You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/net/fec_8xx/fec_main.c

1274 lines
29 KiB

/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
* and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
*
* Released under the GPL
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/commproc.h>
#include "fec_8xx.h"
/*************************************************/
#define FEC_MAX_MULTICAST_ADDRS 64
/*************************************************/
static char version[] __devinitdata =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
MODULE_LICENSE("GPL");
int fec_8xx_debug = -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
module_param(fec_8xx_debug, int, 0);
MODULE_PARM_DESC(fec_8xx_debug,
"FEC 8xx bitmapped debugging message enable value");
/*************************************************/
/*
* Delay to wait for FEC reset command to complete (in us)
*/
#define FEC_RESET_DELAY 50
/*****************************************************************************************/
static void fec_whack_reset(fec_t * fecp)
{
int i;
/*
* Whack a reset. We should wait for this.
*/
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
for (i = 0;
(FR(fecp, ecntrl) & FEC_ECNTRL_RESET) != 0 && i < FEC_RESET_DELAY;
i++)
udelay(1);
if (i == FEC_RESET_DELAY)
printk(KERN_WARNING "FEC Reset timeout!\n");
}
/****************************************************************************/
/*
* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)
/****************************************************************************/
/*
* Returns the CRC needed when filling in the hash table for
* multicast group filtering
* pAddr must point to a MAC address (6 bytes)
*/
static __u32 fec_mulicast_calc_crc(char *pAddr)
{
u8 byte;
int byte_count;
int bit_count;
__u32 crc = 0xffffffff;
u8 msb;
for (byte_count = 0; byte_count < 6; byte_count++) {
byte = pAddr[byte_count];
for (bit_count = 0; bit_count < 8; bit_count++) {
msb = crc >> 31;
crc <<= 1;
if (msb ^ (byte & 0x1)) {
crc ^= FEC_CRC_POLY;
}
byte >>= 1;
}
}
return (crc);
}
/*
* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void fec_set_multicast_list(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
struct dev_mc_list *pmc;
__u32 crc;
int temp;
__u32 csrVal;
int hash_index;
__u32 hthi, htlo;
unsigned long flags;
if ((dev->flags & IFF_PROMISC) != 0) {
spin_lock_irqsave(&fep->lock, flags);
FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
spin_unlock_irqrestore(&fep->lock, flags);
/*
* Log any net taps.
*/
printk(KERN_WARNING DRV_MODULE_NAME
": %s: Promiscuous mode enabled.\n", dev->name);
return;
}
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
/*
* Catch all multicast addresses, set the filter to all 1's.
*/
hthi = 0xffffffffU;
htlo = 0xffffffffU;
} else {
hthi = 0;
htlo = 0;
/*
* Now populate the hash table
*/
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next) {
crc = fec_mulicast_calc_crc(pmc->dmi_addr);
temp = (crc & 0x3f) >> 1;
hash_index = ((temp & 0x01) << 4) |
((temp & 0x02) << 2) |
((temp & 0x04)) |
((temp & 0x08) >> 2) |
((temp & 0x10) >> 4);
csrVal = (1 << hash_index);
if (crc & 1)
hthi |= csrVal;
else
htlo |= csrVal;
}
}
spin_lock_irqsave(&fep->lock, flags);
FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
FW(fecp, hash_table_high, hthi);
FW(fecp, hash_table_low, htlo);
spin_unlock_irqrestore(&fep->lock, flags);
}
static int fec_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *mac = addr;
struct fec_enet_private *fep = netdev_priv(dev);
struct fec *fecp = fep->fecp;
int i;
__u32 addrhi, addrlo;
unsigned long flags;
/* Get pointer to SCC area in parameter RAM. */
for (i = 0; i < 6; i++)
dev->dev_addr[i] = mac->sa_data[i];
/*
* Set station address.
