You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/kernel/futex.c

900 lines
21 KiB

/*
* Fast Userspace Mutexes (which I call "Futexes!").
* (C) Rusty Russell, IBM 2002
*
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
*
* Removed page pinning, fix privately mapped COW pages and other cleanups
* (C) Copyright 2003, 2004 Jamie Lokier
*
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
* enough at me, Linus for the original (flawed) idea, Matthew
* Kirkwood for proof-of-concept implementation.
*
* "The futexes are also cursed."
* "But they come in a choice of three flavours!"
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/signal.h>
#include <asm/futex.h>
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
/*
* Futexes are matched on equal values of this key.
* The key type depends on whether it's a shared or private mapping.
* Don't rearrange members without looking at hash_futex().
*
* offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
* We set bit 0 to indicate if it's an inode-based key.
*/
union futex_key {
struct {
unsigned long pgoff;
struct inode *inode;
int offset;
} shared;
struct {
unsigned long uaddr;
struct mm_struct *mm;
int offset;
} private;
struct {
unsigned long word;
void *ptr;
int offset;
} both;
};
/*
* We use this hashed waitqueue instead of a normal wait_queue_t, so
* we can wake only the relevant ones (hashed queues may be shared).
*
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
* It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
* The order of wakup is always to make the first condition true, then
* wake up q->waiters, then make the second condition true.
*/
struct futex_q {
struct list_head list;
wait_queue_head_t waiters;
/* Which hash list lock to use. */
spinlock_t *lock_ptr;
/* Key which the futex is hashed on. */
union futex_key key;
/* For fd, sigio sent using these. */
int fd;
struct file *filp;
};
/*
* Split the global futex_lock into every hash list lock.
*/
struct futex_hash_bucket {
spinlock_t lock;
struct list_head chain;
};
static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
/* Futex-fs vfsmount entry: */
static struct vfsmount *futex_mnt;
/*
* We hash on the keys returned from get_futex_key (see below).
*/
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
u32 hash = jhash2((u32*)&key->both.word,
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
key->both.offset);
return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}
/*
* Return 1 if two futex_keys are equal, 0 otherwise.
*/
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
return (key1->both.word == key2->both.word
&& key1->both.ptr == key2->both.ptr
&& key1->both.offset == key2->both.offset);
}
/*
* Get parameters which are the keys for a futex.
*
* For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
* offset_within_page). For private mappings, it's (uaddr, current->mm).
* We can usually work out the index without swapping in the page.
*
* Returns: 0, or negative error code.
* The key words are stored in *key on success.
*
* Should be called with &current->mm->mmap_sem but NOT any spinlocks.
*/
static int get_futex_key(unsigned long uaddr, union futex_key *key)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
struct page *page;
int err;
/*
* The futex address must be "naturally" aligned.
*/
key->both.offset = uaddr % PAGE_SIZE;
if (unlikely((key->both.offset % sizeof(u32)) != 0))
return -EINVAL;
uaddr -= key->both.offset;
/*
* The futex is hashed differently depending on whether
* it's in a shared or private mapping. So check vma first.
*/
vma = find_extend_vma(mm, uaddr);
if (unlikely(!vma))
return -EFAULT;
/*
* Permissions.
*/
if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
/*
* Private mappings are handled in a simple way.
*
* NOTE: When userspace waits on a MAP_SHARED mapping, even if
* it's a read-only handle, it's expected that futexes attach to
* the object not the particular process. Therefore we use
* VM_MAYSHARE here, not VM_SHARED which is restricted to shared
* mappings of _writable_ handles.
*/
if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
key->private.mm = mm;
key->private.uaddr = uaddr;
return 0;
}
/*
* Linear file mappings are also simple.
*/
key->shared.inode = vma->vm_file->f_dentry->d_inode;
key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT)
+ vma->vm_pgoff);
return 0;
}
/*
* We could walk the page table to read the non-linear
* pte, and get the page index without fetching the page
* from swap. But that's a lot of code to duplicate here
* for a rare case, so we simply fetch the page.
*/
err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL);
if (err >= 0) {
key->shared.pgoff =
page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
put_page(page);
return 0;
}
return err;
}
/*
* Take a reference to the resource addressed by a key.
* Can be called while holding spinlocks.
*
* NOTE: mmap_sem MUST be held between get_futex_key() and calling this
* function, if it is called at all. mmap_sem keeps key->shared.inode valid.
*/
static inline void get_key_refs(union futex_key *key)
{
if (key->both.ptr != 0) {
if (key->both.offset & 1)
atomic_inc(&key->shared.inode->i_count);
else
atomic_inc(&key->private.mm->mm_count);
}
}
/*
* Drop a reference to the resource addressed by a key.
* The hash bucket spinlock must not be held.
