You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

820 lines
27 KiB

/*
* Driver for Digigram pcxhr compatible soundcards
*
* mixer interface for stereo cards
*
* Copyright (c) 2004 by Digigram <alsa@digigram.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <sound/asoundef.h>
#include "pcxhr.h"
#include "pcxhr_core.h"
#include "pcxhr_mix22.h"
/* registers used on the DSP and Xilinx (port 2) : HR stereo cards only */
#define PCXHR_DSP_RESET 0x20
#define PCXHR_XLX_CFG 0x24
#define PCXHR_XLX_RUER 0x28
#define PCXHR_XLX_DATA 0x2C
#define PCXHR_XLX_STATUS 0x30
#define PCXHR_XLX_LOFREQ 0x34
#define PCXHR_XLX_HIFREQ 0x38
#define PCXHR_XLX_CSUER 0x3C
#define PCXHR_XLX_SELMIC 0x40
#define PCXHR_DSP 2
/* byte access only ! */
#define PCXHR_INPB(mgr, x) inb((mgr)->port[PCXHR_DSP] + (x))
#define PCXHR_OUTPB(mgr, x, data) outb((data), (mgr)->port[PCXHR_DSP] + (x))
/* values for PCHR_DSP_RESET register */
#define PCXHR_DSP_RESET_DSP 0x01
#define PCXHR_DSP_RESET_MUTE 0x02
#define PCXHR_DSP_RESET_CODEC 0x08
/* values for PCHR_XLX_CFG register */
#define PCXHR_CFG_SYNCDSP_MASK 0x80
#define PCXHR_CFG_DEPENDENCY_MASK 0x60
#define PCXHR_CFG_INDEPENDANT_SEL 0x00
#define PCXHR_CFG_MASTER_SEL 0x40
#define PCXHR_CFG_SLAVE_SEL 0x20
#define PCXHR_CFG_DATA_UER1_SEL_MASK 0x10 /* 0 (UER0), 1(UER1) */
#define PCXHR_CFG_DATAIN_SEL_MASK 0x08 /* 0 (ana), 1 (UER) */
#define PCXHR_CFG_SRC_MASK 0x04 /* 0 (Bypass), 1 (SRC Actif) */
#define PCXHR_CFG_CLOCK_UER1_SEL_MASK 0x02 /* 0 (UER0), 1(UER1) */
#define PCXHR_CFG_CLOCKIN_SEL_MASK 0x01 /* 0 (internal), 1 (AES/EBU) */
/* values for PCHR_XLX_DATA register */
#define PCXHR_DATA_CODEC 0x80
#define AKM_POWER_CONTROL_CMD 0xA007
#define AKM_RESET_ON_CMD 0xA100
#define AKM_RESET_OFF_CMD 0xA103
#define AKM_CLOCK_INF_55K_CMD 0xA240
#define AKM_CLOCK_SUP_55K_CMD 0xA24D
#define AKM_MUTE_CMD 0xA38D
#define AKM_UNMUTE_CMD 0xA30D
#define AKM_LEFT_LEVEL_CMD 0xA600
#define AKM_RIGHT_LEVEL_CMD 0xA700
/* values for PCHR_XLX_STATUS register - READ */
#define PCXHR_STAT_SRC_LOCK 0x01
#define PCXHR_STAT_LEVEL_IN 0x02
#define PCXHR_STAT_MIC_CAPS 0x10
/* values for PCHR_XLX_STATUS register - WRITE */
#define PCXHR_STAT_FREQ_SYNC_MASK 0x01
#define PCXHR_STAT_FREQ_UER1_MASK 0x02
#define PCXHR_STAT_FREQ_SAVE_MASK 0x80
/* values for PCHR_XLX_CSUER register */
#define PCXHR_SUER1_BIT_U_READ_MASK 0x80
#define PCXHR_SUER1_BIT_C_READ_MASK 0x40
#define PCXHR_SUER1_DATA_PRESENT_MASK 0x20
#define PCXHR_SUER1_CLOCK_PRESENT_MASK 0x10
#define PCXHR_SUER_BIT_U_READ_MASK 0x08
#define PCXHR_SUER_BIT_C_READ_MASK 0x04
#define PCXHR_SUER_DATA_PRESENT_MASK 0x02
#define PCXHR_SUER_CLOCK_PRESENT_MASK 0x01
#define PCXHR_SUER_BIT_U_WRITE_MASK 0x02
#define PCXHR_SUER_BIT_C_WRITE_MASK 0x01
/* values for PCXHR_XLX_SELMIC register - WRITE */
#define PCXHR_SELMIC_PREAMPLI_OFFSET 2
#define PCXHR_SELMIC_PREAMPLI_MASK 0x0C
