You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
391 lines
10 KiB
391 lines
10 KiB
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* MMU support
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* We need the mmu code to access both 32-bit and 64-bit guest ptes,
|
|
* so the code in this file is compiled twice, once per pte size.
|
|
*/
|
|
|
|
#if PTTYPE == 64
|
|
#define pt_element_t u64
|
|
#define guest_walker guest_walker64
|
|
#define FNAME(name) paging##64_##name
|
|
#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
|
|
#define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
|
|
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
|
|
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
|
|
#define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
|
|
#define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
|
|
#elif PTTYPE == 32
|
|
#define pt_element_t u32
|
|
#define guest_walker guest_walker32
|
|
#define FNAME(name) paging##32_##name
|
|
#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
|
|
#define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
|
|
#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
|
|
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
|
|
#define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
|
|
#define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
|
|
#else
|
|
#error Invalid PTTYPE value
|
|
#endif
|
|
|
|
/*
|
|
* The guest_walker structure emulates the behavior of the hardware page
|
|
* table walker.
|
|
*/
|
|
struct guest_walker {
|
|
int level;
|
|
pt_element_t *table;
|
|
pt_element_t inherited_ar;
|
|
};
|
|
|
|
static void FNAME(init_walker)(struct guest_walker *walker,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
hpa_t hpa;
|
|
struct kvm_memory_slot *slot;
|
|
|
|
walker->level = vcpu->mmu.root_level;
|
|
slot = gfn_to_memslot(vcpu->kvm,
|
|
(vcpu->cr3 & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
|
|
hpa = safe_gpa_to_hpa(vcpu, vcpu->cr3 & PT64_BASE_ADDR_MASK);
|
|
walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
|
|
|
|
ASSERT((!kvm_arch_ops->is_long_mode(vcpu) && is_pae(vcpu)) ||
|
|
(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
|
|
|
|
walker->table = (pt_element_t *)( (unsigned long)walker->table |
|
|
(unsigned long)(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) );
|
|
walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
|
|
}
|
|
|
|
static void FNAME(release_walker)(struct guest_walker *walker)
|
|
{
|
|
kunmap_atomic(walker->table, KM_USER0);
|
|
}
|
|
|
|
static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
|
|
u64 *shadow_pte, u64 access_bits)
|
|
{
|
|
ASSERT(*shadow_pte == 0);
|
|
access_bits &= guest_pte;
|
|
*shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
|
|
set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
|
|
guest_pte & PT_DIRTY_MASK, access_bits);
|
|
}
|
|
|
|
static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
|
|
u64 *shadow_pte, u64 access_bits,
|
|
int index)
|
|
{
|
|
gpa_t gaddr;
|
|
|
|
ASSERT(*shadow_pte == 0);
|
|
access_bits &= guest_pde;
|
|
gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index;
|
|
if (PTTYPE == 32 && is_cpuid_PSE36())
|
|
gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
|
|
(32 - PT32_DIR_PSE36_SHIFT);
|
|
*shadow_pte = guest_pde & PT_PTE_COPY_MASK;
|
|
set_pte_common(vcpu, shadow_pte, gaddr,
|
|
guest_pde & PT_DIRTY_MASK, access_bits);
|
|
}
|
|
|
|
/*
|
|
* Fetch a guest pte from a specific level in the paging hierarchy.
|
|
*/
|
|
static pt_element_t *FNAME(fetch_guest)(struct kvm_vcpu *vcpu,
|
|
struct guest_walker *walker,
|
|
int level,
|
|
gva_t addr)
|
|
{
|
|
|
|
ASSERT(level > 0 && level <= walker->level);
|
|
|
|
for (;;) {
|
|
int index = PT_INDEX(addr, walker->level);
|
|
hpa_t paddr;
|
|
|
|
ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
|
|
((unsigned long)&walker->table[index] & PAGE_MASK));
|
|
if (level == walker->level ||
|
|
!is_present_pte(walker->table[index]) ||
|
|
(walker->level == PT_DIRECTORY_LEVEL &&
|
|
(walker->table[index] & PT_PAGE_SIZE_MASK) &&
|
|
(PTTYPE == 64 || is_pse(vcpu))))
|
|
return &walker->table[index];
|
|
if (walker->level != 3 || kvm_arch_ops->is_long_mode(vcpu))
|
|
walker->inherited_ar &= walker->table[index];
|
|
paddr = safe_gpa_to_hpa(vcpu, walker->table[index] & PT_BASE_ADDR_MASK);
|
|
kunmap_atomic(walker->table, KM_USER0);
|
|
walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
|
|
KM_USER0);
|
|
--walker->level;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fetch a shadow pte for a specific level in the paging hierarchy.
