (ret == (long) sk) {
/* This endpoint has a conflicting address. */
return -EINVAL;
} else {
return -EADDRINUSE;
}
}
/* Refresh ephemeral port. */
if (!bp->port)
bp->port = inet_sk(sk)->num;
/* Add the address to the bind address list. */
sctp_local_bh_disable();
sctp_write_lock(&ep->base.addr_lock);
/* Use GFP_ATOMIC since BHs are disabled. */
addr->v4.sin_port = ntohs(addr->v4.sin_port);
ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
addr->v4.sin_port = htons(addr->v4.sin_port);
sctp_write_unlock(&ep->base.addr_lock);
sctp_local_bh_enable();
/* Copy back into socket for getsockname() use. */
if (!ret) {
inet_sk(sk)->sport = htons(inet_sk(sk)->num);
af->to_sk_saddr(addr, sk);
}
return ret;
}
/* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
*
* R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
* at any one time. If a sender, after sending an ASCONF chunk, decides
* it needs to transfer another ASCONF Chunk, it MUST wait until the
* ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
* subsequent ASCONF. Note this restriction binds each side, so at any
* time two ASCONF may be in-transit on any given association (one sent
* from each endpoint).
*/
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk)
{
int retval = 0;
/* If there is an outstanding ASCONF chunk, queue it for later
* transmission.
*/
if (asoc->addip_last_asconf) {
list_add_tail(&chunk->list, &asoc->addip_chunk_list);
goto out;
}
/* Hold the chunk until an ASCONF_ACK is received. */
sctp_chunk_hold(chunk);
retval = sctp_primitive_ASCONF(asoc, chunk);
if (retval)
sctp_chunk_free(chunk);
else
asoc->addip_last_asconf = chunk;
out:
return retval;
}
/* Add a list of addresses as bind addresses to local endpoint or
* association.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_do_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were added will be removed.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
int cnt;
int retval = 0;
void *addr_buf;
struct sockaddr *sa_addr;
struct sctp_af *af;
SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
sk, addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* The list may contain either IPv4 or IPv6 address;
* determine the address length for walking thru the list.
*/
sa_addr = (struct sockaddr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_add;
}
retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
af->sockaddr_len);
addr_buf += af->sockaddr_len;
err_bindx_add:
if (retval < 0) {
/* Failed. Cleanup the ones that have been added */
if (cnt > 0)
sctp_bindx_rem(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
* associations that are part of the endpoint indicating that a list of local
* addresses are added to the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_add_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
struct sctp_sockaddr_entry *laddr;
union sctp_addr *addr;
union sctp_addr saveaddr;
void *addr_buf;
struct sctp_af *af;
struct list_head *pos;
struct list_head *p;
int i;
int retval = 0;
if (!sctp_addip_enable)
return retval;
sp = sctp_sk(sk);
ep = sp->ep;
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
__FUNCTION__, sk, addrs, addrcnt);
list_for_each(pos, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* in the bind address list of the association. If so,
* do not send the asconf chunk to its peer, but continue with
* other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (sctp_assoc_lookup_laddr(asoc, addr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Use the first address in bind addr list of association as
* Address Parameter of ASCONF CHUNK.
*/
sctp_read_lock(&asoc->base.addr_lock);
bp = &asoc->base.bind_addr;
p = bp->address_list.next;
laddr = list_entry(p, struct sctp_sockaddr_entry, list);
sctp_read_unlock(&asoc->base.addr_lock);
chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
addrcnt, SCTP_PARAM_ADD_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
retval = sctp_send_asconf(asoc, chunk);
if (retval)
goto out;
/* Add the new addresses to the bind address list with
* use_as_src set to 0.
*/
sctp_local_bh_disable();
sctp_write_lock(&asoc->base.addr_lock);
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
memcpy(&saveaddr, addr, af->sockaddr_len);
saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
retval = sctp_add_bind_addr(bp, &saveaddr, 0,
GFP_ATOMIC);
addr_buf += af->sockaddr_len;
}
sctp_write_unlock(&asoc->base.addr_lock);
sctp_local_bh_enable();
}
out:
return retval;
}
/* Remove a list of addresses from bind addresses list. Do not remove the
* last address.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_del_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were removed will be added back.
*
* At least one address has to be left; if only one address is
* available, the operation will return -EBUSY.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
int cnt;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
int retval = 0;
union sctp_addr saveaddr;
void *addr_buf;
struct sockaddr *sa_addr;
struct sctp_af *af;
SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
sk, addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* If the bind address list is empty or if there is only one
* bind address, there is nothing more to be removed (we need
* at least one address here).
*/
if (list_empty(&bp->address_list) ||
(sctp_list_single_entry(&bp->address_list))) {
retval = -EBUSY;
goto err_bindx_rem;
}
/* The list may contain either IPv4 or IPv6 address;
* determine the address length to copy the address to
* saveaddr.
*/
sa_addr = (struct sockaddr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_rem;
}
memcpy(&saveaddr, sa_addr, af->sockaddr_len);
saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
if (saveaddr.v4.sin_port != bp->port) {
retval = -EINVAL;
goto err_bindx_rem;
}
/* FIXME - There is probably a need to check if sk->sk_saddr and
* sk->sk_rcv_addr are currently set to one of the addresses to
* be removed. This is something which needs to be looked into
* when we are fixing the outstanding issues with multi-homing
* socket routing and failover schemes. Refer to comments in
* sctp_do_bind(). -daisy
*/
sctp_local_bh_disable();
sctp_write_lock(&ep->base.addr_lock);
retval = sctp_del_bind_addr(bp, &saveaddr);
sctp_write_unlock(&ep->base.addr_lock);
sctp_local_bh_enable();
addr_buf += af->sockaddr_len;
err_bindx_rem:
if (retval < 0) {
/* Failed. Add the ones that has been removed back */
if (cnt > 0)
sctp_bindx_add(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
* the associations that are part of the endpoint indicating that a list of
* local addresses are removed from the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_del_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_transport *transport;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
union sctp_addr *laddr;
union sctp_addr saveaddr;
void *addr_buf;
struct sctp_af *af;
struct list_head *pos, *pos1;
struct sctp_sockaddr_entry *saddr;
int i;
int retval = 0;
if (!sctp_addip_enable)
return retval;
sp = sctp_sk(sk);
ep = sp->ep;
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
__FUNCTION__, sk, addrs, addrcnt);
list_for_each(pos, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* not present in the bind address list of the association.
* If so, do not send the asconf chunk to its peer, but
* continue with other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (!sctp_assoc_lookup_laddr(asoc, laddr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Find one address in the association's bind address list
* that is not in the packed array of addresses. This is to
* make sure that we do not delete all the addresses in the
* association.
*/
sctp_read_lock(&asoc->base.addr_lock);
bp = &asoc->base.bind_addr;
laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
addrcnt, sp);
sctp_read_unlock(&asoc->base.addr_lock);
if (!laddr)
continue;
chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
SCTP_PARAM_DEL_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
/* Reset use_as_src flag for the addresses in the bind address
* list that are to be deleted.
*/
sctp_local_bh_disable();
sctp_write_lock(&asoc->base.addr_lock);
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
memcpy(&saveaddr, laddr, af->sockaddr_len);
saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
list_for_each(pos1, &bp->address_list) {
saddr = list_entry(pos1,
struct sctp_sockaddr_entry,
list);
if (sctp_cmp_addr_exact(&saddr->a, &saveaddr))
saddr->use_as_src = 0;
}
addr_buf += af->sockaddr_len;
}
sctp_write_unlock(&asoc->base.addr_lock);
sctp_local_bh_enable();
/* Update the route and saddr entries for all the transports
* as some of the addresses in the bind address list are
* about to be deleted and cannot be used as source addresses.
*/
list_for_each(pos1, &asoc->peer.transport_addr_list) {
transport = list_entry(pos1, struct sctp_transport,
transports);
dst_release(transport->dst);
sctp_transport_route(transport, NULL,
sctp_sk(asoc->base.sk));
}
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
*
* API 8.1
* int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
* int flags);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distengish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
* -1, and sets errno to the appropriate error code.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_bindx() will fail, setting errno to EINVAL.
*
* The flags parameter is formed from the bitwise OR of zero or more of
* the following currently defined flags:
*
* SCTP_BINDX_ADD_ADDR
*
* SCTP_BINDX_REM_ADDR
*
* SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
* association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
* addresses from the association. The two flags are mutually exclusive;
* if both are given, sctp_bindx() will fail with EINVAL. A caller may
* not remove all addresses from an association; sctp_bindx() will
* reject such an attempt with EINVAL.
*
* An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
* additional addresses with an endpoint after calling bind(). Or use
* sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
* socket is associated with so that no new association accepted will be
* associated with those addresses. If the endpoint supports dynamic
* address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
* endpoint to send the appropriate message to the peer to change the
* peers address lists.
*
* Adding and removing addresses from a connected association is
* optional functionality. Implementations that do not support this
* functionality should return EOPNOTSUPP.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
* This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
* from userspace.
*
* We don't use copy_from_user() for optimization: we first do the
* sanity checks (buffer size -fast- and access check-healthy
* pointer); if all of those succeed, then we can alloc the memory
* (expensive operation) needed to copy the data to kernel. Then we do
* the copying without checking the user space area
* (__copy_from_user()).
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
* op Operation to perform (add or remove, see the flags of
* sctp_bindx)
*
* Returns 0 if ok, <0 errno code on error.
*/
SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
struct sockaddr __user *addrs,
int addrs_size, int op)
{
struct sockaddr *kaddrs;
int err;
int addrcnt = 0;
int walk_size = 0;
struct sockaddr *sa_addr;
void *addr_buf;
struct sctp_af *af;
SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
" addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
if (unlikely(addrs_size <= 0))
return -EINVAL;
/* Check the user passed a healthy pointer. */
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
return -EFAULT;
/* Alloc space for the address array in kernel memory. */
kaddrs = kmalloc(addrs_size, GFP_KERNEL);
if (unlikely(!kaddrs))
return -ENOMEM;
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
kfree(kaddrs);
return -EFAULT;
}
/* Walk through the addrs buffer and count the number of addresses. */
addr_buf = kaddrs;
while (walk_size < addrs_size) {
sa_addr = (struct sockaddr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
kfree(kaddrs);
return -EINVAL;
}
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* Do the work. */
switch (op) {
case SCTP_BINDX_ADD_ADDR:
err = sctp_bindx_add(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
break;
case SCTP_BINDX_REM_ADDR:
err = sctp_bindx_rem(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
break;
default:
err = -EINVAL;
break;
};
out:
kfree(kaddrs);
return err;
}
/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
*
* Common routine for handling connect() and sctp_connectx().
* Connect will come in with just a single address.
*/
static int __sctp_connect(struct sock* sk,
struct sockaddr *kaddrs,
int addrs_size)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc = NULL;
struct sctp_association *asoc2;
struct sctp_transport *transport;
union sctp_addr to;
struct sctp_af *af;
sctp_scope_t scope;
long timeo;
int err = 0;
int addrcnt = 0;
int walk_size = 0;
struct sockaddr *sa_addr;
void *addr_buf;
sp = sctp_sk(sk);
ep = sp->ep;
/* connect() cannot be done on a socket that is already in ESTABLISHED
* state - UDP-style peeled off socket or a TCP-style socket that
* is already connected.
* It cannot be done even on a TCP-style listening socket.
*/
if (sctp_sstate(sk, ESTABLISHED) ||
(sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
err = -EISCONN;
goto out_free;
}
/* Walk through the addrs buffer and count the number of addresses. */
addr_buf = kaddrs;
while (walk_size < addrs_size) {
sa_addr = (struct sockaddr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
err = -EINVAL;
goto out_free;
}
err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
af->sockaddr_len);
if (err)
goto out_free;
memcpy(&to, sa_addr, af->sockaddr_len);
to.v4.sin_port = ntohs(to.v4.sin_port);
/* Check if there already is a matching association on the
* endpoint (other than the one created here).
