You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
559 lines
14 KiB
559 lines
14 KiB
/*
|
|
* acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
|
|
*
|
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
|
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/io.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/acpi.h>
|
|
#include <acpi/processor.h>
|
|
|
|
#include "speedstep-est-common.h"
|
|
|
|
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
|
|
|
|
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
|
|
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
|
|
struct cpufreq_acpi_io {
|
|
struct acpi_processor_performance acpi_data;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int resume;
|
|
};
|
|
|
|
static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver;
|
|
|
|
static unsigned int acpi_pstate_strict;
|
|
|
|
static int
|
|
acpi_processor_write_port(
|
|
u16 port,
|
|
u8 bit_width,
|
|
u32 value)
|
|
{
|
|
if (bit_width <= 8) {
|
|
outb(value, port);
|
|
} else if (bit_width <= 16) {
|
|
outw(value, port);
|
|
} else if (bit_width <= 32) {
|
|
outl(value, port);
|
|
} else {
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
acpi_processor_read_port(
|
|
u16 port,
|
|
u8 bit_width,
|
|
u32 *ret)
|
|
{
|
|
*ret = 0;
|
|
if (bit_width <= 8) {
|
|
*ret = inb(port);
|
|
} else if (bit_width <= 16) {
|
|
*ret = inw(port);
|
|
} else if (bit_width <= 32) {
|
|
*ret = inl(port);
|
|
} else {
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
acpi_processor_set_performance (
|
|
struct cpufreq_acpi_io *data,
|
|
unsigned int cpu,
|
|
int state)
|
|
{
|
|
u16 port = 0;
|
|
u8 bit_width = 0;
|
|
int ret = 0;
|
|
u32 value = 0;
|
|
int i = 0;
|
|
struct cpufreq_freqs cpufreq_freqs;
|
|
cpumask_t saved_mask;
|
|
int retval;
|
|
|
|
dprintk("acpi_processor_set_performance\n");
|
|
|
|
/*
|
|
* TBD: Use something other than set_cpus_allowed.
|
|
* As set_cpus_allowed is a bit racy,
|
|
* with any other set_cpus_allowed for this process.
|
|
*/
|
|
saved_mask = current->cpus_allowed;
|
|
set_cpus_allowed(current, cpumask_of_cpu(cpu));
|
|
if (smp_processor_id() != cpu) {
|
|
return (-EAGAIN);
|
|
}
|
|
|
|
if (state == data->acpi_data.state) {
|
|
if (unlikely(data->resume)) {
|
|
dprintk("Called after resume, resetting to P%d\n", state);
|
|
data->resume = 0;
|
|
} else {
|
|
dprintk("Already at target state (P%d)\n", state);
|
|
retval = 0;
|
|
goto migrate_end;
|
|
}
|
|
}
|
|
|
|
dprintk("Transitioning from P%d to P%d\n",
|
|
data->acpi_data.state, state);
|
|
|
|
/* cpufreq frequency struct */
|
|
cpufreq_freqs.cpu = cpu;
|
|
cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
|
|
cpufreq_freqs.new = data->freq_table[state].frequency;
|
|
|
|
/* notify cpufreq */
|
|
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
|
|
|
|
/*
|
|
* First we write the target state's 'control' value to the
|
|
* control_register.
|
|
*/
|
|
|
|
port = data->acpi_data.control_register.address;
|
|
bit_width = data->acpi_data.control_register.bit_width;
|
|
value = (u32) data->acpi_data.states[state].control;
|
|
|
|
dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
|
|
|
|
ret = acpi_processor_write_port(port, bit_width, value);
|
|
if (ret) {
|
|
dprintk("Invalid port width 0x%04x\n", bit_width);
|
|
retval = ret;
|
|
goto migrate_end;
|
|
}
|
|
|
|
/*
|
|
* Assume the write went through when acpi_pstate_strict is not used.