|
|
*/
|
|
static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
|
|
struct guest_walker *walker)
|
|
{
|
|
hpa_t shadow_addr;
|
|
int level;
|
|
u64 *prev_shadow_ent = NULL;
|
|
|
|
shadow_addr = vcpu->mmu.root_hpa;
|
|
level = vcpu->mmu.shadow_root_level;
|
|
|
|
for (; ; level--) {
|
|
u32 index = SHADOW_PT_INDEX(addr, level);
|
|
u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
|
|
pt_element_t *guest_ent;
|
|
u64 shadow_pte;
|
|
|
|
if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
|
|
if (level == PT_PAGE_TABLE_LEVEL)
|
|
return shadow_ent;
|
|
shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
|
|
prev_shadow_ent = shadow_ent;
|
|
continue;
|
|
}
|
|
|
|
if (PTTYPE == 32 && level > PT32_ROOT_LEVEL) {
|
|
ASSERT(level == PT32E_ROOT_LEVEL);
|
|
guest_ent = FNAME(fetch_guest)(vcpu, walker,
|
|
PT32_ROOT_LEVEL, addr);
|
|
} else
|
|
guest_ent = FNAME(fetch_guest)(vcpu, walker,
|
|
level, addr);
|
|
|
|
if (!is_present_pte(*guest_ent))
|
|
return NULL;
|
|
|
|
/* Don't set accessed bit on PAE PDPTRs */
|
|
if (vcpu->mmu.root_level != 3 || walker->level != 3)
|
|
*guest_ent |= PT_ACCESSED_MASK;
|
|
|
|
if (level == PT_PAGE_TABLE_LEVEL) {
|
|
|
|
if (walker->level == PT_DIRECTORY_LEVEL) {
|
|
if (prev_shadow_ent)
|
|
*prev_shadow_ent |= PT_SHADOW_PS_MARK;
|
|
FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
|
|
walker->inherited_ar,
|
|
PT_INDEX(addr, PT_PAGE_TABLE_LEVEL));
|
|
} else {
|
|
ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
|
|
FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar);
|
|
}
|
|
return shadow_ent;
|
|
}
|
|
|
|
shadow_addr = kvm_mmu_alloc_page(vcpu, shadow_ent);
|
|
if (!VALID_PAGE(shadow_addr))
|
|
return ERR_PTR(-ENOMEM);
|
|
shadow_pte = shadow_addr | PT_PRESENT_MASK;
|
|
if (vcpu->mmu.root_level > 3 || level != 3)
|
|
shadow_pte |= PT_ACCESSED_MASK
|
|
| PT_WRITABLE_MASK | PT_USER_MASK;
|
|
*shadow_ent = shadow_pte;
|
|
prev_shadow_ent = shadow_ent;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The guest faulted for write. We need to
|
|
*
|
|
* - check write permissions
|
|
* - update the guest pte dirty bit
|
|
* - update our own dirty page tracking structures
|
|
*/
|
|
static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
|
|
u64 *shadow_ent,
|
|
struct guest_walker *walker,
|
|
gva_t addr,
|
|
int user)
|
|
{
|
|
pt_element_t *guest_ent;
|
|
int writable_shadow;
|
|
gfn_t gfn;
|
|
|
|
if (is_writeble_pte(*shadow_ent))
|
|
return 0;
|
|
|
|
writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
|
|
if (user) {
|
|
/*
|
|
* User mode access. Fail if it's a kernel page or a read-only
|
|
* page.
|
|
*/
|
|
if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
|
|
return 0;
|
|
ASSERT(*shadow_ent & PT_USER_MASK);
|
|
} else
|
|
/*
|
|
* Kernel mode access. Fail if it's a read-only page and
|
|
* supervisor write protection is enabled.