*/
asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
if (asoc2 && asoc2 != asoc) {
if (asoc2->state >= SCTP_STATE_ESTABLISHED)
err = -EISCONN;
else
err = -EALREADY;
goto out_free;
}
/* If we could not find a matching association on the endpoint,
* make sure that there is no peeled-off association matching
* the peer address even on another socket.
*/
if (sctp_endpoint_is_peeled_off(ep, &to)) {
err = -EADDRNOTAVAIL;
goto out_free;
}
if (!asoc) {
/* If a bind() or sctp_bindx() is not called prior to
* an sctp_connectx() call, the system picks an
* ephemeral port and will choose an address set
* equivalent to binding with a wildcard address.
*/
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk)) {
err = -EAGAIN;
goto out_free;
}
} else {
/*
* If an unprivileged user inherits a 1-many
* style socket with open associations on a
* privileged port, it MAY be permitted to
* accept new associations, but it SHOULD NOT
* be permitted to open new associations.
*/
if (ep->base.bind_addr.port < PROT_SOCK &&
!capable(CAP_NET_BIND_SERVICE)) {
err = -EACCES;
goto out_free;
}
}
scope = sctp_scope(&to);
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!asoc) {
err = -ENOMEM;
goto out_free;
}
}
/* Prime the peer's transport structures. */
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
SCTP_UNKNOWN);
if (!transport) {
err = -ENOMEM;
goto out_free;
}
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
if (err < 0) {
goto out_free;
}
err = sctp_primitive_ASSOCIATE(asoc, NULL);
if (err < 0) {
goto out_free;
}
/* Initialize sk's dport and daddr for getpeername() */
inet_sk(sk)->dport = htons(asoc->peer.port);
af = sctp_get_af_specific(to.sa.sa_family);
af->to_sk_daddr(&to, sk);
sk->sk_err = 0;
timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
err = sctp_wait_for_connect(asoc, &timeo);
/* Don't free association on exit. */
asoc = NULL;
out_free:
SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
" kaddrs: %p err: %d\n",
asoc, kaddrs, err);
if (asoc)
sctp_association_free(asoc);
return err;
}
/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
*
* API 8.9
* int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distengish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
* -1, and sets errno to the appropriate error code.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_connectx() will fail, setting errno to EINVAL.
*
* An application can use sctp_connectx to initiate an association with
* an endpoint that is multi-homed. Much like sctp_bindx() this call
* allows a caller to specify multiple addresses at which a peer can be
* reached. The way the SCTP stack uses the list of addresses to set up
* the association is implementation dependant. This function only
* specifies that the stack will try to make use of all the addresses in
* the list when needed.
*
* Note that the list of addresses passed in is only used for setting up
* the association. It does not necessarily equal the set of addresses
* the peer uses for the resulting association. If the caller wants to
* find out the set of peer addresses, it must use sctp_getpaddrs() to
* retrieve them after the association has been set up.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_connectx(). This is used for tunneling
* the sctp_connectx() request through sctp_setsockopt() from userspace.
*
* We don't use copy_from_user() for optimization: we first do the
* sanity checks (buffer size -fast- and access check-healthy
* pointer); if all of those succeed, then we can alloc the memory
* (expensive operation) needed to copy the data to kernel. Then we do
* the copying without checking the user space area
* (__copy_from_user()).
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
*
* Returns 0 if ok, <0 errno code on error.
*/
SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
struct sockaddr __user *addrs,
int addrs_size)
{
int err = 0;
struct sockaddr *kaddrs;
SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
__FUNCTION__, sk, addrs, addrs_size);
if (unlikely(addrs_size <= 0))
return -EINVAL;
/* Check the user passed a healthy pointer. */
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
return -EFAULT;
/* Alloc space for the address array in kernel memory. */
kaddrs = kmalloc(addrs_size, GFP_KERNEL);
if (unlikely(!kaddrs))
return -ENOMEM;
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
err = -EFAULT;
} else {
err = __sctp_connect(sk, kaddrs, addrs_size);
}
kfree(kaddrs);
return err;
}
/* API 3.1.4 close() - UDP Style Syntax
* Applications use close() to perform graceful shutdown (as described in
* Section 10.1 of [SCTP]) on ALL the associations currently represented
* by a UDP-style socket.
*
* The syntax is
*
* ret = close(int sd);
*
* sd - the socket descriptor of the associations to be closed.
*
* To gracefully shutdown a specific association represented by the
* UDP-style socket, an application should use the sendmsg() call,
* passing no user data, but including the appropriate flag in the
* ancillary data (see Section xxxx).
*
* If sd in the close() call is a branched-off socket representing only
* one association, the shutdown is performed on that association only.
*
* 4.1.6 close() - TCP Style Syntax
*
* Applications use close() to gracefully close down an association.
*
* The syntax is:
*
* int close(int sd);
*
* sd - the socket descriptor of the association to be closed.
*
* After an application calls close() on a socket descriptor, no further
* socket operations will succeed on that descriptor.
*
* API 7.1.4 SO_LINGER
*
* An application using the TCP-style socket can use this option to
* perform the SCTP ABORT primitive. The linger option structure is:
*
* struct linger {
* int l_onoff; // option on/off
* int l_linger; // linger time
* };
*
* To enable the option, set l_onoff to 1. If the l_linger value is set
* to 0, calling close() is the same as the ABORT primitive. If the
* value is set to a negative value, the setsockopt() call will return
* an error. If the value is set to a positive value linger_time, the
* close() can be blocked for at most linger_time ms. If the graceful
* shutdown phase does not finish during this period, close() will
* return but the graceful shutdown phase continues in the system.
*/
SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
{
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct list_head *pos, *temp;
SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
sctp_lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
ep = sctp_sk(sk)->ep;
/* Walk all associations on an endpoint. */
list_for_each_safe(pos, temp, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (sctp_style(sk, TCP)) {
/* A closed association can still be in the list if
* it belongs to a TCP-style listening socket that is
* not yet accepted. If so, free it. If not, send an
* ABORT or SHUTDOWN based on the linger options.
*/
if (sctp_state(asoc, CLOSED)) {
sctp_unhash_established(asoc);
sctp_association_free(asoc);
continue;
}
}
if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, NULL, 0);
if (chunk)
sctp_primitive_ABORT(asoc, chunk);
} else
sctp_primitive_SHUTDOWN(asoc, NULL);
}
/* Clean up any skbs sitting on the receive queue. */
sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
/* On a TCP-style socket, block for at most linger_time if set. */
if (sctp_style(sk, TCP) && timeout)
sctp_wait_for_close(sk, timeout);
/* This will run the backlog queue. */
sctp_release_sock(sk);
/* Supposedly, no process has access to the socket, but
* the net layers still may.
*/
sctp_local_bh_disable();
sctp_bh_lock_sock(sk);
/* Hold the sock, since sk_common_release() will put sock_put()
* and we have just a little more cleanup.
*/
sock_hold(sk);
sk_common_release(sk);
sctp_bh_unlock_sock(sk);
sctp_local_bh_enable();
sock_put(sk);
SCTP_DBG_OBJCNT_DEC(sock);
}
/* Handle EPIPE error. */
static int sctp_error(struct sock *sk, int flags, int err)
{
if (err == -EPIPE)
err = sock_error(sk) ? : -EPIPE;
if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
send_sig(SIGPIPE, current, 0);
return err;
}
/* API 3.1.3 sendmsg() - UDP Style Syntax
*
* An application uses sendmsg() and recvmsg() calls to transmit data to
* and receive data from its peer.
*
* ssize_t sendmsg(int socket, const struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*
* Note: This function could use a rewrite especially when explicit
* connect support comes in.
*/
/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
struct msghdr *msg, size_t msg_len)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *new_asoc=NULL, *asoc=NULL;
struct sctp_transport *transport, *chunk_tp;
struct sctp_chunk *chunk;
union sctp_addr to;
struct sockaddr *msg_name = NULL;
struct sctp_sndrcvinfo default_sinfo = { 0 };
struct sctp_sndrcvinfo *sinfo;
struct sctp_initmsg *sinit;
sctp_assoc_t associd = 0;
sctp_cmsgs_t cmsgs = { NULL };
int err;
sctp_scope_t scope;
long timeo;
__u16 sinfo_flags = 0;
struct sctp_datamsg *datamsg;
struct list_head *pos;
int msg_flags = msg->msg_flags;
SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
sk, msg, msg_len);
err = 0;
sp = sctp_sk(sk);
ep = sp->ep;
SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
/* We cannot send a message over a TCP-style listening socket. */
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
err = -EPIPE;
goto out_nounlock;
}
/* Parse out the SCTP CMSGs. */
err = sctp_msghdr_parse(msg, &cmsgs);
if (err) {
SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
goto out_nounlock;
}
/* Fetch the destination address for this packet. This
* address only selects the association--it is not necessarily
* the address we will send to.
* For a peeled-off socket, msg_name is ignored.
*/
if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
int msg_namelen = msg->msg_namelen;
err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
msg_namelen);
if (err)
return err;
if (msg_namelen > sizeof(to))
msg_namelen = sizeof(to);
memcpy(&to, msg->msg_name, msg_namelen);
SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
"0x%x:%u.\n",
to.v4.sin_addr.s_addr, to.v4.sin_port);
to.v4.sin_port = ntohs(to.v4.sin_port);
msg_name = msg->msg_name;
}
sinfo = cmsgs.info;
sinit = cmsgs.init;
/* Did the user specify SNDRCVINFO? */
if (sinfo) {
sinfo_flags = sinfo->sinfo_flags;
associd = sinfo->sinfo_assoc_id;
}
SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
msg_len, sinfo_flags);
/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
err = -EINVAL;
goto out_nounlock;
}
/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
* length messages when SCTP_EOF|SCTP_ABORT is not set.
* If SCTP_ABORT is set, the message length could be non zero with
* the msg_iov set to the user abort reason.
*/
if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
(!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
err = -EINVAL;
goto out_nounlock;
}
/* If SCTP_ADDR_OVER is set, there must be an address
* specified in msg_name.
*/
if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
err = -EINVAL;
goto out_nounlock;
}
transport = NULL;
SCTP_DEBUG_PRINTK("About to look up association.\n");
sctp_lock_sock(sk);
/* If a msg_name has been specified, assume this is to be used. */
if (msg_name) {
/* Look for a matching association on the endpoint. */
asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
if (!asoc) {
/* If we could not find a matching association on the
* endpoint, make sure that it is not a TCP-style
* socket that already has an association or there is
* no peeled-off association on another socket.
*/
if ((sctp_style(sk, TCP) &&
sctp_sstate(sk, ESTABLISHED)) ||
sctp_endpoint_is_peeled_off(ep, &to)) {
err = -EADDRNOTAVAIL;
goto out_unlock;
}
}
} else {
asoc = sctp_id2assoc(sk, associd);
if (!asoc) {
err = -EPIPE;
goto out_unlock;
}
}
if (asoc) {
SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
* socket that has an association in CLOSED state. This can
* happen when an accepted socket has an association that is
* already CLOSED.
*/
if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
err = -EPIPE;
goto out_unlock;
}
if (sinfo_flags & SCTP_EOF) {
SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
asoc);
sctp_primitive_SHUTDOWN(asoc, NULL);
err = 0;
goto out_unlock;
}
if (sinfo_flags & SCTP_ABORT) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, msg, msg_len);
if (!chunk) {
err = -ENOMEM;
goto out_unlock;
}
SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
sctp_primitive_ABORT(asoc, chunk);
err = 0;
goto out_unlock;
}
}
/* Do we need to create the association? */
if (!asoc) {
SCTP_DEBUG_PRINTK("There is no association yet.\n");
if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
err = -EINVAL;
goto out_unlock;
}
/* Check for invalid stream against the stream counts,
* either the default or the user specified stream counts.
