You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/lguest/x86/core.c

581 lines
22 KiB

/*
* Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
* Copyright (C) 2007, Jes Sorensen <jes@sgi.com> SGI.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/start_kernel.h>
#include <linux/string.h>
#include <linux/console.h>
#include <linux/screen_info.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/lguest.h>
#include <linux/lguest_launcher.h>
#include <asm/paravirt.h>
#include <asm/param.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/desc.h>
#include <asm/setup.h>
#include <asm/lguest.h>
#include <asm/uaccess.h>
#include <asm/i387.h>
#include "../lg.h"
static int cpu_had_pge;
static struct {
unsigned long offset;
unsigned short segment;
} lguest_entry;
/* Offset from where switcher.S was compiled to where we've copied it */
static unsigned long switcher_offset(void)
{
return SWITCHER_ADDR - (unsigned long)start_switcher_text;
}
/* This cpu's struct lguest_pages. */
static struct lguest_pages *lguest_pages(unsigned int cpu)
{
return &(((struct lguest_pages *)
(SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
}
static DEFINE_PER_CPU(struct lguest *, last_guest);
/*S:010
* We approach the Switcher.
*
* Remember that each CPU has two pages which are visible to the Guest when it
* runs on that CPU. This has to contain the state for that Guest: we copy the
* state in just before we run the Guest.
*
* Each Guest has "changed" flags which indicate what has changed in the Guest
* since it last ran. We saw this set in interrupts_and_traps.c and
* segments.c.
*/
static void copy_in_guest_info(struct lguest *lg, struct lguest_pages *pages)
{
/* Copying all this data can be quite expensive. We usually run the
* same Guest we ran last time (and that Guest hasn't run anywhere else
* meanwhile). If that's not the case, we pretend everything in the
* Guest has changed. */
if (__get_cpu_var(last_guest) != lg || lg->last_pages != pages) {
__get_cpu_var(last_guest) = lg;
lg->last_pages = pages;
lg->changed = CHANGED_ALL;
}
/* These copies are pretty cheap, so we do them unconditionally: */
/* Save the current Host top-level page directory. */
pages->state.host_cr3 = __pa(current->mm->pgd);
/* Set up the Guest's page tables to see this CPU's pages (and no
* other CPU's pages). */
map_switcher_in_guest(lg, pages);
/* Set up the two "TSS" members which tell the CPU what stack to use
* for traps which do directly into the Guest (ie. traps at privilege
* level 1). */
pages->state.guest_tss.esp1 = lg->esp1;
pages->state.guest_tss.ss1 = lg->ss1;
/* Copy direct-to-Guest trap entries. */
if (lg->changed & CHANGED_IDT)
copy_traps(lg, pages->state.guest_idt, default_idt_entries);
/* Copy all GDT entries which the Guest can change. */
if (lg->changed & CHANGED_GDT)
copy_gdt(lg, pages->state.guest_gdt);
/* If only the TLS entries have changed, copy them. */
else if (lg->changed & CHANGED_GDT_TLS)
copy_gdt_tls(lg, pages->state.guest_gdt);
/* Mark the Guest as unchanged for next time. */
lg->changed = 0;
}
/* Finally: the code to actually call into the Switcher to run the Guest. */
static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
{
/* This is a dummy value we need for GCC's sake. */
unsigned int clobber;
/* Copy the guest-specific information into this CPU's "struct
* lguest_pages". */
copy_in_guest_info(lg, pages);
/* Set the trap number to 256 (impossible value). If we fault while
* switching to the Guest (bad segment registers or bug), this will
* cause us to abort the Guest. */
lg->regs->trapnum = 256;
/* Now: we push the "eflags" register on the stack, then do an "lcall".
* This is how we change from using the kernel code segment to using
* the dedicated lguest code segment, as well as jumping into the
* Switcher.
