You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/arch/powerpc/sysdev/qe_lib/qe_ic.c

513 lines
12 KiB

/*
* arch/powerpc/sysdev/qe_lib/qe_ic.c
*
* Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
*
* Author: Li Yang <leoli@freescale.com>
* Based on code from Shlomi Gridish <gridish@freescale.com>
*
* QUICC ENGINE Interrupt Controller
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/stddef.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/sysdev.h>
#include <linux/device.h>
#include <linux/bootmem.h>
#include <linux/spinlock.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/qe_ic.h>
#include "qe_ic.h"
static DEFINE_SPINLOCK(qe_ic_lock);
static struct qe_ic_info qe_ic_info[] = {
[1] = {
.mask = 0x00008000,
.mask_reg = QEIC_CIMR,
.pri_code = 0,
.pri_reg = QEIC_CIPWCC,
},
[2] = {
.mask = 0x00004000,
.mask_reg = QEIC_CIMR,
.pri_code = 1,
.pri_reg = QEIC_CIPWCC,
},
[3] = {
.mask = 0x00002000,
.mask_reg = QEIC_CIMR,
.pri_code = 2,
.pri_reg = QEIC_CIPWCC,
},
[10] = {
.mask = 0x00000040,
.mask_reg = QEIC_CIMR,
.pri_code = 1,
.pri_reg = QEIC_CIPZCC,
},
[11] = {
.mask = 0x00000020,
.mask_reg = QEIC_CIMR,
.pri_code = 2,
.pri_reg = QEIC_CIPZCC,
},
[12] = {
.mask = 0x00000010,
.mask_reg = QEIC_CIMR,
.pri_code = 3,
.pri_reg = QEIC_CIPZCC,
},
[13] = {
.mask = 0x00000008,
.mask_reg = QEIC_CIMR,
.pri_code = 4,
.pri_reg = QEIC_CIPZCC,
},
[14] = {
.mask = 0x00000004,
.mask_reg = QEIC_CIMR,
.pri_code = 5,
.pri_reg = QEIC_CIPZCC,
},
[15] = {
.mask = 0x00000002,
.mask_reg = QEIC_CIMR,
.pri_code = 6,
.pri_reg = QEIC_CIPZCC,
},
[20] = {
.mask = 0x10000000,
.mask_reg = QEIC_CRIMR,
.pri_code = 3,
.pri_reg = QEIC_CIPRTA,
},
[25] = {
.mask = 0x00800000,
.mask_reg = QEIC_CRIMR,
.pri_code = 0,
.pri_reg = QEIC_CIPRTB,
},
[26] = {
.mask = 0x00400000,
.mask_reg = QEIC_CRIMR,
.pri_code = 1,
.pri_reg = QEIC_CIPRTB,
},
[27] = {
.mask = 0x00200000,
.mask_reg = QEIC_CRIMR,
.pri_code = 2,
.pri_reg = QEIC_CIPRTB,
},
[28] = {
.mask = 0x00100000,
.mask_reg = QEIC_CRIMR,
.pri_code = 3,
.pri_reg = QEIC_CIPRTB,
},
[32] = {
.mask = 0x80000000,
.mask_reg = QEIC_CIMR,
.pri_code = 0,
.pri_reg = QEIC_CIPXCC,
},
[33] = {
.mask = 0x40000000,
.mask_reg = QEIC_CIMR,
.pri_code = 1,
.pri_reg = QEIC_CIPXCC,
},
[34] = {
.mask = 0x20000000,
.mask_reg = QEIC_CIMR,
.pri_code = 2,
.pri_reg = QEIC_CIPXCC,
},
[35] = {
.mask = 0x10000000,
.mask_reg = QEIC_CIMR,
.pri_code = 3,
.pri_reg = QEIC_CIPXCC,
},
[36] = {
.mask = 0x08000000,
.mask_reg = QEIC_CIMR,
.pri_code = 4,
.pri_reg = QEIC_CIPXCC,
},
[40] = {
.mask = 0x00800000,
.mask_reg = QEIC_CIMR,
.pri_code = 0,
.pri_reg = QEIC_CIPYCC,
},
[41] = {
.mask = 0x00400000,
.mask_reg = QEIC_CIMR,
.pri_code = 1,
.pri_reg = QEIC_CIPYCC,
},
[42] = {
.mask = 0x00200000,
.mask_reg = QEIC_CIMR,
.pri_code = 2,
.pri_reg = QEIC_CIPYCC,
},
[43] = {
.mask = 0x00100000,
.mask_reg = QEIC_CIMR,
.pri_code = 3,
.pri_reg = QEIC_CIPYCC,
},
};
static inline u32 qe_ic_read(volatile __be32 __iomem * base, unsigned int reg)
{
return in_be32(base + (reg >> 2));
}
static inline void qe_ic_write(volatile __be32 __iomem * base, unsigned int reg,
u32 value)
{
out_be32(base + (reg >> 2), value);
}
static inline struct qe_ic *qe_ic_from_irq(unsigned int virq)
{
return irq_desc[virq].chip_data;
}
#define virq_to_hw(virq) ((unsigned int)irq_map[virq].hwirq)
static void qe_ic_unmask_irq(unsigned int virq)
{
struct qe_ic *qe_ic = qe_ic_from_irq(virq);
unsigned int src = virq_to_hw(virq);
unsigned long flags;
u32 temp;
spin_lock_irqsave(&qe_ic_lock, flags);
temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
temp | qe_ic_info[src].mask);
spin_unlock_irqrestore(&qe_ic_lock, flags);
}
static void qe_ic_mask_irq(unsigned int virq)
{
struct qe_ic *qe_ic = qe_ic_from_irq(virq);
unsigned int src = virq_to_hw(virq);
unsigned long flags;
u32 temp;
spin_lock_irqsave(&qe_ic_lock, flags);
temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
temp & ~qe_ic_info[src].mask);
/* Flush the above write before enabling interrupts; otherwise,
* spurious interrupts will sometimes happen. To be 100% sure
* that the write has reached the device before interrupts are
* enabled, the mask register would have to be read back; however,
* this is not required for correctness, only to avoid wasting
* time on a large number of spurious interrupts. In testing,
* a sync reduced the observed spurious interrupts to zero.
*/
mb();
spin_unlock_irqrestore(&qe_ic_lock, flags);
}
static struct irq_chip qe_ic_irq_chip = {
.typename = " QEIC ",
.unmask = qe_ic_unmask_irq,
.mask = qe_ic_mask_irq,
.mask_ack = qe_ic_mask_irq,
};
static int qe_ic_host_match(struct irq_host *h, struct device_node *node)
{
/* Exact match, unless qe_ic node is NULL */
return h->of_node == NULL || h->of_node == node;
}
static int qe_ic_host_map(struct irq_host *h, unsigned int virq,
irq_hw_number_t hw)
{
struct qe_ic *qe_ic = h->host_data;
struct irq_chip *chip;
if (qe_ic_info[hw].mask == 0) {
printk(KERN_ERR "Can't map reserved IRQ \n");
return -EINVAL;
}
/* Default chip */
chip = &qe_ic->hc_irq;
set_irq_chip_data(virq, qe_ic);
get_irq_desc(virq)->status |= IRQ_LEVEL;
set_irq_chip_and_handler(virq, chip, handle_level_irq);
return 0;
}
static int qe_ic_host_xlate(struct irq_host *h, struct device_node *ct,
u32 * intspec, unsigned int intsize,
irq_hw_number_t * out_hwirq,
unsigned int *out_flags)
{
*out_hwirq = intspec[0];
if (intsize > 1)
*out_flags = intspec[1];
else
*out_flags = IRQ_TYPE_NONE;
return 0;
}
static struct irq_host_ops qe_ic_host_ops = {
.match = qe_ic_host_match,
.map = qe_ic_host_map,
.xlate = qe_ic_host_xlate,
};
/* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
unsigned int qe_ic_get_low_irq(struct qe_ic *qe_ic)
{
int irq;
BUG_ON(qe_ic == NULL);
/* get the interrupt source vector. */
irq = qe_ic_read(qe_ic->regs, QEIC_CIVEC) >> 26;
if (irq == 0)
return NO_IRQ;
return irq_linear_revmap(qe_ic->irqhost, irq);
}
/* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
unsigned int qe_ic_get_high_irq(struct qe_ic *qe_ic)
{
int irq;
BUG_ON(qe_ic == NULL);
/* get the interrupt source vector. */
irq = qe_ic_read(qe_ic->regs, QEIC_CHIVEC) >> 26;
if (irq == 0)
return NO_IRQ;
return irq_linear_revmap(qe_ic->irqhost, irq);
}
void __init qe_ic_init(struct device_node *node, unsigned int flags,
void (*low_handler)(unsigned int irq, struct irq_desc *desc),
void (*high_handler)(unsigned int irq, struct irq_desc *desc))
{
struct qe_ic *qe_ic;
struct resource res;
u32 temp = 0, ret, high_active = 0;
qe_ic = alloc_bootmem(sizeof(struct qe_ic));
if (qe_ic == NULL)
return;
memset(qe_ic, 0, sizeof(struct qe_ic));
qe_ic->irqhost = irq_alloc_host(of_node_get(node), IRQ_HOST_MAP_LINEAR,
NR_QE_IC_INTS, &qe_ic_host_ops, 0);
if (qe_ic->irqhost == NULL) {
of_node_put(node);
return;
}
ret = of_address_to_resource(node, 0, &res);
if (ret)
return;
qe_ic->regs = ioremap(res.start, res.end - res.start + 1);
qe_ic->irqhost->host_data = qe_ic;
qe_ic->hc_irq = qe_ic_irq_chip;
qe_ic->virq_high = irq_of_parse_and_map(node, 0);
qe_ic->virq_low = irq_of_parse_and_map(node, 1);
if (qe_ic->virq_low == NO_IRQ) {
printk(KERN_ERR "Failed to map QE_IC low IRQ\n");
return;
}
/* default priority scheme is grouped. If spread mode is */
/* required, configure cicr accordingly. */
if (flags & QE_IC_SPREADMODE_GRP_W)
temp |= CICR_GWCC;
if (flags & QE_IC_SPREADMODE_GRP_X)
temp |= CICR_GXCC;
if (flags & QE_IC_SPREADMODE_GRP_Y)
temp |= CICR_GYCC;
if (flags & QE_IC_SPREADMODE_GRP_Z)
temp |= CICR_GZCC;
if (flags & QE_IC_SPREADMODE_GRP_RISCA)
temp |= CICR_GRTA;
if (flags & QE_IC_SPREADMODE_GRP_RISCB)
temp |= CICR_GRTB;
/* choose destination signal for highest priority interrupt */
if (flags & QE_IC_HIGH_SIGNAL) {
temp |= (SIGNAL_HIGH << CICR_HPIT_SHIFT);
high_active = 1;
}
qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
set_irq_data(qe_ic->virq_low, qe_ic);
set_irq_chained_handler(qe_ic->virq_low, low_handler);
if (qe_ic->virq_high != NO_IRQ &&
qe_ic->virq_high != qe_ic->virq_low) {
set_irq_data(qe_ic->virq_high, qe_ic);
set_irq_chained_handler(qe_ic->virq_high, high_handler);
}
}
void qe_ic_set_highest_priority(unsigned int virq, int high)
{
struct qe_ic *qe_ic = qe_ic_from_irq(virq);
unsigned int src = virq_to_hw(virq);
u32 temp = 0;
temp = qe_ic_read(qe_ic->regs, QEIC_CICR);
temp &= ~CICR_HP_MASK;
temp |= src << CICR_HP_SHIFT;
temp &= ~CICR_HPIT_MASK;
temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << CICR_HPIT_SHIFT;
qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
}
/* Set Priority level within its group, from 1 to 8 */
int qe_ic_set_priority(unsigned int virq, unsigned int priority)
{
struct qe_ic *qe_ic = qe_ic_from_irq(virq);
unsigned int src = virq_to_hw(virq);
u32 temp;
if (priority > 8 || priority == 0)
return -EINVAL;
if (src > 127)
return -EINVAL;
if (qe_ic_info[src].pri_reg == 0)
return -EINVAL;
temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].pri_reg);
if (priority < 4) {
temp &= ~(0x7 << (32 - priority * 3));
temp |= qe_ic_info[src].pri_code << (32 - priority * 3);
} else {
temp &= ~(0x7 << (24 - priority * 3));
temp |= qe_ic_info[src].pri_code << (24 - priority * 3);
}
qe_ic_write(qe_ic->regs, qe_ic_info[src].pri_reg, temp);
return 0;
}
/* Set a QE priority to use high irq, only priority 1~2 can use high irq */
int qe_ic_set_high_priority(unsigned int virq, unsigned int priority, int high)
{
struct qe_ic *qe_ic = qe_ic_from_irq(virq);
unsigned int src = virq_to_hw(virq);
u32 temp, control_reg = QEIC_CICNR, shift = 0;
if (priority > 2 || priority == 0)
return -EINVAL;
switch (qe_ic_info[src].pri_reg) {
case QEIC_CIPZCC:
shift = CICNR_ZCC1T_SHIFT;
break;
case QEIC_CIPWCC:
shift = CICNR_WCC1T_SHIFT;
break;
case QEIC_CIPYCC:
shift = CICNR_YCC1T_SHIFT;
break;
case QEIC_CIPXCC:
shift = CICNR_XCC1T_SHIFT;
break;
case QEIC_CIPRTA:
shift = CRICR_RTA1T_SHIFT;
control_reg = QEIC_CRICR;
break;
case QEIC_CIPRTB:
shift = CRICR_RTB1T_SHIFT;
control_reg = QEIC_CRICR;
break;
default:
return -EINVAL;
}
shift += (2 - priority) * 2;
temp = qe_ic_read(qe_ic->regs, control_reg);
temp &= ~(SIGNAL_MASK << shift);
temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << shift;
qe_ic_write(qe_ic->regs, control_reg, temp);
return 0;
}
static struct sysdev_class qe_ic_sysclass = {
set_kset_name("qe_ic"),
};
static struct sys_device device_qe_ic = {
.id = 0,
.cls = &qe_ic_sysclass,
};
static int __init init_qe_ic_sysfs(void)
{
int rc;
printk(KERN_DEBUG "Registering qe_ic with sysfs...\n");
rc = sysdev_class_register(&qe_ic_sysclass);
if (rc) {
printk(KERN_ERR "Failed registering qe_ic sys class\n");
return -ENODEV;
}
rc = sysdev_register(&device_qe_ic);
if (rc) {
printk(KERN_ERR "Failed registering qe_ic sys device\n");
return -ENODEV;
}
return 0;
}
subsys_initcall(init_qe_ic_sysfs);