*/
if (sinfo) {
if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
/* Check against the defaults. */
if (sinfo->sinfo_stream >=
sp->initmsg.sinit_num_ostreams) {
err = -EINVAL;
goto out_unlock;
}
} else {
/* Check against the requested. */
if (sinfo->sinfo_stream >=
sinit->sinit_num_ostreams) {
err = -EINVAL;
goto out_unlock;
}
}
}
/*
* API 3.1.2 bind() - UDP Style Syntax
* If a bind() or sctp_bindx() is not called prior to a
* sendmsg() call that initiates a new association, the
* system picks an ephemeral port and will choose an address
* set equivalent to binding with a wildcard address.
*/
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk)) {
err = -EAGAIN;
goto out_unlock;
}
} else {
/*
* If an unprivileged user inherits a one-to-many
* style socket with open associations on a privileged
* port, it MAY be permitted to accept new associations,
* but it SHOULD NOT be permitted to open new
* associations.
*/
if (ep->base.bind_addr.port < PROT_SOCK &&
!capable(CAP_NET_BIND_SERVICE)) {
err = -EACCES;
goto out_unlock;
}
}
scope = sctp_scope(&to);
new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!new_asoc) {
err = -ENOMEM;
goto out_unlock;
}
asoc = new_asoc;
/* If the SCTP_INIT ancillary data is specified, set all
* the association init values accordingly.
*/
if (sinit) {
if (sinit->sinit_num_ostreams) {
asoc->c.sinit_num_ostreams =
sinit->sinit_num_ostreams;
}
if (sinit->sinit_max_instreams) {
asoc->c.sinit_max_instreams =
sinit->sinit_max_instreams;
}
if (sinit->sinit_max_attempts) {
asoc->max_init_attempts
= sinit->sinit_max_attempts;
}
if (sinit->sinit_max_init_timeo) {
asoc->max_init_timeo =
msecs_to_jiffies(sinit->sinit_max_init_timeo);
}
}
/* Prime the peer's transport structures. */
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
if (!transport) {
err = -ENOMEM;
goto out_free;
}
err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
if (err < 0) {
err = -ENOMEM;
goto out_free;
}
}
/* ASSERT: we have a valid association at this point. */
SCTP_DEBUG_PRINTK("We have a valid association.\n");
if (!sinfo) {
/* If the user didn't specify SNDRCVINFO, make up one with
* some defaults.
*/
default_sinfo.sinfo_stream = asoc->default_stream;
default_sinfo.sinfo_flags = asoc->default_flags;
default_sinfo.sinfo_ppid = asoc->default_ppid;
default_sinfo.sinfo_context = asoc->default_context;
default_sinfo.sinfo_timetolive = asoc->default_timetolive;
default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
sinfo = &default_sinfo;
}
/* API 7.1.7, the sndbuf size per association bounds the
* maximum size of data that can be sent in a single send call.
*/
if (msg_len > sk->sk_sndbuf) {
err = -EMSGSIZE;
goto out_free;
}
/* If fragmentation is disabled and the message length exceeds the
* association fragmentation point, return EMSGSIZE. The I-D
* does not specify what this error is, but this looks like
* a great fit.
*/
if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
err = -EMSGSIZE;
goto out_free;
}
if (sinfo) {
/* Check for invalid stream. */
if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
err = -EINVAL;
goto out_free;
}
}
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
if (!sctp_wspace(asoc)) {
err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
if (err)
goto out_free;
}
/* If an address is passed with the sendto/sendmsg call, it is used
* to override the primary destination address in the TCP model, or
* when SCTP_ADDR_OVER flag is set in the UDP model.
*/
if ((sctp_style(sk, TCP) && msg_name) ||
(sinfo_flags & SCTP_ADDR_OVER)) {
chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
if (!chunk_tp) {
err = -EINVAL;
goto out_free;
}
} else
chunk_tp = NULL;
/* Auto-connect, if we aren't connected already. */
if (sctp_state(asoc, CLOSED)) {
err = sctp_primitive_ASSOCIATE(asoc, NULL);
if (err < 0)
goto out_free;
SCTP_DEBUG_PRINTK("We associated primitively.\n");
}
/* Break the message into multiple chunks of maximum size. */
datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
if (!datamsg) {
err = -ENOMEM;
goto out_free;
}
/* Now send the (possibly) fragmented message. */
list_for_each(pos, &datamsg->chunks) {
chunk = list_entry(pos, struct sctp_chunk, frag_list);
sctp_datamsg_track(chunk);
/* Do accounting for the write space. */
sctp_set_owner_w(chunk);
chunk->transport = chunk_tp;
/* Send it to the lower layers. Note: all chunks
* must either fail or succeed. The lower layer
* works that way today. Keep it that way or this
* breaks.
*/
err = sctp_primitive_SEND(asoc, chunk);
/* Did the lower layer accept the chunk? */
if (err)
sctp_chunk_free(chunk);
SCTP_DEBUG_PRINTK("We sent primitively.\n");
}
sctp_datamsg_free(datamsg);
if (err)
goto out_free;
else
err = msg_len;
/* If we are already past ASSOCIATE, the lower
* layers are responsible for association cleanup.
*/
goto out_unlock;
out_free:
if (new_asoc)
sctp_association_free(asoc);
out_unlock:
sctp_release_sock(sk);
out_nounlock:
return sctp_error(sk, msg_flags, err);
#if 0
do_sock_err:
if (msg_len)
err = msg_len;
else
err = sock_error(sk);
goto out;
do_interrupted:
if (msg_len)
err = msg_len;
goto out;
#endif /* 0 */
}
/* This is an extended version of skb_pull() that removes the data from the
* start of a skb even when data is spread across the list of skb's in the
* frag_list. len specifies the total amount of data that needs to be removed.
* when 'len' bytes could be removed from the skb, it returns 0.
* If 'len' exceeds the total skb length, it returns the no. of bytes that
* could not be removed.
*/
static int sctp_skb_pull(struct sk_buff *skb, int len)
{
struct sk_buff *list;
int skb_len = skb_headlen(skb);
int rlen;
if (len <= skb_len) {
__skb_pull(skb, len);
return 0;
}
len -= skb_len;
__skb_pull(skb, skb_len);
for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
rlen = sctp_skb_pull(list, len);
skb->len -= (len-rlen);
skb->data_len -= (len-rlen);
if (!rlen)
return 0;
len = rlen;
}
return len;
}
/* API 3.1.3 recvmsg() - UDP Style Syntax
*
* ssize_t recvmsg(int socket, struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*/
static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
struct msghdr *msg, size_t len, int noblock,
int flags, int *addr_len)
{
struct sctp_ulpevent *event = NULL;
struct sctp_sock *sp = sctp_sk(sk);
struct sk_buff *skb;
int copied;
int err = 0;
int skb_len;
SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
"0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
"len", len, "knoblauch", noblock,
"flags", flags, "addr_len", addr_len);
sctp_lock_sock(sk);
if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
err = -ENOTCONN;
goto out;
}
skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
goto out;
/* Get the total length of the skb including any skb's in the
* frag_list.
*/
skb_len = skb->len;
copied = skb_len;
if (copied > len)
copied = len;
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
event = sctp_skb2event(skb);
if (err)
goto out_free;
sock_recv_timestamp(msg, sk, skb);
if (sctp_ulpevent_is_notification(event)) {
msg->msg_flags |= MSG_NOTIFICATION;
sp->pf->event_msgname(event, msg->msg_name, addr_len);
} else {
sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
}
/* Check if we allow SCTP_SNDRCVINFO. */
if (sp->subscribe.sctp_data_io_event)
sctp_ulpevent_read_sndrcvinfo(event, msg);
#if 0
/* FIXME: we should be calling IP/IPv6 layers. */
if (sk->sk_protinfo.af_inet.cmsg_flags)
ip_cmsg_recv(msg, skb);
#endif
err = copied;
/* If skb's length exceeds the user's buffer, update the skb and
* push it back to the receive_queue so that the next call to
* recvmsg() will return the remaining data. Don't set MSG_EOR.
*/
if (skb_len > copied) {
msg->msg_flags &= ~MSG_EOR;
if (flags & MSG_PEEK)
goto out_free;
sctp_skb_pull(skb, copied);
skb_queue_head(&sk->sk_receive_queue, skb);
/* When only partial message is copied to the user, increase
* rwnd by that amount. If all the data in the skb is read,
* rwnd is updated when the event is freed.
*/
sctp_assoc_rwnd_increase(event->asoc, copied);
goto out;
} else if ((event->msg_flags & MSG_NOTIFICATION) ||
(event->msg_flags & MSG_EOR))
msg->msg_flags |= MSG_EOR;
else
msg->msg_flags &= ~MSG_EOR;
out_free:
if (flags & MSG_PEEK) {
/* Release the skb reference acquired after peeking the skb in
* sctp_skb_recv_datagram().
*/
kfree_skb(skb);
} else {
/* Free the event which includes releasing the reference to
* the owner of the skb, freeing the skb and updating the
* rwnd.
*/
sctp_ulpevent_free(event);
}
out:
sctp_release_sock(sk);
return err;
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_setsockopt_disable_fragments(struct sock *sk,
char __user *optval, int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
int optlen)
{
if (optlen != sizeof(struct sctp_event_subscribe))
return -EINVAL;
if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
return -EFAULT;
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (optlen != sizeof(int))
return -EINVAL;
if (copy_from_user(&sp->autoclose, optval, optlen))
return -EFAULT;
return 0;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*/
int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
struct sctp_transport *trans,
struct sctp_association *asoc,
struct sctp_sock *sp,
int hb_change,
int pmtud_change,
int sackdelay_change)
{
int error;
if (params->spp_flags & SPP_HB_DEMAND && trans) {
error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
if (error)
return error;
}
if (params->spp_hbinterval) {
if (trans) {
trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
} else if (asoc) {
asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
} else {
sp->hbinterval = params->spp_hbinterval;
}
}
if (hb_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_HB) | hb_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_HB) | hb_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_HB) | hb_change;
}
}
if (params->spp_pathmtu) {
if (trans) {
trans->pathmtu = params->spp_pathmtu;
sctp_assoc_sync_pmtu(asoc);
} else if (asoc) {
asoc->pathmtu = params->spp_pathmtu;
sctp_frag_point(sp, params->spp_pathmtu);
} else {
sp->pathmtu = params->spp_pathmtu;
}
}
if (pmtud_change) {
if (trans) {
int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
(params->spp_flags & SPP_PMTUD_ENABLE);
trans->param_flags =
(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
if (update) {
sctp_transport_pmtu(trans);
sctp_assoc_sync_pmtu(asoc);
}
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
}
}
if (params->spp_sackdelay) {
if (trans) {
trans->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else {
sp->sackdelay = params->spp_sackdelay;
}
}
if (sackdelay_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
}
}
if (params->spp_pathmaxrxt) {
if (trans) {
trans->pathmaxrxt = params->spp_pathmaxrxt;
} else if (asoc) {
asoc->pathmaxrxt = params->spp_pathmaxrxt;
} else {
sp->pathmaxrxt = params->spp_pathmaxrxt;
}
}
return 0;
}
static int sctp_setsockopt_peer_addr_params(struct sock *sk,
char __user *optval, int optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
int error;
int hb_change, pmtud_change, sackdelay_change;
if (optlen != sizeof(struct sctp_paddrparams))
return - EINVAL;
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
/* Validate flags and value parameters. */
hb_change = params.spp_flags & SPP_HB;
pmtud_change = params.spp_flags & SPP_PMTUD;
sackdelay_change = params.spp_flags & SPP_SACKDELAY;
if (hb_change == SPP_HB ||
pmtud_change == SPP_PMTUD ||
sackdelay_change == SPP_SACKDELAY ||
params.spp_sackdelay > 500 ||
(params.spp_pathmtu
&& params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
return -EINVAL;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans)
return -EINVAL;
}
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Heartbeat demand can only be sent on a transport or
* association, but not a socket.
*/
if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
return -EINVAL;
/* Process parameters. */
error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
if (error)
return error;
/* If changes are for association, also apply parameters to each
* transport.