*
* The lcall also pushes the old code segment (KERNEL_CS) onto the
* stack, then the address of this call. This stack layout happens to
* exactly match the stack layout created by an interrupt... */
asm volatile("pushf; lcall *lguest_entry"
/* This is how we tell GCC that %eax ("a") and %ebx ("b")
* are changed by this routine. The "=" means output. */
: "=a"(clobber), "=b"(clobber)
/* %eax contains the pages pointer. ("0" refers to the
* 0-th argument above, ie "a"). %ebx contains the
* physical address of the Guest's top-level page
* directory. */
: "0"(pages), "1"(__pa(lg->pgdirs[lg->pgdidx].pgdir))
/* We tell gcc that all these registers could change,
* which means we don't have to save and restore them in
* the Switcher. */
: "memory", "%edx", "%ecx", "%edi", "%esi");
}
/*:*/
/*M:002 There are hooks in the scheduler which we can register to tell when we
* get kicked off the CPU (preempt_notifier_register()). This would allow us
* to lazily disable SYSENTER which would regain some performance, and should
* also simplify copy_in_guest_info(). Note that we'd still need to restore
* things when we exit to Launcher userspace, but that's fairly easy.
*
* The hooks were designed for KVM, but we can also put them to good use. :*/
/*H:040 This is the i386-specific code to setup and run the Guest. Interrupts
* are disabled: we own the CPU. */
void lguest_arch_run_guest(struct lguest *lg)
{
/* Remember the awfully-named TS bit? If the Guest has asked to set it
* we set it now, so we can trap and pass that trap to the Guest if it
* uses the FPU. */
if (lg->ts)
lguest_set_ts();
/* SYSENTER is an optimized way of doing system calls. We can't allow
* it because it always jumps to privilege level 0. A normal Guest
* won't try it because we don't advertise it in CPUID, but a malicious
* Guest (or malicious Guest userspace program) could, so we tell the
* CPU to disable it before running the Guest. */
if (boot_cpu_has(X86_FEATURE_SEP))
wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
/* Now we actually run the Guest. It will return when something
* interesting happens, and we can examine its registers to see what it
* was doing. */
run_guest_once(lg, lguest_pages(raw_smp_processor_id()));
/* Note that the "regs" pointer contains two extra entries which are
* not really registers: a trap number which says what interrupt or
* trap made the switcher code come back, and an error code which some
* traps set. */
/* If the Guest page faulted, then the cr2 register will tell us the
* bad virtual address. We have to grab this now, because once we
* re-enable interrupts an interrupt could fault and thus overwrite
* cr2, or we could even move off to a different CPU. */
if (lg->regs->trapnum == 14)
lg->arch.last_pagefault = read_cr2();
/* Similarly, if we took a trap because the Guest used the FPU,
* we have to restore the FPU it expects to see. */
else if (lg->regs->trapnum == 7)
math_state_restore();
/* Restore SYSENTER if it's supposed to be on. */
if (boot_cpu_has(X86_FEATURE_SEP))
wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
}
/*H:130 Now we've examined the hypercall code; our Guest can make requests.
* Our Guest is usually so well behaved; it never tries to do things it isn't
* allowed to, and uses hypercalls instead. Unfortunately, Linux's paravirtual
* infrastructure isn't quite complete, because it doesn't contain replacements
* for the Intel I/O instructions. As a result, the Guest sometimes fumbles
* across one during the boot process as it probes for various things which are
* usually attached to a PC.
*
* When the Guest uses one of these instructions, we get a trap (General
* Protection Fault) and come here. We see if it's one of those troublesome
* instructions and skip over it. We return true if we did. */
static int emulate_insn(struct lguest *lg)
{
u8 insn;
unsigned int insnlen = 0, in = 0, shift = 0;
/* The eip contains the *virtual* address of the Guest's instruction:
* guest_pa just subtracts the Guest's page_offset. */
unsigned long physaddr = guest_pa(lg, lg->regs->eip);
/* This must be the Guest kernel trying to do something, not userspace!