#define PCXHR_SELMIC_PHANTOM_ALIM 0x80
static const unsigned char g_hr222_p_level[] = {
0x00, /* [000] -49.5 dB: AKM[000] = -1.#INF dB (mute) */
0x01, /* [001] -49.0 dB: AKM[001] = -48.131 dB (diff=0.86920 dB) */
0x01, /* [002] -48.5 dB: AKM[001] = -48.131 dB (diff=0.36920 dB) */
0x01, /* [003] -48.0 dB: AKM[001] = -48.131 dB (diff=0.13080 dB) */
0x01, /* [004] -47.5 dB: AKM[001] = -48.131 dB (diff=0.63080 dB) */
0x01, /* [005] -46.5 dB: AKM[001] = -48.131 dB (diff=1.63080 dB) */
0x01, /* [006] -47.0 dB: AKM[001] = -48.131 dB (diff=1.13080 dB) */
0x01, /* [007] -46.0 dB: AKM[001] = -48.131 dB (diff=2.13080 dB) */
0x01, /* [008] -45.5 dB: AKM[001] = -48.131 dB (diff=2.63080 dB) */
0x02, /* [009] -45.0 dB: AKM[002] = -42.110 dB (diff=2.88980 dB) */
0x02, /* [010] -44.5 dB: AKM[002] = -42.110 dB (diff=2.38980 dB) */
0x02, /* [011] -44.0 dB: AKM[002] = -42.110 dB (diff=1.88980 dB) */
0x02, /* [012] -43.5 dB: AKM[002] = -42.110 dB (diff=1.38980 dB) */
0x02, /* [013] -43.0 dB: AKM[002] = -42.110 dB (diff=0.88980 dB) */
0x02, /* [014] -42.5 dB: AKM[002] = -42.110 dB (diff=0.38980 dB) */
0x02, /* [015] -42.0 dB: AKM[002] = -42.110 dB (diff=0.11020 dB) */
0x02, /* [016] -41.5 dB: AKM[002] = -42.110 dB (diff=0.61020 dB) */
0x02, /* [017] -41.0 dB: AKM[002] = -42.110 dB (diff=1.11020 dB) */
0x02, /* [018] -40.5 dB: AKM[002] = -42.110 dB (diff=1.61020 dB) */
0x03, /* [019] -40.0 dB: AKM[003] = -38.588 dB (diff=1.41162 dB) */
0x03, /* [020] -39.5 dB: AKM[003] = -38.588 dB (diff=0.91162 dB) */
0x03, /* [021] -39.0 dB: AKM[003] = -38.588 dB (diff=0.41162 dB) */
0x03, /* [022] -38.5 dB: AKM[003] = -38.588 dB (diff=0.08838 dB) */
0x03, /* [023] -38.0 dB: AKM[003] = -38.588 dB (diff=0.58838 dB) */
0x03, /* [024] -37.5 dB: AKM[003] = -38.588 dB (diff=1.08838 dB) */
0x04, /* [025] -37.0 dB: AKM[004] = -36.090 dB (diff=0.91040 dB) */
0x04, /* [026] -36.5 dB: AKM[004] = -36.090 dB (diff=0.41040 dB) */
0x04, /* [027] -36.0 dB: AKM[004] = -36.090 dB (diff=0.08960 dB) */
0x04, /* [028] -35.5 dB: AKM[004] = -36.090 dB (diff=0.58960 dB) */
0x05, /* [029] -35.0 dB: AKM[005] = -34.151 dB (diff=0.84860 dB) */
0x05, /* [030] -34.5 dB: AKM[005] = -34.151 dB (diff=0.34860 dB) */
0x05, /* [031] -34.0 dB: AKM[005] = -34.151 dB (diff=0.15140 dB) */
0x05, /* [032] -33.5 dB: AKM[005] = -34.151 dB (diff=0.65140 dB) */
0x06, /* [033] -33.0 dB: AKM[006] = -32.568 dB (diff=0.43222 dB) */
0x06, /* [034] -32.5 dB: AKM[006] = -32.568 dB (diff=0.06778 dB) */
0x06, /* [035] -32.0 dB: AKM[006] = -32.568 dB (diff=0.56778 dB) */
0x07, /* [036] -31.5 dB: AKM[007] = -31.229 dB (diff=0.27116 dB) */
0x07, /* [037] -31.0 dB: AKM[007] = -31.229 dB (diff=0.22884 dB) */
0x08, /* [038] -30.5 dB: AKM[008] = -30.069 dB (diff=0.43100 dB) */
0x08, /* [039] -30.0 dB: AKM[008] = -30.069 dB (diff=0.06900 dB) */