*/
if (!trans && asoc) {
struct list_head *pos;
list_for_each(pos, &asoc->peer.transport_addr_list) {
trans = list_entry(pos, struct sctp_transport,
transports);
sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
}
}
return 0;
}
/* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
*
* This options will get or set the delayed ack timer. The time is set
* in milliseconds. If the assoc_id is 0, then this sets or gets the
* endpoints default delayed ack timer value. If the assoc_id field is
* non-zero, then the set or get effects the specified association.
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id - This parameter, indicates which association the
* user is preforming an action upon. Note that if
* this field's value is zero then the endpoints
* default value is changed (effecting future
* associations only).
*
* assoc_value - This parameter contains the number of milliseconds
* that the user is requesting the delayed ACK timer
* be set to. Note that this value is defined in
* the standard to be between 200 and 500 milliseconds.
*
* Note: a value of zero will leave the value alone,
* but disable SACK delay. A non-zero value will also
* enable SACK delay.
*/
static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
char __user *optval, int optlen)
{
struct sctp_assoc_value params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_assoc_value))
return - EINVAL;
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
/* Validate value parameter. */
if (params.assoc_value > 500)
return -EINVAL;
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (params.assoc_value) {
if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params.assoc_value);
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_ENABLE;
} else {
sp->sackdelay = params.assoc_value;
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_ENABLE;
}
} else {
if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_DISABLE;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_DISABLE;
}
}
/* If change is for association, also apply to each transport. */
if (asoc) {
struct list_head *pos;
list_for_each(pos, &asoc->peer.transport_addr_list) {
trans = list_entry(pos, struct sctp_transport,
transports);
if (params.assoc_value) {
trans->sackdelay =
msecs_to_jiffies(params.assoc_value);
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_ENABLE;
} else {
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_DISABLE;
}
}
}
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
{
struct sctp_initmsg sinit;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_initmsg))
return -EINVAL;
if (copy_from_user(&sinit, optval, optlen))
return -EFAULT;
if (sinit.sinit_num_ostreams)
sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
if (sinit.sinit_max_instreams)
sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
if (sinit.sinit_max_attempts)
sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
if (sinit.sinit_max_init_timeo)
sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
return 0;
}
/*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*/
static int sctp_setsockopt_default_send_param(struct sock *sk,
char __user *optval, int optlen)
{
struct sctp_sndrcvinfo info;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_sndrcvinfo))
return -EINVAL;
if (copy_from_user(&info, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info.sinfo_stream;
asoc->default_flags = info.sinfo_flags;
asoc->default_ppid = info.sinfo_ppid;
asoc->default_context = info.sinfo_context;
asoc->default_timetolive = info.sinfo_timetolive;
} else {
sp->default_stream = info.sinfo_stream;
sp->default_flags = info.sinfo_flags;
sp->default_ppid = info.sinfo_ppid;
sp->default_context = info.sinfo_context;
sp->default_timetolive = info.sinfo_timetolive;
}
return 0;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_prim prim;
struct sctp_transport *trans;
if (optlen != sizeof(struct sctp_prim))
return -EINVAL;
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
return -EFAULT;
trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
if (!trans)
return -EINVAL;
sctp_assoc_set_primary(trans->asoc, trans);
return 0;
}
/*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
if (optlen != sizeof (struct sctp_rtoinfo))
return -EINVAL;
if (copy_from_user(&rtoinfo, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
/* Set the values to the specific association */
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
if (rtoinfo.srto_initial != 0)
asoc->rto_initial =
msecs_to_jiffies(rtoinfo.srto_initial);
if (rtoinfo.srto_max != 0)
asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
if (rtoinfo.srto_min != 0)
asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
} else {
/* If there is no association or the association-id = 0
* set the values to the endpoint.
*/
struct sctp_sock *sp = sctp_sk(sk);
if (rtoinfo.srto_initial != 0)
sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
if (rtoinfo.srto_max != 0)
sp->rtoinfo.srto_max = rtoinfo.srto_max;
if (rtoinfo.srto_min != 0)
sp->rtoinfo.srto_min = rtoinfo.srto_min;
}
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
{
struct sctp_assocparams assocparams;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_assocparams))
return -EINVAL;
if (copy_from_user(&assocparams, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Set the values to the specific association */
if (asoc) {
if (assocparams.sasoc_asocmaxrxt != 0) {
__u32 path_sum = 0;
int paths = 0;
struct list_head *pos;
struct sctp_transport *peer_addr;
list_for_each(pos, &asoc->peer.transport_addr_list) {
peer_addr = list_entry(pos,
struct sctp_transport,
transports);
path_sum += peer_addr->pathmaxrxt;
paths++;
}
/* Only validate asocmaxrxt if we have more then
* one path/transport. We do this because path
* retransmissions are only counted when we have more
* then one path.
*/
if (paths > 1 &&
assocparams.sasoc_asocmaxrxt > path_sum)
return -EINVAL;
asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
}
if (assocparams.sasoc_cookie_life != 0) {
asoc->cookie_life.tv_sec =
assocparams.sasoc_cookie_life / 1000;
asoc->cookie_life.tv_usec =
(assocparams.sasoc_cookie_life % 1000)
* 1000;
}
} else {
/* Set the values to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
if (assocparams.sasoc_asocmaxrxt != 0)
sp->assocparams.sasoc_asocmaxrxt =
assocparams.sasoc_asocmaxrxt;
if (assocparams.sasoc_cookie_life != 0)
sp->assocparams.sasoc_cookie_life =
assocparams.sasoc_cookie_life;
}
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
if (val)
sp->v4mapped = 1;
else
sp->v4mapped = 0;
return 0;
}
/*
* 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
*
* This socket option specifies the maximum size to put in any outgoing
* SCTP chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user.
*/
static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
{
struct sctp_association *asoc;
struct list_head *pos;
struct sctp_sock *sp = sctp_sk(sk);
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
return -EINVAL;
sp->user_frag = val;
/* Update the frag_point of the existing associations. */
list_for_each(pos, &(sp->ep->asocs)) {
asoc = list_entry(pos, struct sctp_association, asocs);
asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
}
return 0;
}
/*
* 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
*
* Requests that the peer mark the enclosed address as the association
* primary. The enclosed address must be one of the association's
* locally bound addresses. The following structure is used to make a
* set primary request:
*/
static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc = NULL;
struct sctp_setpeerprim prim;
struct sctp_chunk *chunk;
int err;
sp = sctp_sk(sk);
ep = sp->ep;
if (!sctp_addip_enable)
return -EPERM;
if (optlen != sizeof(struct sctp_setpeerprim))
return -EINVAL;
if (copy_from_user(&prim, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.asconf_capable)
return -EPERM;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
return -EPERM;
if (!sctp_state(asoc, ESTABLISHED))
return -ENOTCONN;
if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
return -EADDRNOTAVAIL;
/* Create an ASCONF chunk with SET_PRIMARY parameter */
chunk = sctp_make_asconf_set_prim(asoc,
(union sctp_addr *)&prim.sspp_addr);
if (!chunk)
return -ENOMEM;
err = sctp_send_asconf(asoc, chunk);
SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
return err;
}
static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_setadaption adaption;
if (optlen != sizeof(struct sctp_setadaption))
return -EINVAL;
if (copy_from_user(&adaption, optval, optlen))
return -EFAULT;
sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
return 0;
}
/* API 6.2 setsockopt(), getsockopt()
*
* Applications use setsockopt() and getsockopt() to set or retrieve
* socket options. Socket options are used to change the default
* behavior of sockets calls. They are described in Section 7.
*
* The syntax is:
*
* ret = getsockopt(int sd, int level, int optname, void __user *optval,
* int __user *optlen);
* ret = setsockopt(int sd, int level, int optname, const void __user *optval,
* int optlen);
*
* sd - the socket descript.
* level - set to IPPROTO_SCTP for all SCTP options.
* optname - the option name.
* optval - the buffer to store the value of the option.
* optlen - the size of the buffer.
*/
SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
char __user *optval, int optlen)
{
int retval = 0;
SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of setsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
retval = af->setsockopt(sk, level, optname, optval, optlen);
goto out_nounlock;
}
sctp_lock_sock(sk);
switch (optname) {
case SCTP_SOCKOPT_BINDX_ADD:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
optlen, SCTP_BINDX_ADD_ADDR);
break;
case SCTP_SOCKOPT_BINDX_REM:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
optlen, SCTP_BINDX_REM_ADDR);
break;
case SCTP_SOCKOPT_CONNECTX:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
break;
case SCTP_EVENTS:
retval = sctp_setsockopt_events(sk, optval, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_setsockopt_autoclose(sk, optval, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
break;
case SCTP_DELAYED_ACK_TIME:
retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
break;
case SCTP_INITMSG:
retval = sctp_setsockopt_initmsg(sk, optval, optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_setsockopt_default_send_param(sk, optval,
optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
break;
case SCTP_SET_PEER_PRIMARY_ADDR:
retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
break;
case SCTP_NODELAY:
retval = sctp_setsockopt_nodelay(sk, optval, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_setsockopt_associnfo(sk, optval, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_setsockopt_maxseg(sk, optval, optlen);
break;
case SCTP_ADAPTION_LAYER:
retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
};
sctp_release_sock(sk);
out_nounlock:
return retval;
}
/* API 3.1.6 connect() - UDP Style Syntax
*
* An application may use the connect() call in the UDP model to initiate an
* association without sending data.
*
* The syntax is:
*
* ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
*
* sd: the socket descriptor to have a new association added to.
*
* nam: the address structure (either struct sockaddr_in or struct
* sockaddr_in6 defined in RFC2553 [7]).
*
* len: the size of the address.
*/
SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
int addr_len)
{
int err = 0;
struct sctp_af *af;
sctp_lock_sock(sk);
SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
__FUNCTION__, sk, addr, addr_len);
/* Validate addr_len before calling common connect/connectx routine. */
af = sctp_get_af_specific(addr->sa_family);
if (!af || addr_len < af->sockaddr_len) {
err = -EINVAL;
} else {
/* Pass correct addr len to common routine (so it knows there
* is only one address being passed.
*/
err = __sctp_connect(sk, addr, af->sockaddr_len);
}
sctp_release_sock(sk);
return err;
}
/* FIXME: Write comments. */
SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
{
return -EOPNOTSUPP; /* STUB */
}
/* 4.1.4 accept() - TCP Style Syntax
*
* Applications use accept() call to remove an established SCTP
* association from the accept queue of the endpoint. A new socket
* descriptor will be returned from accept() to represent the newly
* formed association.
*/
SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sock *newsk = NULL;
struct sctp_association *asoc;
long timeo;
int error = 0;
sctp_lock_sock(sk);
sp = sctp_sk(sk);
ep = sp->ep;
if (!sctp_style(sk, TCP)) {
error = -EOPNOTSUPP;
goto out;
}
if (!sctp_sstate(sk, LISTENING)) {
error = -EINVAL;
goto out;
}
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
error = sctp_wait_for_accept(sk, timeo);
if (error)
goto out;
/* We treat the list of associations on the endpoint as the accept
* queue and pick the first association on the list.
*/
asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
newsk = sp->pf->create_accept_sk(sk, asoc);
if (!newsk) {
error = -ENOMEM;
goto out;
}
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
out:
sctp_release_sock(sk);
*err = error;
return newsk;
}
/* The SCTP ioctl handler. */
SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
return -ENOIOCTLCMD;
}
/* This is the function which gets called during socket creation to
* initialized the SCTP-specific portion of the sock.
* The sock structure should already be zero-filled memory.
*/
SCTP_STATIC int sctp_init_sock(struct sock *sk)
{
struct sctp_endpoint *ep;
struct sctp_sock *sp;
SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
sp = sctp_sk(sk);
/* Initialize the SCTP per socket area. */
switch (sk->sk_type) {
case SOCK_SEQPACKET:
sp->type = SCTP_SOCKET_UDP;
break;
case SOCK_STREAM:
sp->type = SCTP_SOCKET_TCP;
break;
default:
return -ESOCKTNOSUPPORT;
}
/* Initialize default send parameters. These parameters can be
* modified with the SCTP_DEFAULT_SEND_PARAM socket option.
