You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/include/linux/dst.h

587 lines
14 KiB

/*
* 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __DST_H
#define __DST_H
#include <linux/types.h>
#include <linux/connector.h>
#define DST_NAMELEN 32
#define DST_NAME "dst"
enum {
/* Remove node with given id from storage */
DST_DEL_NODE = 0,
/* Add remote node with given id to the storage */
DST_ADD_REMOTE,
/* Add local node with given id to the storage to be exported and used by remote peers */
DST_ADD_EXPORT,
/* Crypto initialization command (hash/cipher used to protect the connection) */
DST_CRYPTO,
/* Security attributes for given connection (permissions for example) */
DST_SECURITY,
/* Register given node in the block layer subsystem */
DST_START,
DST_CMD_MAX
};
struct dst_ctl
{
/* Storage name */
char name[DST_NAMELEN];
/* Command flags */
__u32 flags;
/* Command itself (see above) */
__u32 cmd;
/* Maximum number of pages per single request in this device */
__u32 max_pages;
/* Stale/error transaction scanning timeout in milliseconds */
__u32 trans_scan_timeout;
/* Maximum number of retry sends before completing transaction as broken */
__u32 trans_max_retries;
/* Storage size */
__u64 size;
};
/* Reply command carries completion status */
struct dst_ctl_ack
{
struct cn_msg msg;
int error;
int unused[3];
};
/*
* Unfortunaltely socket address structure is not exported to userspace
* and is redefined there.
*/
#define SADDR_MAX_DATA 128
struct saddr {
/* address family, AF_xxx */
unsigned short sa_family;
/* 14 bytes of protocol address */
char sa_data[SADDR_MAX_DATA];
/* Number of bytes used in sa_data */
unsigned short sa_data_len;
};
/* Address structure */
struct dst_network_ctl
{
/* Socket type: datagram, stream...*/
unsigned int type;
/* Let me guess, is it a Jupiter diameter? */
unsigned int proto;
/* Peer's address */
struct saddr addr;
};
struct dst_crypto_ctl
{
/* Cipher and hash names */
char cipher_algo[DST_NAMELEN];
char hash_algo[DST_NAMELEN];
/* Key sizes. Can be zero for digest for example */
unsigned int cipher_keysize, hash_keysize;
/* Alignment. Calculated by the DST itself. */
unsigned int crypto_attached_size;
/* Number of threads to perform crypto operations */
int thread_num;
};
/* Export security attributes have this bits checked in when client connects */
#define DST_PERM_READ (1<<0)
#define DST_PERM_WRITE (1<<1)
/*
* Right now it is simple model, where each remote address
* is assigned to set of permissions it is allowed to perform.
* In real world block device does not know anything but
* reading and writing, so it should be more than enough.
*/
struct dst_secure_user
{
unsigned int permissions;
struct saddr addr;
};
/*
* Export control command: device to export and network address to accept
* clients to work with given device
*/
struct dst_export_ctl
{
char device[DST_NAMELEN];
struct dst_network_ctl ctl;
};
enum {
DST_CFG = 1, /* Request remote configuration */
DST_IO, /* IO command */
DST_IO_RESPONSE, /* IO response */
DST_PING, /* Keepalive message */
DST_NCMD_MAX,
};
struct dst_cmd
{
/* Network command itself, see above */
__u32 cmd;
/*
* Size of the attached data
* (in most cases, for READ command it means how many bytes were requested)
*/
__u32 size;
/* Crypto size: number of attached bytes with digest/hmac */
__u32 csize;
/* Here we can carry secret data */
__u32 reserved;
/* Read/write bits, see how they are encoded in bio structure */
__u64 rw;
/* BIO flags */
__u64 flags;
/* Unique command id (like transaction ID) */
__u64 id;
/* Sector to start IO from */
__u64 sector;
/* Hash data is placed after this header */
__u8 hash[0];
};
/*
* Convert command to/from network byte order.
* We do not use hton*() functions, since there is
* no 64-bit implementation.
*/
static inline void dst_convert_cmd(struct dst_cmd *c)
{
c->cmd = __cpu_to_be32(c->cmd);
c->csize = __cpu_to_be32(c->csize);
c->size = __cpu_to_be32(c->size);
c->sector = __cpu_to_be64(c->sector);
c->id = __cpu_to_be64(c->id);
c->flags = __cpu_to_be64(c->flags);
c->rw = __cpu_to_be64(c->rw);
}
/* Transaction id */
typedef __u64 dst_gen_t;
#ifdef __KERNEL__
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/device.h>
#include <linux/mempool.h>
#include <linux/net.h>
#include <linux/poll.h>
#include <linux/rbtree.h>
#ifdef CONFIG_DST_DEBUG
#define dprintk(f, a...) printk(KERN_NOTICE f, ##a)
#else
static inline void __attribute__ ((format (printf, 1, 2)))
dprintk(const char *fmt, ...) {}
#endif
struct dst_node;
struct dst_trans
{
/* DST node we are working with */
struct dst_node *n;
/* Entry inside transaction tree */
struct rb_node trans_entry;
/* Merlin kills this transaction when this memory cell equals zero */
atomic_t refcnt;
/* How this transaction should be processed by crypto engine */
short enc;
/* How many times this transaction was resent */
short retries;
/* Completion status */
int error;
/* When did we send it to the remote peer */
long send_time;
/* My name is...