*/
addrhi = ((__u32) dev->dev_addr[0] << 24) |
((__u32) dev->dev_addr[1] << 16) |
((__u32) dev->dev_addr[2] << 8) |
(__u32) dev->dev_addr[3];
addrlo = ((__u32) dev->dev_addr[4] << 24) |
((__u32) dev->dev_addr[5] << 16);
spin_lock_irqsave(&fep->lock, flags);
FW(fecp, addr_low, addrhi);
FW(fecp, addr_high, addrlo);
spin_unlock_irqrestore(&fep->lock, flags);
return 0;
}
/*
* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
void fec_restart(struct net_device *dev, int duplex, int speed)
{
#ifdef CONFIG_DUET
immap_t *immap = (immap_t *) IMAP_ADDR;
__u32 cptr;
#endif
struct fec_enet_private *fep = netdev_priv(dev);
struct fec *fecp = fep->fecp;
const struct fec_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb;
int i;
__u32 addrhi, addrlo;
fec_whack_reset(fep->fecp);
/*
* Set station address.
*/
addrhi = ((__u32) dev->dev_addr[0] << 24) |
((__u32) dev->dev_addr[1] << 16) |
((__u32) dev->dev_addr[2] << 8) |
(__u32) dev->dev_addr[3];
addrlo = ((__u32) dev->dev_addr[4] << 24) |
((__u32) dev->dev_addr[5] << 16);
FW(fecp, addr_low, addrhi);
FW(fecp, addr_high, addrlo);
/*
* Reset all multicast.
*/
FW(fecp, hash_table_high, 0);
FW(fecp, hash_table_low, 0);
/*
* Set maximum receive buffer size.
*/
FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
FW(fecp, r_hash, PKT_MAXBUF_SIZE);
/*
* Set receive and transmit descriptor base.
*/
FW(fecp, r_des_start, iopa((__u32) (fep->rx_bd_base)));
FW(fecp, x_des_start, iopa((__u32) (fep->tx_bd_base)));
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->tx_free = fep->tx_ring;
fep->cur_rx = fep->rx_bd_base;
/*
* Reset SKB receive buffers
*/
for (i = 0; i < fep->rx_ring; i++) {
if ((skb = fep->rx_skbuff[i]) == NULL)
continue;
fep->rx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* Initialize the receive buffer descriptors.
*/
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
skb = dev_alloc_skb(ENET_RX_FRSIZE);
if (skb == NULL) {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, unable to allocate skb\n",
dev->name);
fep->stats.rx_dropped++;
break;
}
fep->rx_skbuff[i] = skb;
skb->dev = dev;
CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0); /* zero */
CBDW_SC(bdp, BD_ENET_RX_EMPTY |
((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
}
/*
* if we failed, fillup remainder
*/
for (; i < fep->rx_ring; i++, bdp++) {
fep->rx_skbuff[i] = NULL;
CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
}
/*
* Reset SKB transmit buffers.
*/
for (i = 0; i < fep->tx_ring; i++) {
if ((skb = fep->tx_skbuff[i]) == NULL)
continue;
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* ...and the same for transmit.
*/
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
fep->tx_skbuff[i] = NULL;
CBDW_BUFADDR(bdp, virt_to_bus(NULL));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
}
/*
* Enable big endian and don't care about SDMA FC.
*/
FW(fecp, fun_code, 0x78000000);
/*
* Set MII speed.
*/
FW(fecp, mii_speed, fep->fec_phy_speed);
/*
* Clear any outstanding interrupt.
*/
FW(fecp, ievent, 0xffc0);
FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
/*
* adjust to speed (only for DUET & RMII)
*/
#ifdef CONFIG_DUET
cptr = in_be32(&immap->im_cpm.cp_cptr);
switch (fpi->fec_no) {
case 0:
/*
* check if in RMII mode
*/
if ((cptr & 0x100) == 0)
break;
if (speed == 10)
cptr |= 0x0000010;
else if (speed == 100)
cptr &= ~0x0000010;
break;
case 1:
/*
* check if in RMII mode
*/
if ((cptr & 0x80) == 0)
break;
if (speed == 10)
cptr |= 0x0000008;
else if (speed == 100)
cptr &= ~0x0000008;
break;
default:
break;
}
out_be32(&immap->im_cpm.cp_cptr, cptr);
#endif
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
/*
* adjust to duplex mode
*/
if (duplex) {
FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
} else {
FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
}
/*
* Enable interrupts we wish to service.