*/
sp->default_stream = 0;
sp->default_ppid = 0;
sp->default_flags = 0;
sp->default_context = 0;
sp->default_timetolive = 0;
/* Initialize default setup parameters. These parameters
* can be modified with the SCTP_INITMSG socket option or
* overridden by the SCTP_INIT CMSG.
*/
sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
sp->initmsg.sinit_max_instreams = sctp_max_instreams;
sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
/* Initialize default RTO related parameters. These parameters can
* be modified for with the SCTP_RTOINFO socket option.
*/
sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max);
sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min);
/* Initialize default association related parameters. These parameters
* can be modified with the SCTP_ASSOCINFO socket option.
*/
sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
sp->assocparams.sasoc_number_peer_destinations = 0;
sp->assocparams.sasoc_peer_rwnd = 0;
sp->assocparams.sasoc_local_rwnd = 0;
sp->assocparams.sasoc_cookie_life =
jiffies_to_msecs(sctp_valid_cookie_life);
/* Initialize default event subscriptions. By default, all the
* options are off.
*/
memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
/* Default Peer Address Parameters. These defaults can
* be modified via SCTP_PEER_ADDR_PARAMS
*/
sp->hbinterval = jiffies_to_msecs(sctp_hb_interval);
sp->pathmaxrxt = sctp_max_retrans_path;
sp->pathmtu = 0; // allow default discovery
sp->sackdelay = jiffies_to_msecs(sctp_sack_timeout);
sp->param_flags = SPP_HB_ENABLE |
SPP_PMTUD_ENABLE |
SPP_SACKDELAY_ENABLE;
/* If enabled no SCTP message fragmentation will be performed.
* Configure through SCTP_DISABLE_FRAGMENTS socket option.
*/
sp->disable_fragments = 0;
/* Turn on/off any Nagle-like algorithm. */
sp->nodelay = 1;
/* Enable by default. */
sp->v4mapped = 1;
/* Auto-close idle associations after the configured
* number of seconds. A value of 0 disables this
* feature. Configure through the SCTP_AUTOCLOSE socket option,
* for UDP-style sockets only.
*/
sp->autoclose = 0;
/* User specified fragmentation limit. */
sp->user_frag = 0;
sp->adaption_ind = 0;
sp->pf = sctp_get_pf_specific(sk->sk_family);
/* Control variables for partial data delivery. */
sp->pd_mode = 0;
skb_queue_head_init(&sp->pd_lobby);
/* Create a per socket endpoint structure. Even if we
* change the data structure relationships, this may still
* be useful for storing pre-connect address information.
*/
ep = sctp_endpoint_new(sk, GFP_KERNEL);
if (!ep)
return -ENOMEM;
sp->ep = ep;
sp->hmac = NULL;
SCTP_DBG_OBJCNT_INC(sock);
return 0;
}
/* Cleanup any SCTP per socket resources. */
SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
{
struct sctp_endpoint *ep;
SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
/* Release our hold on the endpoint. */
ep = sctp_sk(sk)->ep;
sctp_endpoint_free(ep);
return 0;
}
/* API 4.1.7 shutdown() - TCP Style Syntax
* int shutdown(int socket, int how);
*
* sd - the socket descriptor of the association to be closed.
* how - Specifies the type of shutdown. The values are
* as follows:
* SHUT_RD
* Disables further receive operations. No SCTP
* protocol action is taken.
* SHUT_WR
* Disables further send operations, and initiates
* the SCTP shutdown sequence.
* SHUT_RDWR
* Disables further send and receive operations
* and initiates the SCTP shutdown sequence.
*/
SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
{
struct sctp_endpoint *ep;
struct sctp_association *asoc;
if (!sctp_style(sk, TCP))
return;
if (how & SEND_SHUTDOWN) {
ep = sctp_sk(sk)->ep;
if (!list_empty(&ep->asocs)) {
asoc = list_entry(ep->asocs.next,
struct sctp_association, asocs);
sctp_primitive_SHUTDOWN(asoc, NULL);
}
}
}
/* 7.2.1 Association Status (SCTP_STATUS)
* Applications can retrieve current status information about an
* association, including association state, peer receiver window size,
* number of unacked data chunks, and number of data chunks pending
* receipt. This information is read-only.
*/
static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_status status;
struct sctp_association *asoc = NULL;
struct sctp_transport *transport;
sctp_assoc_t associd;
int retval = 0;
if (len != sizeof(status)) {
retval = -EINVAL;
goto out;
}
if (copy_from_user(&status, optval, sizeof(status))) {
retval = -EFAULT;
goto out;
}
associd = status.sstat_assoc_id;
asoc = sctp_id2assoc(sk, associd);
if (!asoc) {
retval = -EINVAL;
goto out;
}
transport = asoc->peer.primary_path;
status.sstat_assoc_id = sctp_assoc2id(asoc);
status.sstat_state = asoc->state;
status.sstat_rwnd = asoc->peer.rwnd;
status.sstat_unackdata = asoc->unack_data;
status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
status.sstat_instrms = asoc->c.sinit_max_instreams;
status.sstat_outstrms = asoc->c.sinit_num_ostreams;
status.sstat_fragmentation_point = asoc->frag_point;
status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
memcpy(&status.sstat_primary.spinfo_address,
&(transport->ipaddr), sizeof(union sctp_addr));
/* Map ipv4 address into v4-mapped-on-v6 address. */
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
(union sctp_addr *)&status.sstat_primary.spinfo_address);
status.sstat_primary.spinfo_state = transport->state;
status.sstat_primary.spinfo_cwnd = transport->cwnd;
status.sstat_primary.spinfo_srtt = transport->srtt;
status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
status.sstat_primary.spinfo_mtu = transport->pathmtu;
if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
status.sstat_primary.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
len, status.sstat_state, status.sstat_rwnd,
status.sstat_assoc_id);
if (copy_to_user(optval, &status, len)) {
retval = -EFAULT;
goto out;
}
out:
return (retval);
}
/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
*
* Applications can retrieve information about a specific peer address
* of an association, including its reachability state, congestion
* window, and retransmission timer values. This information is
* read-only.
*/
static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_paddrinfo pinfo;
struct sctp_transport *transport;
int retval = 0;
if (len != sizeof(pinfo)) {
retval = -EINVAL;
goto out;
}
if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
retval = -EFAULT;
goto out;
}
transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
pinfo.spinfo_assoc_id);
if (!transport)
return -EINVAL;
pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
pinfo.spinfo_state = transport->state;
pinfo.spinfo_cwnd = transport->cwnd;
pinfo.spinfo_srtt = transport->srtt;
pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
pinfo.spinfo_mtu = transport->pathmtu;
if (pinfo.spinfo_state == SCTP_UNKNOWN)
pinfo.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &pinfo, len)) {
retval = -EFAULT;
goto out;
}
out:
return (retval);
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->disable_fragments == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
*
* This socket option is used to specify various notifications and
* ancillary data the user wishes to receive.
*/
static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
int __user *optlen)
{
if (len != sizeof(struct sctp_event_subscribe))
return -EINVAL;
if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
return -EFAULT;
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len != sizeof(int))
return -EINVAL;
if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
return -EFAULT;
return 0;
}
/* Helper routine to branch off an association to a new socket. */
SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
struct socket **sockp)
{
struct sock *sk = asoc->base.sk;
struct socket *sock;
int err = 0;
/* An association cannot be branched off from an already peeled-off
* socket, nor is this supported for tcp style sockets.
*/
if (!sctp_style(sk, UDP))
return -EINVAL;
/* Create a new socket. */
err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
if (err < 0)
return err;
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
*sockp = sock;
return err;
}
static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
sctp_peeloff_arg_t peeloff;
struct socket *newsock;
int retval = 0;
struct sctp_association *asoc;
if (len != sizeof(sctp_peeloff_arg_t))
return -EINVAL;
if (copy_from_user(&peeloff, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, peeloff.associd);
if (!asoc) {
retval = -EINVAL;
goto out;
}
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
retval = sctp_do_peeloff(asoc, &newsock);
if (retval < 0)
goto out;
/* Map the socket to an unused fd that can be returned to the user. */
retval = sock_map_fd(newsock);
if (retval < 0) {
sock_release(newsock);
goto out;
}
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
__FUNCTION__, sk, asoc, newsock->sk, retval);
/* Return the fd mapped to the new socket. */
peeloff.sd = retval;
if (copy_to_user(optval, &peeloff, len))
retval = -EFAULT;
out:
return retval;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*/
static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len != sizeof(struct sctp_paddrparams))
return -EINVAL;
if (copy_from_user(&params, optval, len))
return -EFAULT;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans) {
SCTP_DEBUG_PRINTK("Failed no transport\n");
return -EINVAL;
}
}
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
SCTP_DEBUG_PRINTK("Failed no association\n");
return -EINVAL;
}
if (trans) {
/* Fetch transport values. */
params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
params.spp_pathmtu = trans->pathmtu;
params.spp_pathmaxrxt = trans->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = trans->param_flags;
} else if (asoc) {
/* Fetch association values. */
params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
params.spp_pathmtu = asoc->pathmtu;
params.spp_pathmaxrxt = asoc->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = asoc->param_flags;
} else {
/* Fetch socket values. */
params.spp_hbinterval = sp->hbinterval;
params.spp_pathmtu = sp->pathmtu;
params.spp_sackdelay = sp->sackdelay;
params.spp_pathmaxrxt = sp->pathmaxrxt;
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = sp->param_flags;
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
*
* This options will get or set the delayed ack timer. The time is set
* in milliseconds. If the assoc_id is 0, then this sets or gets the
* endpoints default delayed ack timer value. If the assoc_id field is
* non-zero, then the set or get effects the specified association.
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id - This parameter, indicates which association the
* user is preforming an action upon. Note that if
* this field's value is zero then the endpoints
* default value is changed (effecting future
* associations only).
*
* assoc_value - This parameter contains the number of milliseconds
* that the user is requesting the delayed ACK timer
* be set to. Note that this value is defined in
* the standard to be between 200 and 500 milliseconds.
*
* Note: a value of zero will leave the value alone,
* but disable SACK delay. A non-zero value will also
* enable SACK delay.