0x09, /* [040] -29.5 dB: AKM[009] = -29.046 dB (diff=0.45405 dB) */
0x09, /* [041] -29.0 dB: AKM[009] = -29.046 dB (diff=0.04595 dB) */
0x0a, /* [042] -28.5 dB: AKM[010] = -28.131 dB (diff=0.36920 dB) */
0x0a, /* [043] -28.0 dB: AKM[010] = -28.131 dB (diff=0.13080 dB) */
0x0b, /* [044] -27.5 dB: AKM[011] = -27.303 dB (diff=0.19705 dB) */
0x0b, /* [045] -27.0 dB: AKM[011] = -27.303 dB (diff=0.30295 dB) */
0x0c, /* [046] -26.5 dB: AKM[012] = -26.547 dB (diff=0.04718 dB) */
0x0d, /* [047] -26.0 dB: AKM[013] = -25.852 dB (diff=0.14806 dB) */
0x0e, /* [048] -25.5 dB: AKM[014] = -25.208 dB (diff=0.29176 dB) */
0x0e, /* [049] -25.0 dB: AKM[014] = -25.208 dB (diff=0.20824 dB) */
0x0f, /* [050] -24.5 dB: AKM[015] = -24.609 dB (diff=0.10898 dB) */
0x10, /* [051] -24.0 dB: AKM[016] = -24.048 dB (diff=0.04840 dB) */
0x11, /* [052] -23.5 dB: AKM[017] = -23.522 dB (diff=0.02183 dB) */
0x12, /* [053] -23.0 dB: AKM[018] = -23.025 dB (diff=0.02535 dB) */
0x13, /* [054] -22.5 dB: AKM[019] = -22.556 dB (diff=0.05573 dB) */
0x14, /* [055] -22.0 dB: AKM[020] = -22.110 dB (diff=0.11020 dB) */
0x15, /* [056] -21.5 dB: AKM[021] = -21.686 dB (diff=0.18642 dB) */
0x17, /* [057] -21.0 dB: AKM[023] = -20.896 dB (diff=0.10375 dB) */
0x18, /* [058] -20.5 dB: AKM[024] = -20.527 dB (diff=0.02658 dB) */
0x1a, /* [059] -20.0 dB: AKM[026] = -19.831 dB (diff=0.16866 dB) */
0x1b, /* [060] -19.5 dB: AKM[027] = -19.504 dB (diff=0.00353 dB) */
0x1d, /* [061] -19.0 dB: AKM[029] = -18.883 dB (diff=0.11716 dB) */
0x1e, /* [062] -18.5 dB: AKM[030] = -18.588 dB (diff=0.08838 dB) */
0x20, /* [063] -18.0 dB: AKM[032] = -18.028 dB (diff=0.02780 dB) */
0x22, /* [064] -17.5 dB: AKM[034] = -17.501 dB (diff=0.00123 dB) */
0x24, /* [065] -17.0 dB: AKM[036] = -17.005 dB (diff=0.00475 dB) */
0x26, /* [066] -16.5 dB: AKM[038] = -16.535 dB (diff=0.03513 dB) */
0x28, /* [067] -16.0 dB: AKM[040] = -16.090 dB (diff=0.08960 dB) */
0x2b, /* [068] -15.5 dB: AKM[043] = -15.461 dB (diff=0.03857 dB) */
0x2d, /* [069] -15.0 dB: AKM[045] = -15.067 dB (diff=0.06655 dB) */
0x30, /* [070] -14.5 dB: AKM[048] = -14.506 dB (diff=0.00598 dB) */
0x33, /* [071] -14.0 dB: AKM[051] = -13.979 dB (diff=0.02060 dB) */
0x36, /* [072] -13.5 dB: AKM[054] = -13.483 dB (diff=0.01707 dB) */
0x39, /* [073] -13.0 dB: AKM[057] = -13.013 dB (diff=0.01331 dB) */
0x3c, /* [074] -12.5 dB: AKM[060] = -12.568 dB (diff=0.06778 dB) */
0x40, /* [075] -12.0 dB: AKM[064] = -12.007 dB (diff=0.00720 dB) */
0x44, /* [076] -11.5 dB: AKM[068] = -11.481 dB (diff=0.01937 dB) */
0x48, /* [077] -11.0 dB: AKM[072] = -10.984 dB (diff=0.01585 dB) */
0x4c, /* [078] -10.5 dB: AKM[076] = -10.515 dB (diff=0.01453 dB) */
0x51, /* [079] -10.0 dB: AKM[081] = -9.961 dB (diff=0.03890 dB) */
0x55, /* [080] -9.5 dB: AKM[085] = -9.542 dB (diff=0.04243 dB) */
0x5a, /* [081] -9.0 dB: AKM[090] = -9.046 dB (diff=0.04595 dB) */