* The bottom two bits of the CS segment register are the privilege
* level. */
if ((lg->regs->cs & 3) != GUEST_PL)
return 0;
/* Decoding x86 instructions is icky. */
insn = lgread(lg, physaddr, u8);
/* 0x66 is an "operand prefix". It means it's using the upper 16 bits
of the eax register. */
if (insn == 0x66) {
shift = 16;
/* The instruction is 1 byte so far, read the next byte. */
insnlen = 1;
insn = lgread(lg, physaddr + insnlen, u8);
}
/* We can ignore the lower bit for the moment and decode the 4 opcodes
* we need to emulate. */
switch (insn & 0xFE) {
case 0xE4: /* in <next byte>,%al */
insnlen += 2;
in = 1;
break;
case 0xEC: /* in (%dx),%al */
insnlen += 1;
in = 1;
break;
case 0xE6: /* out %al,<next byte> */
insnlen += 2;
break;
case 0xEE: /* out %al,(%dx) */
insnlen += 1;
break;
default:
/* OK, we don't know what this is, can't emulate. */
return 0;
}
/* If it was an "IN" instruction, they expect the result to be read
* into %eax, so we change %eax. We always return all-ones, which
* traditionally means "there's nothing there". */
if (in) {
/* Lower bit tells is whether it's a 16 or 32 bit access */
if (insn & 0x1)
lg->regs->eax = 0xFFFFFFFF;
else
lg->regs->eax |= (0xFFFF << shift);
}
/* Finally, we've "done" the instruction, so move past it. */
lg->regs->eip += insnlen;
/* Success! */
return 1;
}
/*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
void lguest_arch_handle_trap(struct lguest *lg)
{
switch (lg->regs->trapnum) {
case 13: /* We've intercepted a General Protection Fault. */
/* Check if this was one of those annoying IN or OUT
* instructions which we need to emulate. If so, we just go
* back into the Guest after we've done it. */
if (lg->regs->errcode == 0) {
if (emulate_insn(lg))
return;
}
break;
case 14: /* We've intercepted a Page Fault. */
/* The Guest accessed a virtual address that wasn't mapped.
* This happens a lot: we don't actually set up most of the
* page tables for the Guest at all when we start: as it runs
* it asks for more and more, and we set them up as
* required. In this case, we don't even tell the Guest that
* the fault happened.
*
* The errcode tells whether this was a read or a write, and
* whether kernel or userspace code. */
if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode))
return;
/* OK, it's really not there (or not OK): the Guest needs to
* know. We write out the cr2 value so it knows where the
* fault occurred.
*
* Note that if the Guest were really messed up, this could
* happen before it's done the LHCALL_LGUEST_INIT hypercall, so
* lg->lguest_data could be NULL */
if (lg->lguest_data &&
put_user(lg->arch.last_pagefault, &lg->lguest_data->cr2))
kill_guest(lg, "Writing cr2");
break;
case 7: /* We've intercepted a Device Not Available fault. */
/* If the Guest doesn't want to know, we already restored the
* Floating Point Unit, so we just continue without telling
* it. */
if (!lg->ts)
return;
break;
case 32 ... 255:
/* These values mean a real interrupt occurred, in which case
* the Host handler has already been run. We just do a
* friendly check if another process should now be run, then
* return to run the Guest again */
cond_resched();
return;
case LGUEST_TRAP_ENTRY:
/* Our 'struct hcall_args' maps directly over our regs: we set
* up the pointer now to indicate a hypercall is pending. */
lg->hcall = (struct hcall_args *)lg->regs;
return;
}
/* We didn't handle the trap, so it needs to go to the Guest. */
if (!deliver_trap(lg, lg->regs->trapnum))
/* If the Guest doesn't have a handler (either it hasn't
* registered any yet, or it's one of the faults we don't let
* it handle), it dies with a cryptic error message. */
kill_guest(lg, "unhandled trap %li at %#lx (%#lx)",
lg->regs->trapnum, lg->regs->eip,
lg->regs->trapnum == 14 ? lg->arch.last_pagefault
: lg->regs->errcode);
}
/* Now we can look at each of the routines this calls, in increasing order of
* complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
* deliver_trap() and demand_page(). After all those, we'll be ready to
* examine the Switcher, and our philosophical understanding of the Host/Guest
* duality will be complete. :*/
static void adjust_pge(void *on)
{
if (on)
write_cr4(read_cr4() | X86_CR4_PGE);
else
write_cr4(read_cr4() & ~X86_CR4_PGE);
}
/*H:020 Now the Switcher is mapped and every thing else is ready, we need to do
* some more i386-specific initialization. */
void __init lguest_arch_host_init(void)
{
int i;
/* Most of the i386/switcher.S doesn't care that it's been moved; on
* Intel, jumps are relative, and it doesn't access any references to
* external code or data.