*/
static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len != sizeof(struct sctp_assoc_value))
return - EINVAL;
if (copy_from_user(&params, optval, len))
return -EFAULT;
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
/* Fetch association values. */
if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
params.assoc_value = jiffies_to_msecs(
asoc->sackdelay);
else
params.assoc_value = 0;
} else {
/* Fetch socket values. */
if (sp->param_flags & SPP_SACKDELAY_ENABLE)
params.assoc_value = sp->sackdelay;
else
params.assoc_value = 0;
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
if (len != sizeof(struct sctp_initmsg))
return -EINVAL;
if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
sctp_assoc_t id;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
if (len != sizeof(sctp_assoc_t))
return -EINVAL;
if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
return -EFAULT;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, id);
if (!asoc)
return -EINVAL;
list_for_each(pos, &asoc->peer.transport_addr_list) {
cnt ++;
}
return cnt;
}
/*
* Old API for getting list of peer addresses. Does not work for 32-bit
* programs running on a 64-bit kernel
*/
static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
struct sctp_getaddrs_old getaddrs;
struct sctp_transport *from;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
if (len != sizeof(struct sctp_getaddrs_old))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
return -EFAULT;
if (getaddrs.addr_num <= 0) return -EINVAL;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
to = (void __user *)getaddrs.addrs;
list_for_each(pos, &asoc->peer.transport_addr_list) {
from = list_entry(pos, struct sctp_transport, transports);
memcpy(&temp, &from->ipaddr, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
temp.v4.sin_port = htons(temp.v4.sin_port);
if (copy_to_user(to, &temp, addrlen))
return -EFAULT;
to += addrlen ;
cnt ++;
if (cnt >= getaddrs.addr_num) break;
}
getaddrs.addr_num = cnt;
if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_transport *from;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
size_t space_left;
int bytes_copied;
if (len < sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
to = optval + offsetof(struct sctp_getaddrs,addrs);
space_left = len - sizeof(struct sctp_getaddrs) -
offsetof(struct sctp_getaddrs,addrs);
list_for_each(pos, &asoc->peer.transport_addr_list) {
from = list_entry(pos, struct sctp_transport, transports);
memcpy(&temp, &from->ipaddr, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
if(space_left < addrlen)
return -ENOMEM;
temp.v4.sin_port = htons(temp.v4.sin_port);
if (copy_to_user(to, &temp, addrlen))
return -EFAULT;
to += addrlen;
cnt++;
space_left -= addrlen;
}
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
return -EFAULT;
bytes_copied = ((char __user *)to) - optval;
if (put_user(bytes_copied, optlen))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
sctp_assoc_t id;
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
struct list_head *pos;
struct sctp_sockaddr_entry *addr;
rwlock_t *addr_lock;
unsigned long flags;
int cnt = 0;
if (len != sizeof(sctp_assoc_t))
return -EINVAL;
if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
return -EFAULT;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
} else {
asoc = sctp_id2assoc(sk, id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
addr_lock = &asoc->base.addr_lock;
}
sctp_read_lock(addr_lock);
/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(&addr->a)) {
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
list_for_each(pos, &sctp_local_addr_list) {
addr = list_entry(pos,
struct sctp_sockaddr_entry,
list);
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
cnt++;
}
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
flags);
} else {
cnt = 1;
}
goto done;
}
list_for_each(pos, &bp->address_list) {
cnt ++;
}
done:
sctp_read_unlock(addr_lock);
return cnt;
}
/* Helper function that copies local addresses to user and returns the number
* of addresses copied.
*/
static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
void __user *to)
{
struct list_head *pos;
struct sctp_sockaddr_entry *addr;
unsigned long flags;
union sctp_addr temp;
int cnt = 0;
int addrlen;
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
list_for_each(pos, &sctp_local_addr_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
&temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
temp.v4.sin_port = htons(port);
if (copy_to_user(to, &temp, addrlen)) {
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
flags);
return -EFAULT;
}
to += addrlen;
cnt ++;
if (cnt >= max_addrs) break;
}
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
return cnt;
}
static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
void __user **to, size_t space_left)
{
struct list_head *pos;
struct sctp_sockaddr_entry *addr;
unsigned long flags;
union sctp_addr temp;
int cnt = 0;
int addrlen;
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
list_for_each(pos, &sctp_local_addr_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
&temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
if(space_left<addrlen)
return -ENOMEM;
temp.v4.sin_port = htons(port);
if (copy_to_user(*to, &temp, addrlen)) {
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
flags);
return -EFAULT;
}
*to += addrlen;
cnt ++;
space_left -= addrlen;
}
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
return cnt;
}
/* Old API for getting list of local addresses. Does not work for 32-bit
* programs running on a 64-bit kernel
*/
static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
struct sctp_getaddrs_old getaddrs;
struct sctp_sockaddr_entry *addr;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
rwlock_t *addr_lock;
int err = 0;
if (len != sizeof(struct sctp_getaddrs_old))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
return -EFAULT;
if (getaddrs.addr_num <= 0) return -EINVAL;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == getaddrs.assoc_id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
} else {
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
addr_lock = &asoc->base.addr_lock;
}
to = getaddrs.addrs;
sctp_read_lock(addr_lock);
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(&addr->a)) {
cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
getaddrs.addr_num,
to);
if (cnt < 0) {
err = cnt;
goto unlock;
}
goto copy_getaddrs;
}
}
list_for_each(pos, &bp->address_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
temp.v4.sin_port = htons(temp.v4.sin_port);
if (copy_to_user(to, &temp, addrlen)) {
err = -EFAULT;
goto unlock;
}
to += addrlen;
cnt ++;
if (cnt >= getaddrs.addr_num) break;
}
copy_getaddrs:
getaddrs.addr_num = cnt;
if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
err = -EFAULT;
unlock:
sctp_read_unlock(addr_lock);
return err;
}
static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_sockaddr_entry *addr;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
rwlock_t *addr_lock;
int err = 0;
size_t space_left;
int bytes_copied;
if (len <= sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == getaddrs.assoc_id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
} else {
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
addr_lock = &asoc->base.addr_lock;
}
to = optval + offsetof(struct sctp_getaddrs,addrs);
space_left = len - sizeof(struct sctp_getaddrs) -
offsetof(struct sctp_getaddrs,addrs);
sctp_read_lock(addr_lock);
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(&addr->a)) {
cnt = sctp_copy_laddrs_to_user(sk, bp->port,
&to, space_left);
if (cnt < 0) {
err = cnt;
goto unlock;
}
goto copy_getaddrs;
}
}
list_for_each(pos, &bp->address_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
if(space_left < addrlen)
return -ENOMEM; /*fixme: right error?*/
temp.v4.sin_port = htons(temp.v4.sin_port);
if (copy_to_user(to, &temp, addrlen)) {
err = -EFAULT;
goto unlock;
}
to += addrlen;
cnt ++;
space_left -= addrlen;
}
copy_getaddrs:
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
return -EFAULT;
bytes_copied = ((char __user *)to) - optval;
if (put_user(bytes_copied, optlen))
return -EFAULT;
unlock:
sctp_read_unlock(addr_lock);
return err;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_prim prim;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (len != sizeof(struct sctp_prim))
return -EINVAL;
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
return -EFAULT;
asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.primary_path)
return -ENOTCONN;
asoc->peer.primary_path->ipaddr.v4.sin_port =
htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
sizeof(union sctp_addr));
asoc->peer.primary_path->ipaddr.v4.sin_port =
ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
(union sctp_addr *)&prim.ssp_addr);
if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
return -EFAULT;
return 0;
}
/*
* 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
*
* Requests that the local endpoint set the specified Adaption Layer
* Indication parameter for all future INIT and INIT-ACK exchanges.
*/
static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_setadaption adaption;
if (len != sizeof(struct sctp_setadaption))
return -EINVAL;
adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
if (copy_to_user(optval, &adaption, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*
* For getsockopt, it get the default sctp_sndrcvinfo structure.
*/
static int sctp_getsockopt_default_send_param(struct sock *sk,
int len, char __user *optval,
int __user *optlen)
{
struct sctp_sndrcvinfo info;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (len != sizeof(struct sctp_sndrcvinfo))
return -EINVAL;
if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
info.sinfo_stream = asoc->default_stream;
info.sinfo_flags = asoc->default_flags;
info.sinfo_ppid = asoc->default_ppid;
info.sinfo_context = asoc->default_context;
info.sinfo_timetolive = asoc->default_timetolive;
} else {
info.sinfo_stream = sp->default_stream;
info.sinfo_flags = sp->default_flags;
info.sinfo_ppid = sp->default_ppid;
info.sinfo_context = sp->default_context;
info.sinfo_timetolive = sp->default_timetolive;
}
if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
return -EFAULT;
return 0;
}
/*
*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_getsockopt_nodelay(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->nodelay == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen) {
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
if (len != sizeof (struct sctp_rtoinfo))
return -EINVAL;
if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Values corresponding to the specific association. */
if (asoc) {
rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
} else {
/* Values corresponding to the endpoint. */
struct sctp_sock *sp = sctp_sk(sk);
rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
rtoinfo.srto_max = sp->rtoinfo.srto_max;
rtoinfo.srto_min = sp->rtoinfo.srto_min;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &rtoinfo, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_getsockopt_associnfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assocparams assocparams;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
if (len != sizeof (struct sctp_assocparams))
return -EINVAL;
if (copy_from_user(&assocparams, optval,
sizeof (struct sctp_assocparams)))
return -EFAULT;
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Values correspoinding to the specific association */
if (asoc) {
assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
assocparams.sasoc_local_rwnd = asoc->a_rwnd;
assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
* 1000) +
(asoc->cookie_life.tv_usec
/ 1000);
list_for_each(pos, &asoc->peer.transport_addr_list) {
cnt ++;
}
assocparams.sasoc_number_peer_destinations = cnt;
} else {
/* Values corresponding to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
assocparams.sasoc_cookie_life =
sp->assocparams.sasoc_cookie_life;
assocparams.sasoc_number_peer_destinations =
sp->assocparams.
sasoc_number_peer_destinations;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &assocparams, len))
return -EFAULT;
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sp->v4mapped;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
*
* This socket option specifies the maximum size to put in any outgoing
* SCTP chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user.
*/
static int sctp_getsockopt_maxseg(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sctp_sk(sk)->user_frag;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
int retval = 0;
int len;
SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of getsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
retval = af->getsockopt(sk, level, optname, optval, optlen);
return retval;
}
if (get_user(len, optlen))
return -EFAULT;
sctp_lock_sock(sk);
switch (optname) {
case SCTP_STATUS:
retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_getsockopt_disable_fragments(sk, len, optval,
optlen);
break;
case SCTP_EVENTS:
retval = sctp_getsockopt_events(sk, len, optval, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
break;
case SCTP_SOCKOPT_PEELOFF:
retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
optlen);
break;
case SCTP_DELAYED_ACK_TIME:
retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
optlen);
break;
case SCTP_INITMSG:
retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDRS_NUM_OLD:
retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
optlen);
break;
case SCTP_GET_PEER_ADDRS_OLD:
retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS_OLD:
retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
optlen);
break;
case SCTP_GET_PEER_ADDRS:
retval = sctp_getsockopt_peer_addrs(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS:
retval = sctp_getsockopt_local_addrs(sk, len, optval,
optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_getsockopt_default_send_param(sk, len,
optval, optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
break;
case SCTP_NODELAY:
retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDR_INFO:
retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
optlen);
break;
case SCTP_ADAPTION_LAYER:
retval = sctp_getsockopt_adaption_layer(sk, len, optval,
optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
};
sctp_release_sock(sk);
return retval;
}
static void sctp_hash(struct sock *sk)
{
/* STUB */
}
static void sctp_unhash(struct sock *sk)
{
/* STUB */
}
/* Check if port is acceptable. Possibly find first available port.
*
* The port hash table (contained in the 'global' SCTP protocol storage
* returned by struct sctp_protocol *sctp_get_protocol()). The hash
* table is an array of 4096 lists (sctp_bind_hashbucket). Each
* list (the list number is the port number hashed out, so as you
* would expect from a hash function, all the ports in a given list have
* such a number that hashes out to the same list number; you were
* expecting that, right?); so each list has a set of ports, with a
* link to the socket (struct sock) that uses it, the port number and
* a fastreuse flag (FIXME: NPI ipg).
*/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, unsigned short snum);
static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
{
struct sctp_bind_hashbucket *head; /* hash list */
struct sctp_bind_bucket *pp; /* hash list port iterator */
unsigned short snum;
int ret;
/* NOTE: Remember to put this back to net order. */
addr->v4.sin_port = ntohs(addr->v4.sin_port);
snum = addr->v4.sin_port;
SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
sctp_local_bh_disable();
if (snum == 0) {
/* Search for an available port.
*
* 'sctp_port_rover' was the last port assigned, so
* we start to search from 'sctp_port_rover +
* 1'. What we do is first check if port 'rover' is
* already in the hash table; if not, we use that; if
* it is, we try next.