0x60, /* [082] -8.5 dB: AKM[096] = -8.485 dB (diff=0.01462 dB) */
0x66, /* [083] -8.0 dB: AKM[102] = -7.959 dB (diff=0.04120 dB) */
0x6c, /* [084] -7.5 dB: AKM[108] = -7.462 dB (diff=0.03767 dB) */
0x72, /* [085] -7.0 dB: AKM[114] = -6.993 dB (diff=0.00729 dB) */
0x79, /* [086] -6.5 dB: AKM[121] = -6.475 dB (diff=0.02490 dB) */
0x80, /* [087] -6.0 dB: AKM[128] = -5.987 dB (diff=0.01340 dB) */
0x87, /* [088] -5.5 dB: AKM[135] = -5.524 dB (diff=0.02413 dB) */
0x8f, /* [089] -5.0 dB: AKM[143] = -5.024 dB (diff=0.02408 dB) */
0x98, /* [090] -4.5 dB: AKM[152] = -4.494 dB (diff=0.00607 dB) */
0xa1, /* [091] -4.0 dB: AKM[161] = -3.994 dB (diff=0.00571 dB) */
0xaa, /* [092] -3.5 dB: AKM[170] = -3.522 dB (diff=0.02183 dB) */
0xb5, /* [093] -3.0 dB: AKM[181] = -2.977 dB (diff=0.02277 dB) */
0xbf, /* [094] -2.5 dB: AKM[191] = -2.510 dB (diff=0.01014 dB) */
0xcb, /* [095] -2.0 dB: AKM[203] = -1.981 dB (diff=0.01912 dB) */
0xd7, /* [096] -1.5 dB: AKM[215] = -1.482 dB (diff=0.01797 dB) */
0xe3, /* [097] -1.0 dB: AKM[227] = -1.010 dB (diff=0.01029 dB) */
0xf1, /* [098] -0.5 dB: AKM[241] = -0.490 dB (diff=0.00954 dB) */
0xff, /* [099] +0.0 dB: AKM[255] = +0.000 dB (diff=0.00000 dB) */
};
static void hr222_config_akm(struct pcxhr_mgr *mgr, unsigned short data)
{
unsigned short mask = 0x8000;
/* activate access to codec registers */
PCXHR_INPB(mgr, PCXHR_XLX_HIFREQ);
while (mask) {
PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
data & mask ? PCXHR_DATA_CODEC : 0);
mask >>= 1;
}
/* termiate access to codec registers */
PCXHR_INPB(mgr, PCXHR_XLX_RUER);
}
static int hr222_set_hw_playback_level(struct pcxhr_mgr *mgr,
int idx, int level)
{
unsigned short cmd;
if (idx > 1 ||
level < 0 ||
level >= ARRAY_SIZE(g_hr222_p_level))
return -EINVAL;
if (idx == 0)
cmd = AKM_LEFT_LEVEL_CMD;
else
cmd = AKM_RIGHT_LEVEL_CMD;
/* conversion from PmBoardCodedLevel to AKM nonlinear programming */
cmd += g_hr222_p_level[level];
hr222_config_akm(mgr, cmd);
return 0;
}
static int hr222_set_hw_capture_level(struct pcxhr_mgr *mgr,
int level_l, int level_r, int level_mic)
{
/* program all input levels at the same time */
unsigned int data;
int i;
if (!mgr->capture_chips)
return -EINVAL; /* no PCX22 */
data = ((level_mic & 0xff) << 24); /* micro is mono, but apply */
data |= ((level_mic & 0xff) << 16); /* level on both channels */
data |= ((level_r & 0xff) << 8); /* line input right channel */
data |= (level_l & 0xff); /* line input left channel */
PCXHR_INPB(mgr, PCXHR_XLX_DATA); /* activate input codec */
/* send 32 bits (4 x 8 bits) */
for (i = 0; i < 32; i++, data <<= 1) {
PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
(data & 0x80000000) ? PCXHR_DATA_CODEC : 0);
}
PCXHR_INPB(mgr, PCXHR_XLX_RUER); /* close input level codec */
return 0;
}
static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level);