|
|
* As read status_register is an expensive operation and there
|
|
* are no specific error cases where an IO port write will fail.
|
|
*/
|
|
if (acpi_pstate_strict) {
|
|
/* Then we read the 'status_register' and compare the value
|
|
* with the target state's 'status' to make sure the
|
|
* transition was successful.
|
|
* Note that we'll poll for up to 1ms (100 cycles of 10us)
|
|
* before giving up.
|
|
*/
|
|
|
|
port = data->acpi_data.status_register.address;
|
|
bit_width = data->acpi_data.status_register.bit_width;
|
|
|
|
dprintk("Looking for 0x%08x from port 0x%04x\n",
|
|
(u32) data->acpi_data.states[state].status, port);
|
|
|
|
for (i=0; i<100; i++) {
|
|
ret = acpi_processor_read_port(port, bit_width, &value);
|
|
if (ret) {
|
|
dprintk("Invalid port width 0x%04x\n", bit_width);
|
|
retval = ret;
|
|
goto migrate_end;
|
|
}
|
|
if (value == (u32) data->acpi_data.states[state].status)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
} else {
|
|
i = 0;
|
|
value = (u32) data->acpi_data.states[state].status;
|
|
}
|
|
|
|
/* notify cpufreq */
|
|
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
|
|
|
|
if (unlikely(value != (u32) data->acpi_data.states[state].status)) {
|
|
unsigned int tmp = cpufreq_freqs.new;
|
|
cpufreq_freqs.new = cpufreq_freqs.old;
|
|
cpufreq_freqs.old = tmp;
|
|
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
|
|
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
|
|
printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
|
|
retval = -ENODEV;
|
|
goto migrate_end;
|
|
}
|
|
|
|
dprintk("Transition successful after %d microseconds\n", i * 10);
|
|
|
|
data->acpi_data.state = state;
|
|
|
|
retval = 0;
|
|
migrate_end:
|
|
set_cpus_allowed(current, saved_mask);
|
|
return (retval);
|
|
}
|
|
|
|
|
|
static int
|
|
acpi_cpufreq_target (
|
|
struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
{
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
unsigned int next_state = 0;
|
|
unsigned int result = 0;
|
|
|
|
dprintk("acpi_cpufreq_setpolicy\n");
|
|
|
|
result = cpufreq_frequency_table_target(policy,
|
|
data->freq_table,
|
|
target_freq,
|
|
relation,
|
|
&next_state);
|
|
if (result)
|
|
return (result);
|
|
|
|
result = acpi_processor_set_performance (data, policy->cpu, next_state);
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
static int
|
|
acpi_cpufreq_verify (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int result = 0;
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
|
|
dprintk("acpi_cpufreq_verify\n");
|
|
|
|
result = cpufreq_frequency_table_verify(policy,
|
|
data->freq_table);
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
static unsigned long
|
|
acpi_cpufreq_guess_freq (
|
|
struct cpufreq_acpi_io *data,
|
|
unsigned int cpu)
|
|
{
|
|
if (cpu_khz) {
|
|
/* search the closest match to cpu_khz */
|
|
unsigned int i;
|
|
unsigned long freq;
|
|
unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000;
|
|
|
|
for (i=0; i < (data->acpi_data.state_count - 1); i++) {
|
|
freq = freqn;
|
|
freqn = data->acpi_data.states[i+1].core_frequency * 1000;
|
|
if ((2 * cpu_khz) > (freqn + freq)) {
|
|
data->acpi_data.state = i;
|
|
return (freq);
|
|
}
|
|
}
|
|
data->acpi_data.state = data->acpi_data.state_count - 1;
|
|
return (freqn);
|
|
} else
|
|
/* assume CPU is at P0... */
|
|
data->acpi_data.state = 0;
|
|