*/
int low = sysctl_local_port_range[0];
int high = sysctl_local_port_range[1];
int remaining = (high - low) + 1;
int rover;
int index;
sctp_spin_lock(&sctp_port_alloc_lock);
rover = sctp_port_rover;
do {
rover++;
if ((rover < low) || (rover > high))
rover = low;
index = sctp_phashfn(rover);
head = &sctp_port_hashtable[index];
sctp_spin_lock(&head->lock);
for (pp = head->chain; pp; pp = pp->next)
if (pp->port == rover)
goto next;
break;
next:
sctp_spin_unlock(&head->lock);
} while (--remaining > 0);
sctp_port_rover = rover;
sctp_spin_unlock(&sctp_port_alloc_lock);
/* Exhausted local port range during search? */
ret = 1;
if (remaining <= 0)
goto fail;
/* OK, here is the one we will use. HEAD (the port
* hash table list entry) is non-NULL and we hold it's
* mutex.
*/
snum = rover;
} else {
/* We are given an specific port number; we verify
* that it is not being used. If it is used, we will
* exahust the search in the hash list corresponding
* to the port number (snum) - we detect that with the
* port iterator, pp being NULL.
*/
head = &sctp_port_hashtable[sctp_phashfn(snum)];
sctp_spin_lock(&head->lock);
for (pp = head->chain; pp; pp = pp->next) {
if (pp->port == snum)
goto pp_found;
}
}
pp = NULL;
goto pp_not_found;
pp_found:
if (!hlist_empty(&pp->owner)) {
/* We had a port hash table hit - there is an
* available port (pp != NULL) and it is being
* used by other socket (pp->owner not empty); that other
* socket is going to be sk2.
*/
int reuse = sk->sk_reuse;
struct sock *sk2;
struct hlist_node *node;
SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
if (pp->fastreuse && sk->sk_reuse)
goto success;
/* Run through the list of sockets bound to the port
* (pp->port) [via the pointers bind_next and
* bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
* we get the endpoint they describe and run through
* the endpoint's list of IP (v4 or v6) addresses,
* comparing each of the addresses with the address of
* the socket sk. If we find a match, then that means
* that this port/socket (sk) combination are already
* in an endpoint.
*/
sk_for_each_bound(sk2, node, &pp->owner) {
struct sctp_endpoint *ep2;
ep2 = sctp_sk(sk2)->ep;
if (reuse && sk2->sk_reuse)
continue;
if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
sctp_sk(sk))) {
ret = (long)sk2;
goto fail_unlock;
}
}
SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
}
pp_not_found:
/* If there was a hash table miss, create a new port. */
ret = 1;
if (!pp && !(pp = sctp_bucket_create(head, snum)))
goto fail_unlock;
/* In either case (hit or miss), make sure fastreuse is 1 only
* if sk->sk_reuse is too (that is, if the caller requested
* SO_REUSEADDR on this socket -sk-).
*/
if (hlist_empty(&pp->owner))
pp->fastreuse = sk->sk_reuse ? 1 : 0;
else if (pp->fastreuse && !sk->sk_reuse)
pp->fastreuse = 0;
/* We are set, so fill up all the data in the hash table
* entry, tie the socket list information with the rest of the
* sockets FIXME: Blurry, NPI (ipg).
*/
success:
inet_sk(sk)->num = snum;
if (!sctp_sk(sk)->bind_hash) {
sk_add_bind_node(sk, &pp->owner);
sctp_sk(sk)->bind_hash = pp;
}
ret = 0;
fail_unlock:
sctp_spin_unlock(&head->lock);
fail:
sctp_local_bh_enable();
addr->v4.sin_port = htons(addr->v4.sin_port);
return ret;
}
/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
* port is requested.
*/
static int sctp_get_port(struct sock *sk, unsigned short snum)
{
long ret;
union sctp_addr addr;
struct sctp_af *af = sctp_sk(sk)->pf->af;
/* Set up a dummy address struct from the sk. */
af->from_sk(&addr, sk);
addr.v4.sin_port = htons(snum);
/* Note: sk->sk_num gets filled in if ephemeral port request. */
ret = sctp_get_port_local(sk, &addr);
return (ret ? 1 : 0);
}
/*
* 3.1.3 listen() - UDP Style Syntax
*
* By default, new associations are not accepted for UDP style sockets.
* An application uses listen() to mark a socket as being able to
* accept new associations.
*/
SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
/* Only UDP style sockets that are not peeled off are allowed to
* listen().
*/
if (!sctp_style(sk, UDP))
return -EINVAL;
/* If backlog is zero, disable listening. */
if (!backlog) {
if (sctp_sstate(sk, CLOSED))
return 0;
sctp_unhash_endpoint(ep);
sk->sk_state = SCTP_SS_CLOSED;
}
/* Return if we are already listening. */
if (sctp_sstate(sk, LISTENING))
return 0;
/*
* If a bind() or sctp_bindx() is not called prior to a listen()
* call that allows new associations to be accepted, the system
* picks an ephemeral port and will choose an address set equivalent
* to binding with a wildcard address.
*
* This is not currently spelled out in the SCTP sockets
* extensions draft, but follows the practice as seen in TCP
* sockets.
*/
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
}
sk->sk_state = SCTP_SS_LISTENING;
sctp_hash_endpoint(ep);
return 0;
}
/*
* 4.1.3 listen() - TCP Style Syntax
*
* Applications uses listen() to ready the SCTP endpoint for accepting
* inbound associations.
*/
SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
/* If backlog is zero, disable listening. */
if (!backlog) {
if (sctp_sstate(sk, CLOSED))
return 0;
sctp_unhash_endpoint(ep);
sk->sk_state = SCTP_SS_CLOSED;
}
if (sctp_sstate(sk, LISTENING))
return 0;
/*
* If a bind() or sctp_bindx() is not called prior to a listen()
* call that allows new associations to be accepted, the system
* picks an ephemeral port and will choose an address set equivalent
* to binding with a wildcard address.
*
* This is not currently spelled out in the SCTP sockets
* extensions draft, but follows the practice as seen in TCP
* sockets.
*/
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
}
sk->sk_state = SCTP_SS_LISTENING;
sk->sk_max_ack_backlog = backlog;
sctp_hash_endpoint(ep);
return 0;
}
/*
* Move a socket to LISTENING state.
*/
int sctp_inet_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
struct crypto_hash *tfm = NULL;
int err = -EINVAL;
if (unlikely(backlog < 0))
goto out;
sctp_lock_sock(sk);
if (sock->state != SS_UNCONNECTED)
goto out;
/* Allocate HMAC for generating cookie. */
if (sctp_hmac_alg) {
tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
if (!tfm) {
err = -ENOSYS;
goto out;
}
}
switch (sock->type) {
case SOCK_SEQPACKET:
err = sctp_seqpacket_listen(sk, backlog);
break;
case SOCK_STREAM:
err = sctp_stream_listen(sk, backlog);
break;
default:
break;
};
if (err)
goto cleanup;
/* Store away the transform reference. */
sctp_sk(sk)->hmac = tfm;
out:
sctp_release_sock(sk);
return err;
cleanup:
crypto_free_hash(tfm);
goto out;
}
/*
* This function is done by modeling the current datagram_poll() and the
* tcp_poll(). Note that, based on these implementations, we don't
* lock the socket in this function, even though it seems that,
* ideally, locking or some other mechanisms can be used to ensure
* the integrity of the counters (sndbuf and wmem_alloc) used
* in this place. We assume that we don't need locks either until proven
* otherwise.
*
* Another thing to note is that we include the Async I/O support
* here, again, by modeling the current TCP/UDP code. We don't have
* a good way to test with it yet.
*/
unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
struct sock *sk = sock->sk;
struct sctp_sock *sp = sctp_sk(sk);
unsigned int mask;
poll_wait(file, sk->sk_sleep, wait);
/* A TCP-style listening socket becomes readable when the accept queue
* is not empty.
*/
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
return (!list_empty(&sp->ep->asocs)) ?
(POLLIN | POLLRDNORM) : 0;
mask = 0;
/* Is there any exceptional events? */
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
mask |= POLLERR;
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= POLLRDHUP;
if (sk->sk_shutdown == SHUTDOWN_MASK)
mask |= POLLHUP;
/* Is it readable? Reconsider this code with TCP-style support. */
if (!skb_queue_empty(&sk->sk_receive_queue) ||
(sk->sk_shutdown & RCV_SHUTDOWN))
mask |= POLLIN | POLLRDNORM;
/* The association is either gone or not ready. */
if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
return mask;
/* Is it writable? */
if (sctp_writeable(sk)) {
mask |= POLLOUT | POLLWRNORM;
} else {
set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
/*
* Since the socket is not locked, the buffer
* might be made available after the writeable check and
* before the bit is set. This could cause a lost I/O
* signal. tcp_poll() has a race breaker for this race
* condition. Based on their implementation, we put
* in the following code to cover it as well.
*/
if (sctp_writeable(sk))
mask |= POLLOUT | POLLWRNORM;
}
return mask;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, unsigned short snum)
{
struct sctp_bind_bucket *pp;
pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
SCTP_DBG_OBJCNT_INC(bind_bucket);
if (pp) {
pp->port = snum;
pp->fastreuse = 0;
INIT_HLIST_HEAD(&pp->owner);
if ((pp->next = head->chain) != NULL)
pp->next->pprev = &pp->next;
head->chain = pp;
pp->pprev = &head->chain;
}
return pp;
}
/* Caller must hold hashbucket lock for this tb with local BH disabled */
static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
{
if (pp && hlist_empty(&pp->owner)) {
if (pp->next)
pp->next->pprev = pp->pprev;
*(pp->pprev) = pp->next;
kmem_cache_free(sctp_bucket_cachep, pp);
SCTP_DBG_OBJCNT_DEC(bind_bucket);
}
}
/* Release this socket's reference to a local port. */
static inline void __sctp_put_port(struct sock *sk)
{
struct sctp_bind_hashbucket *head =
&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
struct sctp_bind_bucket *pp;
sctp_spin_lock(&head->lock);
pp = sctp_sk(sk)->bind_hash;
__sk_del_bind_node(sk);
sctp_sk(sk)->bind_hash = NULL;
inet_sk(sk)->num = 0;
sctp_bucket_destroy(pp);
sctp_spin_unlock(&head->lock);
}
void sctp_put_port(struct sock *sk)
{
sctp_local_bh_disable();
__sctp_put_port(sk);
sctp_local_bh_enable();
}
/*
* The system picks an ephemeral port and choose an address set equivalent
* to binding with a wildcard address.
* One of those addresses will be the primary address for the association.
* This automatically enables the multihoming capability of SCTP.
*/
static int sctp_autobind(struct sock *sk)
{
union sctp_addr autoaddr;
struct sctp_af *af;
unsigned short port;
/* Initialize a local sockaddr structure to INADDR_ANY. */
af = sctp_sk(sk)->pf->af;
port = htons(inet_sk(sk)->num);
af->inaddr_any(&autoaddr, port);
return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
}
/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
*
* From RFC 2292
* 4.2 The cmsghdr Structure *
*
* When ancillary data is sent or received, any number of ancillary data
* objects can be specified by the msg_control and msg_controllen members of
* the msghdr structure, because each object is preceded by
* a cmsghdr structure defining the object's length (the cmsg_len member).
* Historically Berkeley-derived implementations have passed only one object
* at a time, but this API allows multiple objects to be
* passed in a single call to sendmsg() or recvmsg(). The following example
* shows two ancillary data objects in a control buffer.
*
* |<--------------------------- msg_controllen -------------------------->|
* | |
*
* |<----- ancillary data object ----->|<----- ancillary data object ----->|
*
* |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
* | | |
*
* |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
*
* |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
* | | | | |
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
*
* |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* ^
* |
*
* msg_control
* points here
*/
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
sctp_cmsgs_t *cmsgs)
{
struct cmsghdr *cmsg;
for (cmsg = CMSG_FIRSTHDR(msg);
cmsg != NULL;
cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
/* Should we parse this header or ignore? */
if (cmsg->cmsg_level != IPPROTO_SCTP)
continue;
/* Strictly check lengths following example in SCM code. */
switch (cmsg->cmsg_type) {
case SCTP_INIT:
/* SCTP Socket API Extension
* 5.2.1 SCTP Initiation Structure (SCTP_INIT)
*
* This cmsghdr structure provides information for
* initializing new SCTP associations with sendmsg().