int hr222_sub_init(struct pcxhr_mgr *mgr)
{
unsigned char reg;
mgr->board_has_analog = 1; /* analog always available */
mgr->xlx_cfg = PCXHR_CFG_SYNCDSP_MASK;
reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS);
if (reg & PCXHR_STAT_MIC_CAPS)
mgr->board_has_mic = 1; /* microphone available */
snd_printdd("MIC input available = %d\n", mgr->board_has_mic);
/* reset codec */
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET,
PCXHR_DSP_RESET_DSP);
msleep(5);
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET,
PCXHR_DSP_RESET_DSP |
PCXHR_DSP_RESET_MUTE |
PCXHR_DSP_RESET_CODEC);
msleep(5);
/* config AKM */
hr222_config_akm(mgr, AKM_POWER_CONTROL_CMD);
hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
hr222_config_akm(mgr, AKM_UNMUTE_CMD);
hr222_config_akm(mgr, AKM_RESET_OFF_CMD);
/* init micro boost */
hr222_micro_boost(mgr, 0);
return 0;
}
/* calc PLL register */
/* TODO : there is a very similar fct in pcxhr.c */
static int hr222_pll_freq_register(unsigned int freq,
unsigned int *pllreg,
unsigned int *realfreq)
{
unsigned int reg;
if (freq < 6900 || freq > 219000)
return -EINVAL;
reg = (28224000 * 2) / freq;
reg = (reg - 1) / 2;
if (reg < 0x100)
*pllreg = reg + 0xC00;
else if (reg < 0x200)
*pllreg = reg + 0x800;
else if (reg < 0x400)
*pllreg = reg & 0x1ff;
else if (reg < 0x800) {
*pllreg = ((reg >> 1) & 0x1ff) + 0x200;
reg &= ~1;
} else {
*pllreg = ((reg >> 2) & 0x1ff) + 0x400;
reg &= ~3;
}
if (realfreq)
*realfreq = (28224000 / (reg + 1));
return 0;
}
int hr222_sub_set_clock(struct pcxhr_mgr *mgr,
unsigned int rate,
int *changed)
{
unsigned int speed, pllreg = 0;
int err;
unsigned realfreq = rate;
switch (mgr->use_clock_type) {
case HR22_CLOCK_TYPE_INTERNAL:
err = hr222_pll_freq_register(rate, &pllreg, &realfreq);
if (err)
return err;
mgr->xlx_cfg &= ~(PCXHR_CFG_CLOCKIN_SEL_MASK |
PCXHR_CFG_CLOCK_UER1_SEL_MASK);
break;
case HR22_CLOCK_TYPE_AES_SYNC:
mgr->xlx_cfg |= PCXHR_CFG_CLOCKIN_SEL_MASK;
mgr->xlx_cfg &= ~PCXHR_CFG_CLOCK_UER1_SEL_MASK;
break;
case HR22_CLOCK_TYPE_AES_1:
if (!mgr->board_has_aes1)
return -EINVAL;
mgr->xlx_cfg |= (PCXHR_CFG_CLOCKIN_SEL_MASK |
PCXHR_CFG_CLOCK_UER1_SEL_MASK);
break;
default:
return -EINVAL;
}
hr222_config_akm(mgr, AKM_MUTE_CMD);
if (mgr->use_clock_type == HR22_CLOCK_TYPE_INTERNAL) {
PCXHR_OUTPB(mgr, PCXHR_XLX_HIFREQ, pllreg >> 8);
PCXHR_OUTPB(mgr, PCXHR_XLX_LOFREQ, pllreg & 0xff);
}
/* set clock source */
PCXHR_OUTPB(mgr, PCXHR_XLX_CFG, mgr->xlx_cfg);
/* codec speed modes */
speed = rate < 55000 ? 0 : 1;
if (mgr->codec_speed != speed) {
mgr->codec_speed = speed;
if (speed == 0)
hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
else
hr222_config_akm(mgr, AKM_CLOCK_SUP_55K_CMD);
}
mgr->sample_rate_real = realfreq;
mgr->cur_clock_type = mgr->use_clock_type;
if (changed)
*changed = 1;
hr222_config_akm(mgr, AKM_UNMUTE_CMD);