return data->acpi_data.states[0].core_frequency * 1000;
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities
|
|
* of this driver
|
|
* @perf: processor-specific acpi_io_data struct
|
|
* @cpu: CPU being initialized
|
|
*
|
|
* To avoid issues with legacy OSes, some BIOSes require to be informed of
|
|
* the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
|
|
* accordingly, for Enhanced Speedstep. Actual call to _PDC is done in
|
|
* driver/acpi/processor.c
|
|
*/
|
|
static void
|
|
acpi_processor_cpu_init_pdc_est(
|
|
struct acpi_processor_performance *perf,
|
|
unsigned int cpu,
|
|
struct acpi_object_list *obj_list
|
|
)
|
|
{
|
|
union acpi_object *obj;
|
|
u32 *buf;
|
|
struct cpuinfo_x86 *c = cpu_data + cpu;
|
|
dprintk("acpi_processor_cpu_init_pdc_est\n");
|
|
|
|
if (!cpu_has(c, X86_FEATURE_EST))
|
|
return;
|
|
|
|
/* Initialize pdc. It will be used later. */
|
|
if (!obj_list)
|
|
return;
|
|
|
|
if (!(obj_list->count && obj_list->pointer))
|
|
return;
|
|
|
|
obj = obj_list->pointer;
|
|
if ((obj->buffer.length == 12) && obj->buffer.pointer) {
|
|
buf = (u32 *)obj->buffer.pointer;
|
|
buf[0] = ACPI_PDC_REVISION_ID;
|
|
buf[1] = 1;
|
|
buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;
|
|
perf->pdc = obj_list;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/* CPU specific PDC initialization */
|
|
static void
|
|
acpi_processor_cpu_init_pdc(
|
|
struct acpi_processor_performance *perf,
|
|
unsigned int cpu,
|
|
struct acpi_object_list *obj_list
|
|
)
|
|
{
|
|
struct cpuinfo_x86 *c = cpu_data + cpu;
|
|
dprintk("acpi_processor_cpu_init_pdc\n");
|
|
perf->pdc = NULL;
|
|
if (cpu_has(c, X86_FEATURE_EST))
|
|
acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list);
|
|
return;
|
|
}
|
|
|
|
|
|
static int
|
|
acpi_cpufreq_cpu_init (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int i;
|
|
unsigned int cpu = policy->cpu;
|
|
struct cpufreq_acpi_io *data;
|
|
unsigned int result = 0;
|
|
|
|
union acpi_object arg0 = {ACPI_TYPE_BUFFER};
|
|
u32 arg0_buf[3];
|
|
struct acpi_object_list arg_list = {1, &arg0};
|
|
|
|
dprintk("acpi_cpufreq_cpu_init\n");
|
|
/* setup arg_list for _PDC settings */
|
|
arg0.buffer.length = 12;
|
|
arg0.buffer.pointer = (u8 *) arg0_buf;
|
|
|
|
data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
|
|
if (!data)
|
|
return (-ENOMEM);
|
|
memset(data, 0, sizeof(struct cpufreq_acpi_io));
|
|
|
|
acpi_io_data[cpu] = data;
|
|
|
|
acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list);
|
|
result = acpi_processor_register_performance(&data->acpi_data, cpu);
|
|
data->acpi_data.pdc = NULL;
|
|
|
|
if (result)
|
|
goto err_free;
|
|
|
|
if (is_const_loops_cpu(cpu)) {
|
|
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
|
|
}
|
|
|
|
/* capability check */
|
|
if (data->acpi_data.state_count <= 1) {
|
|
dprintk("No P-States\n");
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
|
|
(data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
|
|
dprintk("Unsupported address space [%d, %d]\n",
|
|
(u32) (data->acpi_data.control_register.space_id),
|
|
(u32) (data->acpi_data.status_register.space_id));
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
/* alloc freq_table */
|
|
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL);
|
|
if (!data->freq_table) {
|
|
result = -ENOMEM;
|
|
goto err_unreg;
|
|
}
|
|
|
|
/* detect transition latency */
|
|
policy->cpuinfo.transition_latency = 0;
|
|
for (i=0; i<data->acpi_data.state_count; i++) {
|
|
if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
|
|
policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000;
|
|
}
|
|
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
|
|
|
|
/* The current speed is unknown and not detectable by ACPI... */
|
|
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
|
|
|
|
/* table init */
|
|
for (i=0; i<=data->acpi_data.state_count; i++)
|
|
{
|
|
data->freq_table[i].index = i;
|
|
if (i<data->acpi_data.state_count)
|
|
data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
|
|
else
|
|
data->freq_table[i].frequency = CPUFREQ_TABLE_END;
|
|
}
|
|
|
|
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
|
|
if (result) {
|
|
goto err_freqfree;
|
|
}
|
|
|
|
/* notify BIOS that we exist */
|
|
acpi_processor_notify_smm(THIS_MODULE);
|
|
|
|
printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
|
|
cpu);
|
|
for (i = 0; i < data->acpi_data.state_count; i++)
|
|
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
|
|
(i == data->acpi_data.state?'*':' '), i,
|
|
(u32) data->acpi_data.states[i].core_frequency,
|
|
(u32) data->acpi_data.states[i].power,
|
|
(u32) data->acpi_data.states[i].transition_latency);
|
|
|
|
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
|
|
|
|
/*
|
|
* the first call to ->target() should result in us actually
|
|
* writing something to the appropriate registers.
|
|
*/
|
|
data->resume = 1;
|
|
|
|
return (result);
|
|
|
|
err_freqfree:
|
|
kfree(data->freq_table);
|
|
err_unreg:
|
|
acpi_processor_unregister_performance(&data->acpi_data, cpu);
|
|
err_free:
|
|
kfree(data);
|
|
acpi_io_data[cpu] = NULL;
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
static int
|
|
acpi_cpufreq_cpu_exit (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
|
|
|
|
dprintk("acpi_cpufreq_cpu_exit\n");
|
|
|
|
if (data) {
|
|
cpufreq_frequency_table_put_attr(policy->cpu);
|
|
acpi_io_data[policy->cpu] = NULL;
|
|
acpi_processor_unregister_performance(&data->acpi_data, policy->cpu);
|
|
kfree(data);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_cpufreq_resume (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
|
|
|
|
dprintk("acpi_cpufreq_resume\n");
|
|
|
|
data->resume = 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static struct freq_attr* acpi_cpufreq_attr[] = {
|
|
&cpufreq_freq_attr_scaling_available_freqs,
|
|
NULL,
|
|
};
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver = {
|
|
.verify = acpi_cpufreq_verify,
|
|
.target = acpi_cpufreq_target,
|
|
.init = acpi_cpufreq_cpu_init,
|
|
.exit = acpi_cpufreq_cpu_exit,
|
|
.resume = acpi_cpufreq_resume,
|
|
.name = "acpi-cpufreq",
|
|
.owner = THIS_MODULE,
|
|
.attr = acpi_cpufreq_attr,
|
|
};
|
|
|
|
|
|
static int __init
|
|
acpi_cpufreq_init (void)
|
|
{
|
|
int result = 0;
|
|
|
|
dprintk("acpi_cpufreq_init\n");
|
|
|
|
result = cpufreq_register_driver(&acpi_cpufreq_driver);
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
static void __exit
|
|
acpi_cpufreq_exit (void)
|
|
{
|
|
dprintk("acpi_cpufreq_exit\n");
|
|
|
|
cpufreq_unregister_driver(&acpi_cpufreq_driver);
|
|
|
|
return;
|
|
}
|
|
|
|
module_param(acpi_pstate_strict, uint, 0644);
|
|
MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
|
|
|
|
late_initcall(acpi_cpufreq_init);
|
|
module_exit(acpi_cpufreq_exit);
|
|
|
|
MODULE_ALIAS("acpi");
|
|
|