*
* The only exception is the interrupt handlers in switcher.S: their
* addresses are placed in a table (default_idt_entries), so we need to
* update the table with the new addresses. switcher_offset() is a
* convenience function which returns the distance between the builtin
* switcher code and the high-mapped copy we just made. */
for (i = 0; i < IDT_ENTRIES; i++)
default_idt_entries[i] += switcher_offset();
/*
* Set up the Switcher's per-cpu areas.
*
* Each CPU gets two pages of its own within the high-mapped region
* (aka. "struct lguest_pages"). Much of this can be initialized now,
* but some depends on what Guest we are running (which is set up in
* copy_in_guest_info()).
*/
for_each_possible_cpu(i) {
/* lguest_pages() returns this CPU's two pages. */
struct lguest_pages *pages = lguest_pages(i);
/* This is a convenience pointer to make the code fit one
* statement to a line. */
struct lguest_ro_state *state = &pages->state;
/* The Global Descriptor Table: the Host has a different one
* for each CPU. We keep a descriptor for the GDT which says
* where it is and how big it is (the size is actually the last
* byte, not the size, hence the "-1"). */
state->host_gdt_desc.size = GDT_SIZE-1;
state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
/* All CPUs on the Host use the same Interrupt Descriptor
* Table, so we just use store_idt(), which gets this CPU's IDT
* descriptor. */
store_idt(&state->host_idt_desc);
/* The descriptors for the Guest's GDT and IDT can be filled
* out now, too. We copy the GDT & IDT into ->guest_gdt and
* ->guest_idt before actually running the Guest. */
state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
state->guest_idt_desc.address = (long)&state->guest_idt;
state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
state->guest_gdt_desc.address = (long)&state->guest_gdt;
/* We know where we want the stack to be when the Guest enters
* the switcher: in pages->regs. The stack grows upwards, so
* we start it at the end of that structure. */
state->guest_tss.esp0 = (long)(&pages->regs + 1);
/* And this is the GDT entry to use for the stack: we keep a
* couple of special LGUEST entries. */
state->guest_tss.ss0 = LGUEST_DS;
/* x86 can have a finegrained bitmap which indicates what I/O
* ports the process can use. We set it to the end of our
* structure, meaning "none". */
state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
/* Some GDT entries are the same across all Guests, so we can
* set them up now. */
setup_default_gdt_entries(state);
/* Most IDT entries are the same for all Guests, too.*/
setup_default_idt_entries(state, default_idt_entries);
/* The Host needs to be able to use the LGUEST segments on this
* CPU, too, so put them in the Host GDT. */
get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
}
/* In the Switcher, we want the %cs segment register to use the
* LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
* it will be undisturbed when we switch. To change %cs and jump we
* need this structure to feed to Intel's "lcall" instruction. */
lguest_entry.offset = (long)switch_to_guest + switcher_offset();
lguest_entry.segment = LGUEST_CS;
/* Finally, we need to turn off "Page Global Enable". PGE is an
* optimization where page table entries are specially marked to show
* they never change. The Host kernel marks all the kernel pages this
* way because it's always present, even when userspace is running.
*
* Lguest breaks this: unbeknownst to the rest of the Host kernel, we
* switch to the Guest kernel. If you don't disable this on all CPUs,
* you'll get really weird bugs that you'll chase for two days.