snd_printdd("set_clock to %dHz (realfreq=%d pllreg=%x)\n",
rate, realfreq, pllreg);
return 0;
}
int hr222_get_external_clock(struct pcxhr_mgr *mgr,
enum pcxhr_clock_type clock_type,
int *sample_rate)
{
int rate, calc_rate = 0;
unsigned int ticks;
unsigned char mask, reg;
if (clock_type == HR22_CLOCK_TYPE_AES_SYNC) {
mask = (PCXHR_SUER_CLOCK_PRESENT_MASK |
PCXHR_SUER_DATA_PRESENT_MASK);
reg = PCXHR_STAT_FREQ_SYNC_MASK;
} else if (clock_type == HR22_CLOCK_TYPE_AES_1 && mgr->board_has_aes1) {
mask = (PCXHR_SUER1_CLOCK_PRESENT_MASK |
PCXHR_SUER1_DATA_PRESENT_MASK);
reg = PCXHR_STAT_FREQ_UER1_MASK;
} else {
snd_printdd("get_external_clock : type %d not supported\n",
clock_type);
return -EINVAL; /* other clocks not supported */
}
if ((PCXHR_INPB(mgr, PCXHR_XLX_CSUER) & mask) != mask) {
snd_printdd("get_external_clock(%d) = 0 Hz\n", clock_type);
*sample_rate = 0;
return 0; /* no external clock locked */
}
PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* calculate freq */
/* save the measured clock frequency */
reg |= PCXHR_STAT_FREQ_SAVE_MASK;
if (mgr->last_reg_stat != reg) {
udelay(500); /* wait min 2 cycles of lowest freq (8000) */
mgr->last_reg_stat = reg;
}
PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* save */
/* get the frequency */
ticks = (unsigned int)PCXHR_INPB(mgr, PCXHR_XLX_CFG);
ticks = (ticks & 0x03) << 8;
ticks |= (unsigned int)PCXHR_INPB(mgr, PCXHR_DSP_RESET);
if (ticks != 0)
calc_rate = 28224000 / ticks;
/* rounding */
if (calc_rate > 184200)
rate = 192000;
else if (calc_rate > 152200)
rate = 176400;
else if (calc_rate > 112000)
rate = 128000;
else if (calc_rate > 92100)
rate = 96000;
else if (calc_rate > 76100)
rate = 88200;
else if (calc_rate > 56000)
rate = 64000;
else if (calc_rate > 46050)
rate = 48000;
else if (calc_rate > 38050)
rate = 44100;
else if (calc_rate > 28000)
rate = 32000;
else if (calc_rate > 23025)
rate = 24000;
else if (calc_rate > 19025)
rate = 22050;
else if (calc_rate > 14000)
rate = 16000;
else if (calc_rate > 11512)
rate = 12000;
else if (calc_rate > 9512)
rate = 11025;
else if (calc_rate > 7000)
rate = 8000;
else
rate = 0;
snd_printdd("External clock is at %d Hz (measured %d Hz)\n",
rate, calc_rate);
*sample_rate = rate;
return 0;
}
int hr222_update_analog_audio_level(struct snd_pcxhr *chip,
int is_capture, int channel)
{
snd_printdd("hr222_update_analog_audio_level(%s chan=%d)\n",
is_capture ? "capture" : "playback", channel);
if (is_capture) {
int level_l, level_r, level_mic;
/* we have to update all levels */
if (chip->analog_capture_active) {
level_l = chip->analog_capture_volume[0];
level_r = chip->analog_capture_volume[1];
} else {
level_l = HR222_LINE_CAPTURE_LEVEL_MIN;
level_r = HR222_LINE_CAPTURE_LEVEL_MIN;
}
if (chip->mic_active)
level_mic = chip->mic_volume;
else
level_mic = HR222_MICRO_CAPTURE_LEVEL_MIN;
return hr222_set_hw_capture_level(chip->mgr,