*/
FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB);
/*
* And last, enable the transmit and receive processing.
*/
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, r_des_active, 0x01000000);
}
void fec_stop(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
struct sk_buff *skb;
int i;
if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
return; /* already down */
FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
i < FEC_RESET_DELAY; i++)
udelay(1);
if (i == FEC_RESET_DELAY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC timeout on graceful transmit stop\n",
dev->name);
/*
* Disable FEC. Let only MII interrupts.
*/
FW(fecp, imask, 0);
FW(fecp, ecntrl, ~FEC_ECNTRL_ETHER_EN);
/*
* Reset SKB transmit buffers.
*/
for (i = 0; i < fep->tx_ring; i++) {
if ((skb = fep->tx_skbuff[i]) == NULL)
continue;
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* Reset SKB receive buffers
*/
for (i = 0; i < fep->rx_ring; i++) {
if ((skb = fep->rx_skbuff[i]) == NULL)
continue;
fep->rx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
}
/* common receive function */
static int fec_enet_rx_common(struct net_device *dev, int *budget)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
const struct fec_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
__u16 pkt_len, sc;
int curidx;
int rx_work_limit;
if (fpi->use_napi) {
rx_work_limit = min(dev->quota, *budget);
if (!netif_running(dev))
return 0;
}
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
/* clear RX status bits for napi*/
if (fpi->use_napi)
FW(fecp, ievent, FEC_ENET_RXF | FEC_ENET_RXB);
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skbn = fep->rx_skbuff[curidx];
BUG_ON(skbn == NULL);
} else {
/* napi, got packet but no quota */
if (fpi->use_napi && --rx_work_limit < 0)
break;
skb = fep->rx_skbuff[curidx];
BUG_ON(skb == NULL);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
memcpy(skbn->data, skb->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn != NULL) {
skb->dev = dev;
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
if (!fpi->use_napi)
netif_rx(skb);
else
netif_receive_skb(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(NULL, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
/*
* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
FW(fecp, r_des_active, 0x01000000);
}
fep->cur_rx = bdp;
if (fpi->use_napi) {
dev->quota -= received;
*budget -= received;
if (rx_work_limit < 0)
return 1; /* not done */
/* done */
netif_rx_complete(dev);
/* enable RX interrupt bits */
FS(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
}
return 0;
}
static void fec_enet_tx(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
struct sk_buff *skb;
int dirtyidx, do_wake;
__u16 sc;
spin_lock(&fep->lock);
bdp = fep->dirty_tx;
do_wake = 0;
while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
dirtyidx = bdp - fep->tx_bd_base;
if (fep->tx_free == fep->tx_ring)
break;
skb = fep->tx_skbuff[dirtyidx];
/*
* Check for errors.
*/
if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
fep->stats.tx_errors++;
if (sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
} else
fep->stats.tx_packets++;
if (sc & BD_ENET_TX_READY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s HEY! Enet xmit interrupt and TX_READY.\n",
dev->name);
/*
* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/*
* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_irq(skb);
fep->tx_skbuff[dirtyidx] = NULL;
/*
* Update pointer to next buffer descriptor to be transmitted.
*/
if ((sc & BD_ENET_TX_WRAP) == 0)
bdp++;
else
bdp = fep->tx_bd_base;
/*
* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (!fep->tx_free++)
do_wake = 1;
}
fep->dirty_tx = bdp;
spin_unlock(&fep->lock);
if (do_wake && netif_queue_stopped(dev))
netif_wake_queue(dev);
}
/*
* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t
fec_enet_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct fec_enet_private *fep;
const struct fec_platform_info *fpi;
fec_t *fecp;
__u32 int_events;
__u32 int_events_napi;
if (unlikely(dev == NULL))
return IRQ_NONE;
fep = netdev_priv(dev);
fecp = fep->fecp;
fpi = fep->fpi;
/*
* Get the interrupt events that caused us to be here.