*
* I used to turn PGE off every time we switched to the Guest and back
* on when we return, but that slowed the Switcher down noticibly. */
/* We don't need the complexity of CPUs coming and going while we're
* doing this. */
lock_cpu_hotplug();
if (cpu_has_pge) { /* We have a broader idea of "global". */
/* Remember that this was originally set (for cleanup). */
cpu_had_pge = 1;
/* adjust_pge is a helper function which sets or unsets the PGE
* bit on its CPU, depending on the argument (0 == unset). */
on_each_cpu(adjust_pge, (void *)0, 0, 1);
/* Turn off the feature in the global feature set. */
clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
}
unlock_cpu_hotplug();
};
/*:*/
void __exit lguest_arch_host_fini(void)
{
/* If we had PGE before we started, turn it back on now. */
lock_cpu_hotplug();
if (cpu_had_pge) {
set_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
/* adjust_pge's argument "1" means set PGE. */
on_each_cpu(adjust_pge, (void *)1, 0, 1);
}
unlock_cpu_hotplug();
}
/*H:122 The i386-specific hypercalls simply farm out to the right functions. */
int lguest_arch_do_hcall(struct lguest *lg, struct hcall_args *args)
{
switch (args->arg0) {
case LHCALL_LOAD_GDT:
load_guest_gdt(lg, args->arg1, args->arg2);
break;
case LHCALL_LOAD_IDT_ENTRY:
load_guest_idt_entry(lg, args->arg1, args->arg2, args->arg3);
break;
case LHCALL_LOAD_TLS:
guest_load_tls(lg, args->arg1);
break;
default:
/* Bad Guest. Bad! */
return -EIO;
}
return 0;
}
/*H:126 i386-specific hypercall initialization: */
int lguest_arch_init_hypercalls(struct lguest *lg)
{
u32 tsc_speed;
/* The pointer to the Guest's "struct lguest_data" is the only
* argument. We check that address now. */
if (!lguest_address_ok(lg, lg->hcall->arg1, sizeof(*lg->lguest_data)))
return -EFAULT;
/* Having checked it, we simply set lg->lguest_data to point straight
* into the Launcher's memory at the right place and then use
* copy_to_user/from_user from now on, instead of lgread/write. I put
* this in to show that I'm not immune to writing stupid
* optimizations. */
lg->lguest_data = lg->mem_base + lg->hcall->arg1;
/* We insist that the Time Stamp Counter exist and doesn't change with
* cpu frequency. Some devious chip manufacturers decided that TSC
* changes could be handled in software. I decided that time going
* backwards might be good for benchmarks, but it's bad for users.
*
* We also insist that the TSC be stable: the kernel detects unreliable
* TSCs for its own purposes, and we use that here. */
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
tsc_speed = tsc_khz;
else
tsc_speed = 0;
if (put_user(tsc_speed, &lg->lguest_data->tsc_khz))
return -EFAULT;
/* The interrupt code might not like the system call vector. */
if (!check_syscall_vector(lg))
kill_guest(lg, "bad syscall vector");
return 0;
}
/*L:030 lguest_arch_setup_regs()
*
* Most of the Guest's registers are left alone: we used get_zeroed_page() to
* allocate the structure, so they will be 0. */
void lguest_arch_setup_regs(struct lguest *lg, unsigned long start)
{
struct lguest_regs *regs = lg->regs;
/* There are four "segment" registers which the Guest needs to boot:
* The "code segment" register (cs) refers to the kernel code segment
* __KERNEL_CS, and the "data", "extra" and "stack" segment registers
* refer to the kernel data segment __KERNEL_DS.
*
* The privilege level is packed into the lower bits. The Guest runs
* at privilege level 1 (GUEST_PL).*/
regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
regs->cs = __KERNEL_CS|GUEST_PL;
/* The "eflags" register contains miscellaneous flags. Bit 1 (0x002)
* is supposed to always be "1". Bit 9 (0x200) controls whether
* interrupts are enabled. We always leave interrupts enabled while
* running the Guest. */
regs->eflags = X86_EFLAGS_IF | 0x2;
/* The "Extended Instruction Pointer" register says where the Guest is
* running. */
regs->eip = start;
/* %esi points to our boot information, at physical address 0, so don't
* touch it. */
/* There are a couple of GDT entries the Guest expects when first
* booting. */
setup_guest_gdt(lg);
}