level_l, level_r, level_mic);
} else {
int vol;
if (chip->analog_playback_active[channel])
vol = chip->analog_playback_volume[channel];
else
vol = HR222_LINE_PLAYBACK_LEVEL_MIN;
return hr222_set_hw_playback_level(chip->mgr, channel, vol);
}
}
/*texts[5] = {"Line", "Digital", "Digi+SRC", "Mic", "Line+Mic"}*/
#define SOURCE_LINE 0
#define SOURCE_DIGITAL 1
#define SOURCE_DIGISRC 2
#define SOURCE_MIC 3
#define SOURCE_LINEMIC 4
int hr222_set_audio_source(struct snd_pcxhr *chip)
{
int digital = 0;
/* default analog source */
chip->mgr->xlx_cfg &= ~(PCXHR_CFG_SRC_MASK |
PCXHR_CFG_DATAIN_SEL_MASK |
PCXHR_CFG_DATA_UER1_SEL_MASK);
if (chip->audio_capture_source == SOURCE_DIGISRC) {
chip->mgr->xlx_cfg |= PCXHR_CFG_SRC_MASK;
digital = 1;
} else {
if (chip->audio_capture_source == SOURCE_DIGITAL)
digital = 1;
}
if (digital) {
chip->mgr->xlx_cfg |= PCXHR_CFG_DATAIN_SEL_MASK;
if (chip->mgr->board_has_aes1) {
/* get data from the AES1 plug */
chip->mgr->xlx_cfg |= PCXHR_CFG_DATA_UER1_SEL_MASK;
}
/* chip->mic_active = 0; */
/* chip->analog_capture_active = 0; */
} else {
int update_lvl = 0;
chip->analog_capture_active = 0;
chip->mic_active = 0;
if (chip->audio_capture_source == SOURCE_LINE ||
chip->audio_capture_source == SOURCE_LINEMIC) {
if (chip->analog_capture_active == 0)
update_lvl = 1;
chip->analog_capture_active = 1;
}
if (chip->audio_capture_source == SOURCE_MIC ||
chip->audio_capture_source == SOURCE_LINEMIC) {
if (chip->mic_active == 0)
update_lvl = 1;
chip->mic_active = 1;
}
if (update_lvl) {
/* capture: update all 3 mutes/unmutes with one call */
hr222_update_analog_audio_level(chip, 1, 0);
}
}
/* set the source infos (max 3 bits modified) */
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CFG, chip->mgr->xlx_cfg);
return 0;
}
int hr222_iec958_capture_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char *aes_bits)
{
unsigned char idx = (unsigned char)(aes_idx * 8);
unsigned char temp = 0;
unsigned char mask = chip->mgr->board_has_aes1 ?
PCXHR_SUER1_BIT_C_READ_MASK : PCXHR_SUER_BIT_C_READ_MASK;
int i;
for (i = 0; i < 8; i++) {
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx++); /* idx < 192 */
temp <<= 1;
if (PCXHR_INPB(chip->mgr, PCXHR_XLX_CSUER) & mask)
temp |= 1;
}
snd_printdd("read iec958 AES %d byte %d = 0x%x\n",
chip->chip_idx, aes_idx, temp);
*aes_bits = temp;
return 0;
}
int hr222_iec958_update_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char aes_bits)
{
int i;
unsigned char new_bits = aes_bits;
unsigned char old_bits = chip->aes_bits[aes_idx];
unsigned char idx = (unsigned char)(aes_idx * 8);
for (i = 0; i < 8; i++) {
if ((old_bits & 0x01) != (new_bits & 0x01)) {
/* idx < 192 */
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx);
/* write C and U bit */
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CSUER, new_bits&0x01 ?
PCXHR_SUER_BIT_C_WRITE_MASK : 0);
}
idx++;
old_bits >>= 1;
new_bits >>= 1;
}
chip->aes_bits[aes_idx] = aes_bits;
return 0;
}
static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level)
{
unsigned char boost_mask;
boost_mask = (unsigned char) (level << PCXHR_SELMIC_PREAMPLI_OFFSET);
if (boost_mask & (~PCXHR_SELMIC_PREAMPLI_MASK))
return; /* only values form 0 to 3 accepted */
mgr->xlx_selmic &= ~PCXHR_SELMIC_PREAMPLI_MASK;
mgr->xlx_selmic |= boost_mask;
PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
snd_printdd("hr222_micro_boost : set %x\n", boost_mask);
}
static void hr222_phantom_power(struct pcxhr_mgr *mgr, int power)
{
if (power)
mgr->xlx_selmic |= PCXHR_SELMIC_PHANTOM_ALIM;
else
mgr->xlx_selmic &= ~PCXHR_SELMIC_PHANTOM_ALIM;
PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
snd_printdd("hr222_phantom_power : set %d\n", power);
}
/* mic level */
static const DECLARE_TLV_DB_SCALE(db_scale_mic_hr222, -9850, 50, 650);
static int hr222_mic_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = HR222_MICRO_CAPTURE_LEVEL_MIN; /* -98 dB */
/* gains from 9 dB to 31.5 dB not recommended; use micboost instead */
uinfo->value.integer.max = HR222_MICRO_CAPTURE_LEVEL_MAX; /* +7 dB */
return 0;
}
static int hr222_mic_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->mic_volume;
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int hr222_mic_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
mutex_lock(&chip->mgr->mixer_mutex);
if (chip->mic_volume != ucontrol->value.integer.value[0]) {
changed = 1;
chip->mic_volume = ucontrol->value.integer.value[0];
hr222_update_analog_audio_level(chip, 1, 0);
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new hr222_control_mic_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "Mic Capture Volume",
.info = hr222_mic_vol_info,
.get = hr222_mic_vol_get,
.put = hr222_mic_vol_put,
.tlv = { .p = db_scale_mic_hr222 },
};
/* mic boost level */
static const DECLARE_TLV_DB_SCALE(db_scale_micboost_hr222, 0, 1800, 5400);
static int hr222_mic_boost_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0; /* 0 dB */
uinfo->value.integer.max = 3; /* 54 dB */
return 0;
}
static int hr222_mic_boost_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->mic_boost;
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int hr222_mic_boost_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
mutex_lock(&chip->mgr->mixer_mutex);
if (chip->mic_boost != ucontrol->value.integer.value[0]) {
changed = 1;
chip->mic_boost = ucontrol->value.integer.value[0];
hr222_micro_boost(chip->mgr, chip->mic_boost);
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new hr222_control_mic_boost = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "MicBoost Capture Volume",
.info = hr222_mic_boost_info,
.get = hr222_mic_boost_get,
.put = hr222_mic_boost_put,
.tlv = { .p = db_scale_micboost_hr222 },
};
/******************* Phantom power switch *******************/
#define hr222_phantom_power_info snd_ctl_boolean_mono_info
static int hr222_phantom_power_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->phantom_power;
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int hr222_phantom_power_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int power, changed = 0;
mutex_lock(&chip->mgr->mixer_mutex);
power = !!ucontrol->value.integer.value[0];
if (chip->phantom_power != power) {
hr222_phantom_power(chip->mgr, power);
chip->phantom_power = power;
changed = 1;
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new hr222_phantom_power_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Phantom Power Switch",
.info = hr222_phantom_power_info,
.get = hr222_phantom_power_get,
.put = hr222_phantom_power_put,
};
int hr222_add_mic_controls(struct snd_pcxhr *chip)
{
int err;
if (!chip->mgr->board_has_mic)
return 0;
/* controls */
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_level,
chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_boost,
chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_phantom_power_switch,
chip));
return err;
}