|
|
*/
|
|
if (!writable_shadow) {
|
|
if (is_write_protection(vcpu))
|
|
return 0;
|
|
*shadow_ent &= ~PT_USER_MASK;
|
|
}
|
|
|
|
guest_ent = FNAME(fetch_guest)(vcpu, walker, PT_PAGE_TABLE_LEVEL, addr);
|
|
|
|
if (!is_present_pte(*guest_ent)) {
|
|
*shadow_ent = 0;
|
|
return 0;
|
|
}
|
|
|
|
gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
|
|
mark_page_dirty(vcpu->kvm, gfn);
|
|
*shadow_ent |= PT_WRITABLE_MASK;
|
|
*guest_ent |= PT_DIRTY_MASK;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Page fault handler. There are several causes for a page fault:
|
|
* - there is no shadow pte for the guest pte
|
|
* - write access through a shadow pte marked read only so that we can set
|
|
* the dirty bit
|
|
* - write access to a shadow pte marked read only so we can update the page
|
|
* dirty bitmap, when userspace requests it
|
|
* - mmio access; in this case we will never install a present shadow pte
|
|
* - normal guest page fault due to the guest pte marked not present, not
|
|
* writable, or not executable
|
|
*
|
|
* Returns: 1 if we need to emulate the instruction, 0 otherwise
|
|
*/
|
|
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
|
|
u32 error_code)
|
|
{
|
|
int write_fault = error_code & PFERR_WRITE_MASK;
|
|
int pte_present = error_code & PFERR_PRESENT_MASK;
|
|
int user_fault = error_code & PFERR_USER_MASK;
|
|
struct guest_walker walker;
|
|
u64 *shadow_pte;
|
|
int fixed;
|
|
|
|
/*
|
|
* Look up the shadow pte for the faulting address.
|
|
*/
|
|
for (;;) {
|
|
FNAME(init_walker)(&walker, vcpu);
|
|
shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
|
|
if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */
|
|
nonpaging_flush(vcpu);
|
|
FNAME(release_walker)(&walker);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The page is not mapped by the guest. Let the guest handle it.
|
|
*/
|
|
if (!shadow_pte) {
|
|
inject_page_fault(vcpu, addr, error_code);
|
|
FNAME(release_walker)(&walker);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the shadow pte.
|
|
*/
|
|
if (write_fault)
|
|
fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
|
|
user_fault);
|
|
else
|
|
fixed = fix_read_pf(shadow_pte);
|
|
|
|
FNAME(release_walker)(&walker);
|
|
|
|
/*
|
|
* mmio: emulate if accessible, otherwise its a guest fault.
|
|
*/
|
|
if (is_io_pte(*shadow_pte)) {
|
|
if (may_access(*shadow_pte, write_fault, user_fault))
|
|
return 1;
|
|
pgprintk("%s: io work, no access\n", __FUNCTION__);
|
|
inject_page_fault(vcpu, addr,
|
|
error_code | PFERR_PRESENT_MASK);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pte not present, guest page fault.
|
|
*/
|
|
if (pte_present && !fixed) {
|
|
inject_page_fault(vcpu, addr, error_code);
|
|
return 0;
|
|
}
|
|
|
|
++kvm_stat.pf_fixed;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
|
|
{
|
|
struct guest_walker walker;
|
|
pt_element_t guest_pte;
|
|
gpa_t gpa;
|
|
|
|
FNAME(init_walker)(&walker, vcpu);
|
|
guest_pte = *FNAME(fetch_guest)(vcpu, &walker, PT_PAGE_TABLE_LEVEL,
|
|
vaddr);
|
|
FNAME(release_walker)(&walker);
|
|
|
|
if (!is_present_pte(guest_pte))
|
|
return UNMAPPED_GVA;
|
|
|
|
if (walker.level == PT_DIRECTORY_LEVEL) {
|
|
ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
|
|
ASSERT(PTTYPE == 64 || is_pse(vcpu));
|
|
|
|
gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
|
|
(PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
|
|
|
|
if (PTTYPE == 32 && is_cpuid_PSE36())
|
|
gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
|
|
(32 - PT32_DIR_PSE36_SHIFT);
|
|
} else {
|
|
gpa = (guest_pte & PT_BASE_ADDR_MASK);
|
|
gpa |= (vaddr & ~PAGE_MASK);
|
|
}
|
|
|
|
return gpa;
|
|
}
|
|
|
|
#undef pt_element_t
|
|
#undef guest_walker
|
|
#undef FNAME
|
|
#undef PT_BASE_ADDR_MASK
|
|
#undef PT_INDEX
|
|
#undef SHADOW_PT_INDEX
|
|
#undef PT_LEVEL_MASK
|
|
#undef PT_PTE_COPY_MASK
|
|
#undef PT_NON_PTE_COPY_MASK
|
|
#undef PT_DIR_BASE_ADDR_MASK
|
|
|