* Well, computers does not speak, they have unique id instead */
dst_gen_t gen;
/* Block IO we are working with */
struct bio *bio;
/* Network command for above block IO request */
struct dst_cmd cmd;
};
struct dst_crypto_engine
{
/* What should we do with all block requests */
struct crypto_hash *hash;
struct crypto_ablkcipher *cipher;
/* Pool of pages used to encrypt data into before sending */
int page_num;
struct page **pages;
/* What to do with current request */
int enc;
/* Who we are and where do we go */
struct scatterlist *src, *dst;
/* Maximum timeout waiting for encryption to be completed */
long timeout;
/* IV is a 64-bit sequential counter */
u64 iv;
/* Secret data */
void *private;
/* Cached temporary data lives here */
int size;
void *data;
};
struct dst_state
{
/* The main state protection */
struct mutex state_lock;
/* Polling machinery for sockets */
wait_queue_t wait;
wait_queue_head_t *whead;
/* Most of events are being waited here */
wait_queue_head_t thread_wait;
/* Who owns this? */
struct dst_node *node;
/* Network address for this state */
struct dst_network_ctl ctl;
/* Permissions to work with: read-only or rw connection */
u32 permissions;
/* Called when we need to clean private data */
void (* cleanup)(struct dst_state *st);
/* Used by the server: BIO completion queues BIOs here */
struct list_head request_list;
spinlock_t request_lock;
/* Guess what? No, it is not number of planets */
atomic_t refcnt;
/* This flags is set when connection should be dropped */
int need_exit;
/*
* Socket to work with. Second pointer is used for
* lockless check if socket was changed before performing
* next action (like working with cached polling result)
*/
struct socket *socket, *read_socket;
/* Cached preallocated data */
void *data;
unsigned int size;
/* Currently processed command */
struct dst_cmd cmd;
};
struct dst_info
{
/* Device size */
u64 size;
/* Local device name for export devices */
char local[DST_NAMELEN];
/* Network setup */
struct dst_network_ctl net;
/* Sysfs bits use this */
struct device device;
};
struct dst_node
{
struct list_head node_entry;
/* Hi, my name is stored here */
char name[DST_NAMELEN];
/* My cache name is stored here */
char cache_name[DST_NAMELEN];
/* Block device attached to given node.
* Only valid for exporting nodes */
struct block_device *bdev;
/* Network state machine for given peer */
struct dst_state *state;
/* Block IO machinery */
struct request_queue *queue;
struct gendisk *disk;
/* Number of threads in processing pool */
int thread_num;
/* Maximum number of pages in single IO */
int max_pages;
/* I'm that big in bytes */
loff_t size;
/* Exported to userspace node information */
struct dst_info *info;
/*
* Security attribute list.
* Used only by exporting node currently.
*/
struct list_head security_list;
struct mutex security_lock;
/*
* When this unerflows below zero, university collapses.
* But this will not happen, since node will be freed,
* when reference counter reaches zero.
*/
atomic_t refcnt;
/* How precisely should I be started? */
int (*start)(struct dst_node *);
/* Crypto capabilities */
struct dst_crypto_ctl crypto;
u8 *hash_key;
u8 *cipher_key;
/* Pool of processing thread */
struct thread_pool *pool;
/* Transaction IDs live here */
atomic_long_t gen;
/*
* How frequently and how many times transaction
* tree should be scanned to drop stale objects.
*/
long trans_scan_timeout;
int trans_max_retries;
/* Small gnomes live here */
struct rb_root trans_root;
struct mutex trans_lock;
/*
* Transaction cache/memory pool.
* It is big enough to contain not only transaction
* itself, but additional crypto data (digest/hmac).
*/
struct kmem_cache *trans_cache;
mempool_t *trans_pool;
/* This entity scans transaction tree */
struct delayed_work trans_work;
wait_queue_head_t wait;
};
/* Kernel representation of the security attribute */
struct dst_secure
{
struct list_head sec_entry;
struct dst_secure_user sec;
};
int dst_process_bio(struct dst_node *n, struct bio *bio);
int dst_node_init_connected(struct dst_node *n, struct dst_network_ctl *r);
int dst_node_init_listened(struct dst_node *n, struct dst_export_ctl *le);
static inline struct dst_state *dst_state_get(struct dst_state *st)
{
BUG_ON(atomic_read(&st->refcnt) == 0);
atomic_inc(&st->refcnt);
return st;
}
void dst_state_put(struct dst_state *st);
struct dst_state *dst_state_alloc(struct dst_node *n);
int dst_state_socket_create(struct dst_state *st);
void dst_state_socket_release(struct dst_state *st);
void dst_state_exit_connected(struct dst_state *st);
int dst_state_schedule_receiver(struct dst_state *st);
void dst_dump_addr(struct socket *sk, struct sockaddr *sa, char *str);
static inline void dst_state_lock(struct dst_state *st)
{
mutex_lock(&st->state_lock);
}
static inline void dst_state_unlock(struct dst_state *st)
{
mutex_unlock(&st->state_lock);
}
void dst_poll_exit(struct dst_state *st);
int dst_poll_init(struct dst_state *st);
static inline unsigned int dst_state_poll(struct dst_state *st)
{
unsigned int revents = POLLHUP | POLLERR;
dst_state_lock(st);
if (st->socket)
revents = st->socket->ops->poll(NULL, st->socket, NULL);
dst_state_unlock(st);
return revents;
}
static inline int dst_thread_setup(void *private, void *data)
{
return 0;
}
void dst_node_put(struct dst_node *n);
static inline struct dst_node *dst_node_get(struct dst_node *n)
{
atomic_inc(&n->refcnt);
return n;
}
int dst_data_recv(struct dst_state *st, void *data, unsigned int size);
int dst_recv_cdata(struct dst_state *st, void *cdata);
int dst_data_send_header(struct socket *sock,
void *data, unsigned int size, int more);
int dst_send_bio(struct dst_state *st, struct dst_cmd *cmd, struct bio *bio);
int dst_process_io(struct dst_state *st);
int dst_export_crypto(struct dst_node *n, struct bio *bio);
int dst_export_send_bio(struct bio *bio);
int dst_start_export(struct dst_node *n);
int __init dst_export_init(void);
void dst_export_exit(void);
/* Private structure for export block IO requests */
struct dst_export_priv
{
struct list_head request_entry;
struct dst_state *state;
struct bio *bio;
struct dst_cmd cmd;
};
static inline void dst_trans_get(struct dst_trans *t)
{
atomic_inc(&t->refcnt);
}
struct dst_trans *dst_trans_search(struct dst_node *node, dst_gen_t gen);
int dst_trans_remove(struct dst_trans *t);
int dst_trans_remove_nolock(struct dst_trans *t);
void dst_trans_put(struct dst_trans *t);
/*
* Convert bio into network command.
*/
static inline void dst_bio_to_cmd(struct bio *bio, struct dst_cmd *cmd,
u32 command, u64 id)
{
cmd->cmd = command;
cmd->flags = (bio->bi_flags << BIO_POOL_BITS) >> BIO_POOL_BITS;
cmd->rw = bio->bi_rw;
cmd->size = bio->bi_size;
cmd->csize = 0;
cmd->id = id;
cmd->sector = bio->bi_sector;
};
int dst_trans_send(struct dst_trans *t);
int dst_trans_crypto(struct dst_trans *t);
int dst_node_crypto_init(struct dst_node *n, struct dst_crypto_ctl *ctl);
void dst_node_crypto_exit(struct dst_node *n);
static inline int dst_need_crypto(struct dst_node *n)
{
struct dst_crypto_ctl *c = &n->crypto;
/*
* Logical OR is appropriate here, but boolean one produces
* more optimal code, so it is used instead.
*/
return (c->hash_algo[0] | c->cipher_algo[0]);
}
int dst_node_trans_init(struct dst_node *n, unsigned int size);
void dst_node_trans_exit(struct dst_node *n);
/*
* Pool of threads.
* Ready list contains threads currently free to be used,
* active one contains threads with some work scheduled for them.
* Caller can wait in given queue when thread is ready.
*/
struct thread_pool
{
int thread_num;
struct mutex thread_lock;
struct list_head ready_list, active_list;
wait_queue_head_t wait;
};
void thread_pool_del_worker(struct thread_pool *p);
void thread_pool_del_worker_id(struct thread_pool *p, unsigned int id);
int thread_pool_add_worker(struct thread_pool *p,
char *name,
unsigned int id,
void *(* init)(void *data),
void (* cleanup)(void *data),
void *data);
void thread_pool_destroy(struct thread_pool *p);
struct thread_pool *thread_pool_create(int num, char *name,
void *(* init)(void *data),
void (* cleanup)(void *data),
void *data);
int thread_pool_schedule(struct thread_pool *p,
int (* setup)(void *stored_private, void *setup_data),
int (* action)(void *stored_private, void *setup_data),
void *setup_data, long timeout);
int thread_pool_schedule_private(struct thread_pool *p,
int (* setup)(void *private, void *data),
int (* action)(void *private, void *data),
void *data, long timeout, void *id);
#endif /* __KERNEL__ */
#endif /* __DST_H */