* The SCTP_INITMSG socket option uses this same data
* structure. This structure is not used for
* recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
*/
if (cmsg->cmsg_len !=
CMSG_LEN(sizeof(struct sctp_initmsg)))
return -EINVAL;
cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
break;
case SCTP_SNDRCV:
/* SCTP Socket API Extension
* 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
*
* This cmsghdr structure specifies SCTP options for
* sendmsg() and describes SCTP header information
* about a received message through recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
*/
if (cmsg->cmsg_len !=
CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
return -EINVAL;
cmsgs->info =
(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
/* Minimally, validate the sinfo_flags. */
if (cmsgs->info->sinfo_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
break;
default:
return -EINVAL;
};
}
return 0;
}
/*
* Wait for a packet..
* Note: This function is the same function as in core/datagram.c
* with a few modifications to make lksctp work.
*/
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
{
int error;
DEFINE_WAIT(wait);
prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
/* Socket errors? */
error = sock_error(sk);
if (error)
goto out;
if (!skb_queue_empty(&sk->sk_receive_queue))
goto ready;
/* Socket shut down? */
if (sk->sk_shutdown & RCV_SHUTDOWN)
goto out;
/* Sequenced packets can come disconnected. If so we report the
* problem.
*/
error = -ENOTCONN;
/* Is there a good reason to think that we may receive some data? */
if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
goto out;
/* Handle signals. */
if (signal_pending(current))
goto interrupted;
/* Let another process have a go. Since we are going to sleep
* anyway. Note: This may cause odd behaviors if the message
* does not fit in the user's buffer, but this seems to be the
* only way to honor MSG_DONTWAIT realistically.
*/
sctp_release_sock(sk);
*timeo_p = schedule_timeout(*timeo_p);
sctp_lock_sock(sk);
ready:
finish_wait(sk->sk_sleep, &wait);
return 0;
interrupted:
error = sock_intr_errno(*timeo_p);
out:
finish_wait(sk->sk_sleep, &wait);
*err = error;
return error;
}
/* Receive a datagram.
* Note: This is pretty much the same routine as in core/datagram.c
* with a few changes to make lksctp work.
*/
static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
int noblock, int *err)
{
int error;
struct sk_buff *skb;
long timeo;
timeo = sock_rcvtimeo(sk, noblock);
SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
timeo, MAX_SCHEDULE_TIMEOUT);
do {
/* Again only user level code calls this function,
* so nothing interrupt level
* will suddenly eat the receive_queue.
*
* Look at current nfs client by the way...
* However, this function was corrent in any case. 8)
*/
if (flags & MSG_PEEK) {
spin_lock_bh(&sk->sk_receive_queue.lock);
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
atomic_inc(&skb->users);
spin_unlock_bh(&sk->sk_receive_queue.lock);
} else {
skb = skb_dequeue(&sk->sk_receive_queue);
}
if (skb)
return skb;
/* Caller is allowed not to check sk->sk_err before calling. */
error = sock_error(sk);
if (error)
goto no_packet;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
/* User doesn't want to wait. */
error = -EAGAIN;
if (!timeo)
goto no_packet;
} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
return NULL;
no_packet:
*err = error;
return NULL;
}
/* If sndbuf has changed, wake up per association sndbuf waiters. */
static void __sctp_write_space(struct sctp_association *asoc)
{
struct sock *sk = asoc->base.sk;
struct socket *sock = sk->sk_socket;
if ((sctp_wspace(asoc) > 0) && sock) {
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
if (sctp_writeable(sk)) {
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
wake_up_interruptible(sk->sk_sleep);
/* Note that we try to include the Async I/O support
* here by modeling from the current TCP/UDP code.
* We have not tested with it yet.
*/
if (sock->fasync_list &&
!(sk->sk_shutdown & SEND_SHUTDOWN))
sock_wake_async(sock, 2, POLL_OUT);
}
}
}
/* Do accounting for the sndbuf space.
* Decrement the used sndbuf space of the corresponding association by the
* data size which was just transmitted(freed).
*/
static void sctp_wfree(struct sk_buff *skb)
{
struct sctp_association *asoc;
struct sctp_chunk *chunk;
struct sock *sk;
/* Get the saved chunk pointer. */
chunk = *((struct sctp_chunk **)(skb->cb));
asoc = chunk->asoc;
sk = asoc->base.sk;
asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
sizeof(struct sk_buff) +
sizeof(struct sctp_chunk);
atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
sock_wfree(skb);
__sctp_write_space(asoc);
sctp_association_put(asoc);
}
/* Helper function to wait for space in the sndbuf. */
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
size_t msg_len)
{
struct sock *sk = asoc->base.sk;
int err = 0;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
asoc, (long)(*timeo_p), msg_len);
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
/* Wait on the association specific sndbuf space. */
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
asoc->base.dead)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (msg_len <= sctp_wspace(asoc))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
sctp_release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
BUG_ON(sk != asoc->base.sk);
sctp_lock_sock(sk);
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_error:
err = -EPIPE;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EAGAIN;
goto out;
}
/* If socket sndbuf has changed, wake up all per association waiters. */
void sctp_write_space(struct sock *sk)
{
struct sctp_association *asoc;
struct list_head *pos;
/* Wake up the tasks in each wait queue. */
list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
asoc = list_entry(pos, struct sctp_association, asocs);
__sctp_write_space(asoc);
}
}
/* Is there any sndbuf space available on the socket?
*
* Note that sk_wmem_alloc is the sum of the send buffers on all of the
* associations on the same socket. For a UDP-style socket with
* multiple associations, it is possible for it to be "unwriteable"
* prematurely. I assume that this is acceptable because
* a premature "unwriteable" is better than an accidental "writeable" which
* would cause an unwanted block under certain circumstances. For the 1-1
* UDP-style sockets or TCP-style sockets, this code should work.
* - Daisy
*/
static int sctp_writeable(struct sock *sk)
{
int amt = 0;
amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
if (amt < 0)
amt = 0;
return amt;
}
/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
* returns immediately with EINPROGRESS.
*/
static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
{
struct sock *sk = asoc->base.sk;
int err = 0;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
(long)(*timeo_p));
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
asoc->base.dead)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (sctp_state(asoc, ESTABLISHED))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
sctp_release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
sctp_lock_sock(sk);
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_error:
if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
err = -ETIMEDOUT;
else
err = -ECONNREFUSED;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EINPROGRESS;
goto out;
}
static int sctp_wait_for_accept(struct sock *sk, long timeo)
{
struct sctp_endpoint *ep;
int err = 0;
DEFINE_WAIT(wait);
ep = sctp_sk(sk)->ep;
for (;;) {
prepare_to_wait_exclusive(sk->sk_sleep, &wait,
TASK_INTERRUPTIBLE);
if (list_empty(&ep->asocs)) {
sctp_release_sock(sk);
timeo = schedule_timeout(timeo);
sctp_lock_sock(sk);
}
err = -EINVAL;
if (!sctp_sstate(sk, LISTENING))
break;
err = 0;
if (!list_empty(&ep->asocs))
break;
err = sock_intr_errno(timeo);
if (signal_pending(current))
break;
err = -EAGAIN;
if (!timeo)
break;
}
finish_wait(sk->sk_sleep, &wait);
return err;
}
void sctp_wait_for_close(struct sock *sk, long timeout)
{
DEFINE_WAIT(wait);
do {
prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
if (list_empty(&sctp_sk(sk)->ep->asocs))
break;
sctp_release_sock(sk);
timeout = schedule_timeout(timeout);
sctp_lock_sock(sk);
} while (!signal_pending(current) && timeout);
finish_wait(sk->sk_sleep, &wait);
}
/* Populate the fields of the newsk from the oldsk and migrate the assoc
* and its messages to the newsk.
*/
static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
struct sctp_association *assoc,
sctp_socket_type_t type)
{
struct sctp_sock *oldsp = sctp_sk(oldsk);
struct sctp_sock *newsp = sctp_sk(newsk);
struct sctp_bind_bucket *pp; /* hash list port iterator */
struct sctp_endpoint *newep = newsp->ep;
struct sk_buff *skb, *tmp;
struct sctp_ulpevent *event;
int flags = 0;
/* Migrate socket buffer sizes and all the socket level options to the
* new socket.
*/
newsk->sk_sndbuf = oldsk->sk_sndbuf;
newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
/* Brute force copy old sctp opt. */
inet_sk_copy_descendant(newsk, oldsk);
/* Restore the ep value that was overwritten with the above structure
* copy.
*/
newsp->ep = newep;
newsp->hmac = NULL;
/* Hook this new socket in to the bind_hash list. */
pp = sctp_sk(oldsk)->bind_hash;
sk_add_bind_node(newsk, &pp->owner);
sctp_sk(newsk)->bind_hash = pp;
inet_sk(newsk)->num = inet_sk(oldsk)->num;
/* Copy the bind_addr list from the original endpoint to the new
* endpoint so that we can handle restarts properly
*/
if (PF_INET6 == assoc->base.sk->sk_family)
flags = SCTP_ADDR6_ALLOWED;
if (assoc->peer.ipv4_address)
flags |= SCTP_ADDR4_PEERSUPP;
if (assoc->peer.ipv6_address)
flags |= SCTP_ADDR6_PEERSUPP;
sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
&oldsp->ep->base.bind_addr,
SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
/* Move any messages in the old socket's receive queue that are for the
* peeled off association to the new socket's receive queue.
*/
sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
sock_rfree(skb);
__skb_unlink(skb, &oldsk->sk_receive_queue);
__skb_queue_tail(&newsk->sk_receive_queue, skb);
skb_set_owner_r(skb, newsk);
}
}
/* Clean up any messages pending delivery due to partial
* delivery. Three cases:
* 1) No partial deliver; no work.
* 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
* 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
*/
skb_queue_head_init(&newsp->pd_lobby);
sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
if (sctp_sk(oldsk)->pd_mode) {
struct sk_buff_head *queue;
/* Decide which queue to move pd_lobby skbs to. */
if (assoc->ulpq.pd_mode) {
queue = &newsp->pd_lobby;
} else
queue = &newsk->sk_receive_queue;
/* Walk through the pd_lobby, looking for skbs that
* need moved to the new socket.
*/
sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
sock_rfree(skb);
__skb_unlink(skb, &oldsp->pd_lobby);
__skb_queue_tail(queue, skb);
skb_set_owner_r(skb, newsk);
}
}
/* Clear up any skbs waiting for the partial
* delivery to finish.
*/
if (assoc->ulpq.pd_mode)
sctp_clear_pd(oldsk);
}
/* Set the type of socket to indicate that it is peeled off from the
* original UDP-style socket or created with the accept() call on a
* TCP-style socket..
*/
newsp->type = type;
/* Mark the new socket "in-use" by the user so that any packets
* that may arrive on the association after we've moved it are
* queued to the backlog. This prevents a potential race between
* backlog processing on the old socket and new-packet processing
* on the new socket.
*/
sctp_lock_sock(newsk);
sctp_assoc_migrate(assoc, newsk);
/* If the association on the newsk is already closed before accept()
* is called, set RCV_SHUTDOWN flag.
*/
if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
newsk->sk_shutdown |= RCV_SHUTDOWN;
newsk->sk_state = SCTP_SS_ESTABLISHED;
sctp_release_sock(newsk);
}
/* This proto struct describes the ULP interface for SCTP. */
struct proto sctp_prot = {
.name = "SCTP",
.owner = THIS_MODULE,
.close = sctp_close,
.connect = sctp_connect,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.get_port = sctp_get_port,
.obj_size = sizeof(struct sctp_sock),
};
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct proto sctpv6_prot = {
.name = "SCTPv6",
.owner = THIS_MODULE,
.close = sctp_close,
.connect = sctp_connect,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.get_port = sctp_get_port,
.obj_size = sizeof(struct sctp6_sock),
};
#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */