You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
803 lines
19 KiB
803 lines
19 KiB
/*
|
|
* pci.c - Low-Level PCI Access in IA-64
|
|
*
|
|
* Derived from bios32.c of i386 tree.
|
|
*
|
|
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Bjorn Helgaas <bjorn.helgaas@hp.com>
|
|
* Copyright (C) 2004 Silicon Graphics, Inc.
|
|
*
|
|
* Note: Above list of copyright holders is incomplete...
|
|
*/
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/machvec.h>
|
|
#include <asm/page.h>
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/hw_irq.h>
|
|
|
|
|
|
/*
|
|
* Low-level SAL-based PCI configuration access functions. Note that SAL
|
|
* calls are already serialized (via sal_lock), so we don't need another
|
|
* synchronization mechanism here.
|
|
*/
|
|
|
|
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
|
|
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
|
|
|
|
/* SAL 3.2 adds support for extended config space. */
|
|
|
|
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
|
|
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
|
|
|
|
static int
|
|
pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
|
|
int reg, int len, u32 *value)
|
|
{
|
|
u64 addr, data = 0;
|
|
int mode, result;
|
|
|
|
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
|
|
return -EINVAL;
|
|
|
|
if ((seg | reg) <= 255) {
|
|
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 0;
|
|
} else {
|
|
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 1;
|
|
}
|
|
result = ia64_sal_pci_config_read(addr, mode, len, &data);
|
|
if (result != 0)
|
|
return -EINVAL;
|
|
|
|
*value = (u32) data;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
|
|
int reg, int len, u32 value)
|
|
{
|
|
u64 addr;
|
|
int mode, result;
|
|
|
|
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
|
|
return -EINVAL;
|
|
|
|
if ((seg | reg) <= 255) {
|
|
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 0;
|
|
} else {
|
|
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 1;
|
|
}
|
|
result = ia64_sal_pci_config_write(addr, mode, len, value);
|
|
if (result != 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static struct pci_raw_ops pci_sal_ops = {
|
|
.read = pci_sal_read,
|
|
.write = pci_sal_write
|
|
};
|
|
|
|
struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
|
|
|
|
static int
|
|
pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
|
|
{
|
|
return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
|
|
devfn, where, size, value);
|
|
}
|
|
|
|
static int
|
|
pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
|
|
{
|
|
return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
|
|
devfn, where, size, value);
|
|
}
|
|
|
|
struct pci_ops pci_root_ops = {
|
|
.read = pci_read,
|
|
.write = pci_write,
|
|
};
|
|
|
|
/* Called by ACPI when it finds a new root bus. */
|
|
|
|
static struct pci_controller * __devinit
|
|
alloc_pci_controller (int seg)
|
|
{
|
|
struct pci_controller *controller;
|
|
|
|
controller = kmalloc(sizeof(*controller), GFP_KERNEL);
|
|
if (!controller)
|
|
return NULL;
|
|
|
|
memset(controller, 0, sizeof(*controller));
|
|
controller->segment = seg;
|
|
controller->node = -1;
|
|
return controller;
|
|
}
|
|
|
|
struct pci_root_info {
|
|
struct pci_controller *controller;
|
|
char *name;
|
|
};
|
|
|
|
static unsigned int
|
|
new_space (u64 phys_base, int sparse)
|
|
{
|
|
u64 mmio_base;
|
|
int i;
|
|
|
|
if (phys_base == 0)
|
|
return 0; /* legacy I/O port space */
|
|
|
|
mmio_base = (u64) ioremap(phys_base, 0);
|
|
for (i = 0; i < num_io_spaces; i++)
|
|
if (io_space[i].mmio_base == mmio_base &&
|
|
io_space[i].sparse == sparse)
|
|
return i;
|
|
|
|
if (num_io_spaces == MAX_IO_SPACES) {
|
|
printk(KERN_ERR "PCI: Too many IO port spaces "
|
|
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
|
|
return ~0;
|
|
}
|
|
|
|
i = num_io_spaces++;
|
|
io_space[i].mmio_base = mmio_base;
|
|
io_space[i].sparse = sparse;
|
|
|
|
return i;
|
|
}
|
|
|
|
static u64 __devinit
|
|
add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
|
|
{
|
|
struct resource *resource;
|
|
char *name;
|
|
u64 base, min, max, base_port;
|
|
unsigned int sparse = 0, space_nr, len;
|
|
|
|
resource = kzalloc(sizeof(*resource), GFP_KERNEL);
|
|
if (!resource) {
|
|
printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
|
|
info->name);
|
|
goto out;
|
|
}
|
|
|
|
len = strlen(info->name) + 32;
|
|
name = kzalloc(len, GFP_KERNEL);
|
|
if (!name) {
|
|
printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
|
|
info->name);
|
|
goto free_resource;
|
|
}
|
|
|
|
min = addr->min_address_range;
|
|
max = min + addr->address_length - 1;
|
|
if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
|
|
sparse = 1;
|
|
|
|
space_nr = new_space(addr->address_translation_offset, sparse);
|
|
if (space_nr == ~0)
|
|
goto free_name;
|
|
|
|
base = __pa(io_space[space_nr].mmio_base);
|
|
base_port = IO_SPACE_BASE(space_nr);
|
|
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
|
|
base_port + min, base_port + max);
|
|
|
|
/*
|
|
* The SDM guarantees the legacy 0-64K space is sparse, but if the
|
|
* mapping is done by the processor (not the bridge), ACPI may not
|
|
* mark it as sparse.
|
|
*/
|
|
if (space_nr == 0)
|
|
sparse = 1;
|
|
|
|
resource->name = name;
|
|
resource->flags = IORESOURCE_MEM;
|
|
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
|
|
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
|
|
insert_resource(&iomem_resource, resource);
|
|
|
|
return base_port;
|
|
|
|
free_name:
|
|
kfree(name);
|
|
free_resource:
|
|
kfree(resource);
|
|
out:
|
|
return ~0;
|
|
}
|
|
|
|
static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
|
|
struct acpi_resource_address64 *addr)
|
|
{
|
|
acpi_status status;
|
|
|
|
/*
|
|
* We're only interested in _CRS descriptors that are
|
|
* - address space descriptors for memory or I/O space
|
|
* - non-zero size
|
|
* - producers, i.e., the address space is routed downstream,
|
|
* not consumed by the bridge itself
|
|
*/
|
|
status = acpi_resource_to_address64(resource, addr);
|
|
if (ACPI_SUCCESS(status) &&
|
|
(addr->resource_type == ACPI_MEMORY_RANGE ||
|
|
addr->resource_type == ACPI_IO_RANGE) &&
|
|
addr->address_length &&
|
|
addr->producer_consumer == ACPI_PRODUCER)
|
|
return AE_OK;
|
|
|
|
return AE_ERROR;
|
|
}
|
|
|
|
static acpi_status __devinit
|
|
count_window (struct acpi_resource *resource, void *data)
|
|
{
|
|
unsigned int *windows = (unsigned int *) data;
|
|
struct acpi_resource_address64 addr;
|
|
acpi_status status;
|
|
|
|
status = resource_to_window(resource, &addr);
|
|
if (ACPI_SUCCESS(status))
|
|
(*windows)++;
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
|
|
{
|
|
struct pci_root_info *info = data;
|
|
struct pci_window *window;
|
|
struct acpi_resource_address64 addr;
|
|
acpi_status status;
|
|
unsigned long flags, offset = 0;
|
|
struct resource *root;
|
|
|
|
/* Return AE_OK for non-window resources to keep scanning for more */
|
|
status = resource_to_window(res, &addr);
|
|
if (!ACPI_SUCCESS(status))
|
|
return AE_OK;
|
|
|
|
if (addr.resource_type == ACPI_MEMORY_RANGE) {
|
|
flags = IORESOURCE_MEM;
|
|
root = &iomem_resource;
|
|
offset = addr.address_translation_offset;
|
|
} else if (addr.resource_type == ACPI_IO_RANGE) {
|
|
flags = IORESOURCE_IO;
|
|
root = &ioport_resource;
|
|
offset = add_io_space(info, &addr);
|
|
if (offset == ~0)
|
|
return AE_OK;
|
|
} else
|
|
return AE_OK;
|
|
|
|
window = &info->controller->window[info->controller->windows++];
|
|
window->resource.name = info->name;
|
|
window->resource.flags = flags;
|
|
window->resource.start = addr.min_address_range + offset;
|
|
window->resource.end = window->resource.start + addr.address_length - 1;
|
|
window->resource.child = NULL;
|
|
window->offset = offset;
|
|
|
|
if (insert_resource(root, &window->resource)) {
|
|
printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
|
|
window->resource.start, window->resource.end,
|
|
root->name, info->name);
|
|
}
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
static void __devinit
|
|
pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
|
|
{
|
|
int i, j;
|
|
|
|
j = 0;
|
|
for (i = 0; i < ctrl->windows; i++) {
|
|
struct resource *res = &ctrl->window[i].resource;
|
|
/* HP's firmware has a hack to work around a Windows bug.
|
|
* Ignore these tiny memory ranges */
|
|
if ((res->flags & IORESOURCE_MEM) &&
|
|
(res->end - res->start < 16))
|
|
continue;
|
|
if (j >= PCI_BUS_NUM_RESOURCES) {
|
|
printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
|
|
res->end, res->flags);
|
|
continue;
|
|
}
|
|
bus->resource[j++] = res;
|
|
}
|
|
}
|
|
|
|
struct pci_bus * __devinit
|
|
pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
|
|
{
|
|
struct pci_root_info info;
|
|
struct pci_controller *controller;
|
|
unsigned int windows = 0;
|
|
struct pci_bus *pbus;
|
|
char *name;
|
|
int pxm;
|
|
|
|
controller = alloc_pci_controller(domain);
|
|
if (!controller)
|
|
goto out1;
|
|
|
|
controller->acpi_handle = device->handle;
|
|
|
|
pxm = acpi_get_pxm(controller->acpi_handle);
|
|
#ifdef CONFIG_NUMA
|
|
if (pxm >= 0)
|
|
controller->node = pxm_to_nid_map[pxm];
|
|
#endif
|
|
|
|
acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
|
|
&windows);
|
|
controller->window = kmalloc_node(sizeof(*controller->window) * windows,
|
|
GFP_KERNEL, controller->node);
|
|
if (!controller->window)
|
|
goto out2;
|
|
|
|
name = kmalloc(16, GFP_KERNEL);
|
|
if (!name)
|
|
goto out3;
|
|
|
|
sprintf(name, "PCI Bus %04x:%02x", domain, bus);
|
|
info.controller = controller;
|
|
info.name = name;
|
|
acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
|
|
&info);
|
|
|
|
pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
|
|
if (pbus)
|
|
pcibios_setup_root_windows(pbus, controller);
|
|
|
|
return pbus;
|
|
|
|
out3:
|
|
kfree(controller->window);
|
|
out2:
|
|
kfree(controller);
|
|
out1:
|
|
return NULL;
|
|
}
|
|
|
|
void pcibios_resource_to_bus(struct pci_dev *dev,
|
|
struct pci_bus_region *region, struct resource *res)
|
|
{
|
|
struct pci_controller *controller = PCI_CONTROLLER(dev);
|
|
unsigned long offset = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < controller->windows; i++) {
|
|
struct pci_window *window = &controller->window[i];
|
|
if (!(window->resource.flags & res->flags))
|
|
continue;
|
|
if (window->resource.start > res->start)
|
|
continue;
|
|
if (window->resource.end < res->end)
|
|
continue;
|
|
offset = window->offset;
|
|
break;
|
|
}
|
|
|
|
region->start = res->start - offset;
|
|
region->end = res->end - offset;
|
|
}
|
|
EXPORT_SYMBOL(pcibios_resource_to_bus);
|
|
|
|
void pcibios_bus_to_resource(struct pci_dev *dev,
|
|
struct resource *res, struct pci_bus_region *region)
|
|
{
|
|
struct pci_controller *controller = PCI_CONTROLLER(dev);
|
|
unsigned long offset = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < controller->windows; i++) {
|
|
struct pci_window *window = &controller->window[i];
|
|
if (!(window->resource.flags & res->flags))
|
|
continue;
|
|
if (window->resource.start - window->offset > region->start)
|
|
continue;
|
|
if (window->resource.end - window->offset < region->end)
|
|
continue;
|
|
offset = window->offset;
|
|
break;
|
|
}
|
|
|
|
res->start = region->start + offset;
|
|
res->end = region->end + offset;
|
|
}
|
|
EXPORT_SYMBOL(pcibios_bus_to_resource);
|
|
|
|
static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
|
|
{
|
|
unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
|
|
struct resource *devr = &dev->resource[idx];
|
|
|
|
if (!dev->bus)
|
|
return 0;
|
|
for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
|
|
struct resource *busr = dev->bus->resource[i];
|
|
|
|
if (!busr || ((busr->flags ^ devr->flags) & type_mask))
|
|
continue;
|
|
if ((devr->start) && (devr->start >= busr->start) &&
|
|
(devr->end <= busr->end))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
|
|
{
|
|
struct pci_bus_region region;
|
|
int i;
|
|
int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
|
|
PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
|
|
|
|
for (i = 0; i < limit; i++) {
|
|
if (!dev->resource[i].flags)
|
|
continue;
|
|
region.start = dev->resource[i].start;
|
|
region.end = dev->resource[i].end;
|
|
pcibios_bus_to_resource(dev, &dev->resource[i], ®ion);
|
|
if ((is_valid_resource(dev, i)))
|
|
pci_claim_resource(dev, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called after each bus is probed, but before its children are examined.
|
|
*/
|
|
void __devinit
|
|
pcibios_fixup_bus (struct pci_bus *b)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
if (b->self) {
|
|
pci_read_bridge_bases(b);
|
|
pcibios_fixup_device_resources(b->self);
|
|
}
|
|
list_for_each_entry(dev, &b->devices, bus_list)
|
|
pcibios_fixup_device_resources(dev);
|
|
|
|
return;
|
|
}
|
|
|
|
void __devinit
|
|
pcibios_update_irq (struct pci_dev *dev, int irq)
|
|
{
|
|
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
|
|
|
|
/* ??? FIXME -- record old value for shutdown. */
|
|
}
|
|
|
|
static inline int
|
|
pcibios_enable_resources (struct pci_dev *dev, int mask)
|
|
{
|
|
u16 cmd, old_cmd;
|
|
int idx;
|
|
struct resource *r;
|
|
unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
|
|
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
|
old_cmd = cmd;
|
|
for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
|
|
/* Only set up the desired resources. */
|
|
if (!(mask & (1 << idx)))
|
|
continue;
|
|
|
|
r = &dev->resource[idx];
|
|
if (!(r->flags & type_mask))
|
|
continue;
|
|
if ((idx == PCI_ROM_RESOURCE) &&
|
|
(!(r->flags & IORESOURCE_ROM_ENABLE)))
|
|
continue;
|
|
if (!r->start && r->end) {
|
|
printk(KERN_ERR
|
|
"PCI: Device %s not available because of resource collisions\n",
|
|
pci_name(dev));
|
|
return -EINVAL;
|
|
}
|
|
if (r->flags & IORESOURCE_IO)
|
|
cmd |= PCI_COMMAND_IO;
|
|
if (r->flags & IORESOURCE_MEM)
|
|
cmd |= PCI_COMMAND_MEMORY;
|
|
}
|
|
if (cmd != old_cmd) {
|
|
printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pcibios_enable_device (struct pci_dev *dev, int mask)
|
|
{
|
|
int ret;
|
|
|
|
ret = pcibios_enable_resources(dev, mask);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return acpi_pci_irq_enable(dev);
|
|
}
|
|
|
|
void
|
|
pcibios_disable_device (struct pci_dev *dev)
|
|
{
|
|
acpi_pci_irq_disable(dev);
|
|
}
|
|
|
|
void
|
|
pcibios_align_resource (void *data, struct resource *res,
|
|
unsigned long size, unsigned long align)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* PCI BIOS setup, always defaults to SAL interface
|
|
*/
|
|
char * __init
|
|
pcibios_setup (char *str)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
|
|
enum pci_mmap_state mmap_state, int write_combine)
|
|
{
|
|
/*
|
|
* I/O space cannot be accessed via normal processor loads and
|
|
* stores on this platform.
|
|
*/
|
|
if (mmap_state == pci_mmap_io)
|
|
/*
|
|
* XXX we could relax this for I/O spaces for which ACPI
|
|
* indicates that the space is 1-to-1 mapped. But at the
|
|
* moment, we don't support multiple PCI address spaces and
|
|
* the legacy I/O space is not 1-to-1 mapped, so this is moot.
|
|
*/
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Leave vm_pgoff as-is, the PCI space address is the physical
|
|
* address on this platform.
|
|
*/
|
|
vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
|
|
|
|
if (write_combine && efi_range_is_wc(vma->vm_start,
|
|
vma->vm_end - vma->vm_start))
|
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
else
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start, vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ia64_pci_get_legacy_mem - generic legacy mem routine
|
|
* @bus: bus to get legacy memory base address for
|
|
*
|
|
* Find the base of legacy memory for @bus. This is typically the first
|
|
* megabyte of bus address space for @bus or is simply 0 on platforms whose
|
|
* chipsets support legacy I/O and memory routing. Returns the base address
|
|
* or an error pointer if an error occurred.
|
|
*
|
|
* This is the ia64 generic version of this routine. Other platforms
|
|
* are free to override it with a machine vector.
|
|
*/
|
|
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
|
|
{
|
|
return (char *)__IA64_UNCACHED_OFFSET;
|
|
}
|
|
|
|
/**
|
|
* pci_mmap_legacy_page_range - map legacy memory space to userland
|
|
* @bus: bus whose legacy space we're mapping
|
|
* @vma: vma passed in by mmap
|
|
*
|
|
* Map legacy memory space for this device back to userspace using a machine
|
|
* vector to get the base address.
|
|
*/
|
|
int
|
|
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
|
|
{
|
|
char *addr;
|
|
|
|
addr = pci_get_legacy_mem(bus);
|
|
if (IS_ERR(addr))
|
|
return PTR_ERR(addr);
|
|
|
|
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
|
|
|
|
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start, vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ia64_pci_legacy_read - read from legacy I/O space
|
|
* @bus: bus to read
|
|
* @port: legacy port value
|
|
* @val: caller allocated storage for returned value
|
|
* @size: number of bytes to read
|
|
*
|
|
* Simply reads @size bytes from @port and puts the result in @val.
|
|
*
|
|
* Again, this (and the write routine) are generic versions that can be
|
|
* overridden by the platform. This is necessary on platforms that don't
|
|
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
|
|
*/
|
|
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
|
|
{
|
|
int ret = size;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
*val = inb(port);
|
|
break;
|
|
case 2:
|
|
*val = inw(port);
|
|
break;
|
|
case 4:
|
|
*val = inl(port);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ia64_pci_legacy_write - perform a legacy I/O write
|
|
* @bus: bus pointer
|
|
* @port: port to write
|
|
* @val: value to write
|
|
* @size: number of bytes to write from @val
|
|
*
|
|
* Simply writes @size bytes of @val to @port.
|
|
*/
|
|
int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
outb(val, port);
|
|
break;
|
|
case 2:
|
|
outw(val, port);
|
|
break;
|
|
case 4:
|
|
outl(val, port);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pci_cacheline_size - determine cacheline size for PCI devices
|
|
* @dev: void
|
|
*
|
|
* We want to use the line-size of the outer-most cache. We assume
|
|
* that this line-size is the same for all CPUs.
|
|
*
|
|
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
|
|
*
|
|
* RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
|
|
*/
|
|
static unsigned long
|
|
pci_cacheline_size (void)
|
|
{
|
|
u64 levels, unique_caches;
|
|
s64 status;
|
|
pal_cache_config_info_t cci;
|
|
static u8 cacheline_size;
|
|
|
|
if (cacheline_size)
|
|
return cacheline_size;
|
|
|
|
status = ia64_pal_cache_summary(&levels, &unique_caches);
|
|
if (status != 0) {
|
|
printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
|
|
__FUNCTION__, status);
|
|
return SMP_CACHE_BYTES;
|
|
}
|
|
|
|
status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
|
|
&cci);
|
|
if (status != 0) {
|
|
printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
|
|
__FUNCTION__, status);
|
|
return SMP_CACHE_BYTES;
|
|
}
|
|
cacheline_size = 1 << cci.pcci_line_size;
|
|
return cacheline_size;
|
|
}
|
|
|
|
/**
|
|
* pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
|
|
* @dev: the PCI device for which MWI is enabled
|
|
*
|
|
* For ia64, we can get the cacheline sizes from PAL.
|
|
*
|
|
* RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
|
|
*/
|
|
int
|
|
pcibios_prep_mwi (struct pci_dev *dev)
|
|
{
|
|
unsigned long desired_linesize, current_linesize;
|
|
int rc = 0;
|
|
u8 pci_linesize;
|
|
|
|
desired_linesize = pci_cacheline_size();
|
|
|
|
pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
|
|
current_linesize = 4 * pci_linesize;
|
|
if (desired_linesize != current_linesize) {
|
|
printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
|
|
pci_name(dev), current_linesize);
|
|
if (current_linesize > desired_linesize) {
|
|
printk(" expected %lu bytes instead\n", desired_linesize);
|
|
rc = -EINVAL;
|
|
} else {
|
|
printk(" correcting to %lu\n", desired_linesize);
|
|
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int pci_vector_resources(int last, int nr_released)
|
|
{
|
|
int count = nr_released;
|
|
|
|
count += (IA64_LAST_DEVICE_VECTOR - last);
|
|
|
|
return count;
|
|
}
|
|
|