*/
while ((int_events = FR(fecp, ievent) & FR(fecp, imask)) != 0) {
if (!fpi->use_napi)
FW(fecp, ievent, int_events);
else {
int_events_napi = int_events & ~(FEC_ENET_RXF | FEC_ENET_RXB);
FW(fecp, ievent, int_events_napi);
}
if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC ERROR(s) 0x%x\n",
dev->name, int_events);
if ((int_events & FEC_ENET_RXF) != 0) {
if (!fpi->use_napi)
fec_enet_rx_common(dev, NULL);
else {
if (netif_rx_schedule_prep(dev)) {
/* disable rx interrupts */
FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
__netif_rx_schedule(dev);
} else {
printk(KERN_ERR DRV_MODULE_NAME
": %s driver bug! interrupt while in poll!\n",
dev->name);
FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
}
}
}
if ((int_events & FEC_ENET_TXF) != 0)
fec_enet_tx(dev);
}
return IRQ_HANDLED;
}
/* This interrupt occurs when the PHY detects a link change. */
static irqreturn_t
fec_mii_link_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct fec_enet_private *fep;
const struct fec_platform_info *fpi;
if (unlikely(dev == NULL))
return IRQ_NONE;
fep = netdev_priv(dev);
fpi = fep->fpi;
if (!fpi->use_mdio)
return IRQ_NONE;
/*
* Acknowledge the interrupt if possible. If we have not
* found the PHY yet we can't process or acknowledge the
* interrupt now. Instead we ignore this interrupt for now,
* which we can do since it is edge triggered. It will be
* acknowledged later by fec_enet_open().
*/
if (!fep->phy)
return IRQ_NONE;
fec_mii_ack_int(dev);
fec_mii_link_status_change_check(dev, 0);
return IRQ_HANDLED;
}
/**********************************************************************************/
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
cbd_t *bdp;
int curidx;
unsigned long flags;
spin_lock_irqsave(&fep->tx_lock, flags);
/*
* Fill in a Tx ring entry
*/
bdp = fep->cur_tx;
if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
netif_stop_queue(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
/*
* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since the tx queue should be stopped.
*/
printk(KERN_WARNING DRV_MODULE_NAME
": %s tx queue full!.\n", dev->name);
return 1;
}
curidx = bdp - fep->tx_bd_base;
/*
* Clear all of the status flags.
*/
CBDC_SC(bdp, BD_ENET_TX_STATS);
/*
* Save skb pointer.
*/
fep->tx_skbuff[curidx] = skb;
fep->stats.tx_bytes += skb->len;
/*
* Push the data cache so the CPM does not get stale memory data.
*/
CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
skb->len, DMA_TO_DEVICE));
CBDW_DATLEN(bdp, skb->len);
dev->trans_start = jiffies;
/*
* If this was the last BD in the ring, start at the beginning again.
*/
if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
fep->cur_tx++;
else
fep->cur_tx = fep->tx_bd_base;
if (!--fep->tx_free)
netif_stop_queue(dev);
/*
* Trigger transmission start
*/
CBDS_SC(bdp, BD_ENET_TX_READY | BD_ENET_TX_INTR |
BD_ENET_TX_LAST | BD_ENET_TX_TC);
FW(fecp, x_des_active, 0x01000000);
spin_unlock_irqrestore(&fep->tx_lock, flags);
return 0;
}
static void fec_timeout(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fep->stats.tx_errors++;
if (fep->tx_free)
netif_wake_queue(dev);
/* check link status again */
fec_mii_link_status_change_check(dev, 0);
}
static int fec_enet_open(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
const struct fec_platform_info *fpi = fep->fpi;
unsigned long flags;
/* Install our interrupt handler. */
if (request_irq(fpi->fec_irq, fec_enet_interrupt, 0, "fec", dev) != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate FEC IRQ!", dev->name);
return -EINVAL;
}
/* Install our phy interrupt handler */
if (fpi->phy_irq != -1 &&
request_irq(fpi->phy_irq, fec_mii_link_interrupt, 0, "fec-phy",
dev) != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate PHY IRQ!", dev->name);
free_irq(fpi->fec_irq, dev);
return -EINVAL;
}
if (fpi->use_mdio) {
fec_mii_startup(dev);
netif_carrier_off(dev);
fec_mii_link_status_change_check(dev, 1);
} else {
spin_lock_irqsave(&fep->lock, flags);
fec_restart(dev, 1, 100); /* XXX this sucks */
spin_unlock_irqrestore(&fep->lock, flags);
netif_carrier_on(dev);
netif_start_queue(dev);
}
return 0;
}
static int fec_enet_close(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
const struct fec_platform_info *fpi = fep->fpi;
unsigned long flags;
netif_stop_queue(dev);
netif_carrier_off(dev);
if (fpi->use_mdio)
fec_mii_shutdown(dev);
spin_lock_irqsave(&fep->lock, flags);
fec_stop(dev);
spin_unlock_irqrestore(&fep->lock, flags);
/* release any irqs */
if (fpi->phy_irq != -1)
free_irq(fpi->phy_irq, dev);
free_irq(fpi->fec_irq, dev);
return 0;
}
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
return &fep->stats;
}
static int fec_enet_poll(struct net_device *dev, int *budget)
{
return fec_enet_rx_common(dev, budget);
}
/*************************************************************************/
static void fec_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
}
static int fec_get_regs_len(struct net_device *dev)
{
return sizeof(fec_t);
}
static void fec_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned long flags;
if (regs->len < sizeof(fec_t))
return;
regs->version = 0;
spin_lock_irqsave(&fep->lock, flags);
memcpy_fromio(p, fep->fecp, sizeof(fec_t));
spin_unlock_irqrestore(&fep->lock, flags);
}
static int fec_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&fep->lock, flags);
rc = mii_ethtool_gset(&fep->mii_if, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
static int fec_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&fep->lock, flags);
rc = mii_ethtool_sset(&fep->mii_if, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
static int fec_nway_reset(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
return mii_nway_restart(&fep->mii_if);
}
static __u32 fec_get_msglevel(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
return fep->msg_enable;
}
static void fec_set_msglevel(struct net_device *dev, __u32 value)
{
struct fec_enet_private *fep = netdev_priv(dev);
fep->msg_enable = value;
}
static const struct ethtool_ops fec_ethtool_ops = {
.get_drvinfo = fec_get_drvinfo,
.get_regs_len = fec_get_regs_len,
.get_settings = fec_get_settings,
.set_settings = fec_set_settings,
.nway_reset = fec_nway_reset,
.get_link = ethtool_op_get_link,
.get_msglevel = fec_get_msglevel,
.set_msglevel = fec_set_msglevel,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum, /* local! */
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_regs = fec_get_regs,
};
static int fec_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
unsigned long flags;
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irqsave(&fep->lock, flags);
rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
int fec_8xx_init_one(const struct fec_platform_info *fpi,
struct net_device **devp)
{
immap_t *immap = (immap_t *) IMAP_ADDR;
static int fec_8xx_version_printed = 0;
struct net_device *dev = NULL;
struct fec_enet_private *fep = NULL;
fec_t *fecp = NULL;
int i;
int err = 0;
int registered = 0;
__u32 siel;
*devp = NULL;
switch (fpi->fec_no) {
case 0:
fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec;
break;
#ifdef CONFIG_DUET
case 1:
fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec2;
break;
#endif
default:
return -EINVAL;
}
if (fec_8xx_version_printed++ == 0)
printk(KERN_INFO "%s", version);
i = sizeof(*fep) + (sizeof(struct sk_buff **) *
(fpi->rx_ring + fpi->tx_ring));
dev = alloc_etherdev(i);
if (!dev) {
err = -ENOMEM;
goto err;
}
SET_MODULE_OWNER(dev);
fep = netdev_priv(dev);
/* partial reset of FEC */
fec_whack_reset(fecp);
/* point rx_skbuff, tx_skbuff */
fep->rx_skbuff = (struct sk_buff **)&fep[1];
fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
fep->fecp = fecp;
fep->fpi = fpi;
/* init locks */
spin_lock_init(&fep->lock);
spin_lock_init(&fep->tx_lock);
/*
* Set the Ethernet address.
*/
for (i = 0; i < 6; i++)
dev->dev_addr[i] = fpi->macaddr[i];
fep->ring_base = dma_alloc_coherent(NULL,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL) {
printk(KERN_ERR DRV_MODULE_NAME
": %s dma alloc failed.\n", dev->name);
err = -ENOMEM;
goto err;
}
/*
* Set receive and transmit descriptor base.
*/
fep->rx_bd_base = fep->ring_base;
fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
/* initialize ring size variables */
fep->tx_ring = fpi->tx_ring;
fep->rx_ring = fpi->rx_ring;
/* SIU interrupt */
if (fpi->phy_irq != -1 &&
(fpi->phy_irq >= SIU_IRQ0 && fpi->phy_irq < SIU_LEVEL7)) {
siel = in_be32(&immap->im_siu_conf.sc_siel);
if ((fpi->phy_irq & 1) == 0)
siel |= (0x80000000 >> fpi->phy_irq);
else
siel &= ~(0x80000000 >> (fpi->phy_irq & ~1));
out_be32(&immap->im_siu_conf.sc_siel, siel);
}
/*
* The FEC Ethernet specific entries in the device structure.
*/
dev->open = fec_enet_open;
dev->hard_start_xmit = fec_enet_start_xmit;
dev->tx_timeout = fec_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = fec_enet_close;
dev->get_stats = fec_enet_get_stats;
dev->set_multicast_list = fec_set_multicast_list;
dev->set_mac_address = fec_set_mac_address;
if (fpi->use_napi) {
dev->poll = fec_enet_poll;
dev->weight = fpi->napi_weight;
}
dev->ethtool_ops = &fec_ethtool_ops;
dev->do_ioctl = fec_ioctl;
fep->fec_phy_speed =
((((fpi->sys_clk + 4999999) / 2500000) / 2) & 0x3F) << 1;
init_timer(&fep->phy_timer_list);
/* partial reset of FEC so that only MII works */
FW(fecp, mii_speed, fep->fec_phy_speed);
FW(fecp, ievent, 0xffc0);
FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
FW(fecp, imask, 0);
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
netif_carrier_off(dev);
err = register_netdev(dev);
if (err != 0)
goto err;
registered = 1;
if (fpi->use_mdio) {
fep->mii_if.dev = dev;
fep->mii_if.mdio_read = fec_mii_read;
fep->mii_if.mdio_write = fec_mii_write;
fep->mii_if.phy_id_mask = 0x1f;
fep->mii_if.reg_num_mask = 0x1f;
fep->mii_if.phy_id = fec_mii_phy_id_detect(dev);
}
*devp = dev;
return 0;
err:
if (dev != NULL) {
if (fecp != NULL)
fec_whack_reset(fecp);
if (registered)
unregister_netdev(dev);
if (fep != NULL) {
if (fep->ring_base)
dma_free_coherent(NULL,
(fpi->tx_ring +
fpi->rx_ring) *
sizeof(cbd_t), fep->ring_base,
fep->ring_mem_addr);
}
free_netdev(dev);
}
return err;
}
int fec_8xx_cleanup_one(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
const struct fec_platform_info *fpi = fep->fpi;
fec_whack_reset(fecp);
unregister_netdev(dev);
dma_free_coherent(NULL, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
fep->ring_base, fep->ring_mem_addr);
free_netdev(dev);
return 0;
}
/**************************************************************************************/
/**************************************************************************************/
/**************************************************************************************/
static int __init fec_8xx_init(void)
{
return fec_8xx_platform_init();
}
static void __exit fec_8xx_cleanup(void)
{
fec_8xx_platform_cleanup();
}
/**************************************************************************************/
/**************************************************************************************/
/**************************************************************************************/
module_init(fec_8xx_init);
module_exit(fec_8xx_cleanup);