*/
static void drop_key_refs(union futex_key *key)
{
if (key->both.ptr != 0) {
if (key->both.offset & 1)
iput(key->shared.inode);
else
mmdrop(key->private.mm);
}
}
static inline int get_futex_value_locked(int *dest, int __user *from)
{
int ret;
inc_preempt_count();
ret = __copy_from_user_inatomic(dest, from, sizeof(int));
dec_preempt_count();
return ret ? -EFAULT : 0;
}
/*
* The hash bucket lock must be held when this is called.
* Afterwards, the futex_q must not be accessed.
*/
static void wake_futex(struct futex_q *q)
{
list_del_init(&q->list);
if (q->filp)
send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
/*
* The lock in wake_up_all() is a crucial memory barrier after the
* list_del_init() and also before assigning to q->lock_ptr.
*/
wake_up_all(&q->waiters);
/*
* The waiting task can free the futex_q as soon as this is written,
* without taking any locks. This must come last.
*/
q->lock_ptr = NULL;
}
/*
* Wake up all waiters hashed on the physical page that is mapped
* to this virtual address:
*/
static int futex_wake(unsigned long uaddr, int nr_wake)
{
union futex_key key;
struct futex_hash_bucket *bh;
struct list_head *head;
struct futex_q *this, *next;
int ret;
down_read(&current->mm->mmap_sem);
ret = get_futex_key(uaddr, &key);
if (unlikely(ret != 0))
goto out;
bh = hash_futex(&key);
spin_lock(&bh->lock);
head = &bh->chain;
list_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key)) {
wake_futex(this);
if (++ret >= nr_wake)
break;
}
}
spin_unlock(&bh->lock);
out:
up_read(&current->mm->mmap_sem);
return ret;
}
/*
* Wake up all waiters hashed on the physical page that is mapped
* to this virtual address:
*/
static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op)
{
union futex_key key1, key2;
struct futex_hash_bucket *bh1, *bh2;
struct list_head *head;
struct futex_q *this, *next;
int ret, op_ret, attempt = 0;
retryfull:
down_read(&current->mm->mmap_sem);
ret = get_futex_key(uaddr1, &key1);
if (unlikely(ret != 0))
goto out;
ret = get_futex_key(uaddr2, &key2);
if (unlikely(ret != 0))
goto out;
bh1 = hash_futex(&key1);
bh2 = hash_futex(&key2);
retry:
if (bh1 < bh2)
spin_lock(&bh1->lock);
spin_lock(&bh2->lock);
if (bh1 > bh2)
spin_lock(&bh1->lock);
op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2);
if (unlikely(op_ret < 0)) {
int dummy;
spin_unlock(&bh1->lock);
if (bh1 != bh2)
spin_unlock(&bh2->lock);
if (unlikely(op_ret != -EFAULT)) {
ret = op_ret;
goto out;
}
/* futex_atomic_op_inuser needs to both read and write
* *(int __user *)uaddr2, but we can't modify it
* non-atomically. Therefore, if get_user below is not
* enough, we need to handle the fault ourselves, while
* still holding the mmap_sem. */
if (attempt++) {
struct vm_area_struct * vma;
struct mm_struct *mm = current->mm;
ret = -EFAULT;
if (attempt >= 2 ||
!(vma = find_vma(mm, uaddr2)) ||
vma->vm_start > uaddr2 ||
!(vma->vm_flags & VM_WRITE))
goto out;
switch (handle_mm_fault(mm, vma, uaddr2, 1)) {
case VM_FAULT_MINOR:
current->min_flt++;
break;
case VM_FAULT_MAJOR:
current->maj_flt++;
break;
default:
goto out;
}
goto retry;
}
/* If we would have faulted, release mmap_sem,
* fault it in and start all over again. */
up_read(&current->mm->mmap_sem);
ret = get_user(dummy, (int __user *)uaddr2);
if (ret)
return ret;
goto retryfull;
}
head = &bh1->chain;
list_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key1)) {
wake_futex(this);
if (++ret >= nr_wake)
break;
}
}
if (op_ret > 0) {
head = &bh2->chain;
op_ret = 0;
list_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key2)) {
wake_futex(this);
if (++op_ret >= nr_wake2)
break;
}
}
ret += op_ret;
}
spin_unlock(&bh1->lock);
if (bh1 != bh2)
spin_unlock(&bh2->lock);
out:
up_read(&current->mm->mmap_sem);
return ret;
}
/*
* Requeue all waiters hashed on one physical page to another
* physical page.
*/
static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2,
int nr_wake, int nr_requeue, int *valp)
{
union futex_key key1, key2;
struct futex_hash_bucket *bh1, *bh2;
struct list_head *head1;
struct futex_q *this, *next;
int ret, drop_count = 0;
retry:
down_read(&current->mm->mmap_sem);
ret = get_futex_key(uaddr1, &key1);
if (unlikely(ret != 0))
goto out;
ret = get_futex_key(uaddr2, &key2);
if (unlikely(ret != 0))
goto out;
bh1 = hash_futex(&key1);
bh2 = hash_futex(&key2);
if (bh1 < bh2)
spin_lock(&bh1->lock);
spin_lock(&bh2->lock);
if (bh1 > bh2)
spin_lock(&bh1->lock);
if (likely(valp != NULL)) {
int curval;
ret = get_futex_value_locked(&curval, (int __user *)uaddr1);
if (unlikely(ret)) {
spin_unlock(&bh1->lock);
if (bh1 != bh2)
spin_unlock(&bh2->lock);
/* If we would have faulted, release mmap_sem, fault
* it in and start all over again.
*/
up_read(&current->mm->mmap_sem);
ret = get_user(curval, (int __user *)uaddr1);
if (!ret)
goto retry;
return ret;
}
if (curval != *valp) {
ret = -EAGAIN;
goto out_unlock;
}
}
head1 = &bh1->chain;
list_for_each_entry_safe(this, next, head1, list) {
if (!match_futex (&this->key, &key1))
continue;
if (++ret <= nr_wake) {
wake_futex(this);
} else {
list_move_tail(&this->list, &bh2->chain);
this->lock_ptr = &bh2->lock;
this->key = key2;
get_key_refs(&key2);
drop_count++;
if (ret - nr_wake >= nr_requeue)
break;
/* Make sure to stop if key1 == key2 */
if (head1 == &bh2->chain && head1 != &next->list)
head1 = &this->list;
}
}
out_unlock:
spin_unlock(&bh1->lock);
if (bh1 != bh2)
spin_unlock(&bh2->lock);
/* drop_key_refs() must be called outside the spinlocks. */
while (--drop_count >= 0)
drop_key_refs(&key1);
out:
up_read(&current->mm->mmap_sem);
return ret;
}
/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *
queue_lock(struct futex_q *q, int fd, struct file *filp)
{
struct futex_hash_bucket *bh;
q->fd = fd;
q->filp = filp;
init_waitqueue_head(&q->waiters);
get_key_refs(&q->key);
bh = hash_futex(&q->key);
q->lock_ptr = &bh->lock;
spin_lock(&bh->lock);
return bh;
}
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh)
{
list_add_tail(&q->list, &bh->chain);
spin_unlock(&bh->lock);
}
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh)
{
spin_unlock(&bh->lock);
drop_key_refs(&q->key);
}
/*
* queue_me and unqueue_me must be called as a pair, each
* exactly once. They are called with the hashed spinlock held.
*/
/* The key must be already stored in q->key. */
static void queue_me(struct futex_q *q, int fd, struct file *filp)
{
struct futex_hash_bucket *bh;
bh = queue_lock(q, fd, filp);
__queue_me(q, bh);
}
/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
int ret = 0;
spinlock_t *lock_ptr;
/* In the common case we don't take the spinlock, which is nice. */
retry:
lock_ptr = q->lock_ptr;
if (lock_ptr != 0) {
spin_lock(lock_ptr);
/*
* q->lock_ptr can change between reading it and
* spin_lock(), causing us to take the wrong lock. This
* corrects the race condition.
*
* Reasoning goes like this: if we have the wrong lock,
* q->lock_ptr must have changed (maybe several times)
* between reading it and the spin_lock(). It can
* change again after the spin_lock() but only if it was
* already changed before the spin_lock(). It cannot,
* however, change back to the original value. Therefore
* we can detect whether we acquired the correct lock.
*/
if (unlikely(lock_ptr != q->lock_ptr)) {
spin_unlock(lock_ptr);
goto retry;
}
WARN_ON(list_empty(&q->list));
list_del(&q->list);
spin_unlock(lock_ptr);
ret = 1;
}
drop_key_refs(&q->key);
return ret;
}
static int futex_wait(unsigned long uaddr, int val, unsigned long time)
{
DECLARE_WAITQUEUE(wait, current);
int ret, curval;
struct futex_q q;
struct futex_hash_bucket *bh;
retry:
down_read(&current->mm->mmap_sem);
ret = get_futex_key(uaddr, &q.key);
if (unlikely(ret != 0))
goto out_release_sem;
bh = queue_lock(&q, -1, NULL);
/*
* Access the page AFTER the futex is queued.
* Order is important:
*
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
*
* The basic logical guarantee of a futex is that it blocks ONLY
* if cond(var) is known to be true at the time of blocking, for
* any cond. If we queued after testing *uaddr, that would open
* a race condition where we could block indefinitely with
* cond(var) false, which would violate the guarantee.
*
* A consequence is that futex_wait() can return zero and absorb
* a wakeup when *uaddr != val on entry to the syscall. This is
* rare, but normal.
*
* We hold the mmap semaphore, so the mapping cannot have changed
* since we looked it up in get_futex_key.
*/
ret = get_futex_value_locked(&curval, (int __user *)uaddr);
if (unlikely(ret)) {
queue_unlock(&q, bh);
/* If we would have faulted, release mmap_sem, fault it in and
* start all over again.
*/
up_read(&current->mm->mmap_sem);
ret = get_user(curval, (int __user *)uaddr);
if (!ret)
goto retry;
return ret;
}
if (curval != val) {
ret = -EWOULDBLOCK;
queue_unlock(&q, bh);
goto out_release_sem;
}
/* Only actually queue if *uaddr contained val. */
__queue_me(&q, bh);
/*
* Now the futex is queued and we have checked the data, we
* don't want to hold mmap_sem while we sleep.
*/
up_read(&current->mm->mmap_sem);
/*
* There might have been scheduling since the queue_me(), as we
* cannot hold a spinlock across the get_user() in case it
* faults, and we cannot just set TASK_INTERRUPTIBLE state when
* queueing ourselves into the futex hash. This code thus has to
* rely on the futex_wake() code removing us from hash when it
* wakes us up.
*/
/* add_wait_queue is the barrier after __set_current_state. */
__set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&q.waiters, &wait);
/*
* !list_empty() is safe here without any lock.
* q.lock_ptr != 0 is not safe, because of ordering against wakeup.
*/
if (likely(!list_empty(&q.list)))
time = schedule_timeout(time);
__set_current_state(TASK_RUNNING);
/*
* NOTE: we don't remove ourselves from the waitqueue because
* we are the only user of it.
*/
/* If we were woken (and unqueued), we succeeded, whatever. */
if (!unqueue_me(&q))
return 0;
if (time == 0)
return -ETIMEDOUT;
/* We expect signal_pending(current), but another thread may
* have handled it for us already. */
return -EINTR;
out_release_sem:
up_read(&current->mm->mmap_sem);
return ret;
}
static int futex_close(struct inode *inode, struct file *filp)
{
struct futex_q *q = filp->private_data;
unqueue_me(q);
kfree(q);
return 0;
}
/* This is one-shot: once it's gone off you need a new fd */
static unsigned int futex_poll(struct file *filp,
struct poll_table_struct *wait)
{
struct futex_q *q = filp->private_data;
int ret = 0;
poll_wait(filp, &q->waiters, wait);
/*
* list_empty() is safe here without any lock.
* q->lock_ptr != 0 is not safe, because of ordering against wakeup.
*/
if (list_empty(&q->list))
ret = POLLIN | POLLRDNORM;
return ret;
}
static struct file_operations futex_fops = {
.release = futex_close,
.poll = futex_poll,
};
/*
* Signal allows caller to avoid the race which would occur if they
* set the sigio stuff up afterwards.
*/
static int futex_fd(unsigned long uaddr, int signal)
{
struct futex_q *q;
struct file *filp;
int ret, err;
ret = -EINVAL;
if (!valid_signal(signal))
goto out;
ret = get_unused_fd();
if (ret < 0)
goto out;
filp = get_empty_filp();
if (!filp) {
put_unused_fd(ret);
ret = -ENFILE;
goto out;
}
filp->f_op = &futex_fops;
filp->f_vfsmnt = mntget(futex_mnt);
filp->f_dentry = dget(futex_mnt->mnt_root);
filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
if (signal) {
err = f_setown(filp, current->pid, 1);
if (err < 0) {
goto error;
}
filp->f_owner.signum = signal;
}
q = kmalloc(sizeof(*q), GFP_KERNEL);
if (!q) {
err = -ENOMEM;
goto error;
}
down_read(&current->mm->mmap_sem);
err = get_futex_key(uaddr, &q->key);
if (unlikely(err != 0)) {
up_read(&current->mm->mmap_sem);
kfree(q);
goto error;
}
/*
* queue_me() must be called before releasing mmap_sem, because
* key->shared.inode needs to be referenced while holding it.
*/
filp->private_data = q;
queue_me(q, ret, filp);
up_read(&current->mm->mmap_sem);
/* Now we map fd to filp, so userspace can access it */
fd_install(ret, filp);
out:
return ret;
error:
put_unused_fd(ret);
put_filp(filp);
ret = err;
goto out;
}
long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
unsigned long uaddr2, int val2, int val3)
{
int ret;
switch (op) {
case FUTEX_WAIT:
ret = futex_wait(uaddr, val, timeout);
break;
case FUTEX_WAKE:
ret = futex_wake(uaddr, val);
break;
case FUTEX_FD:
/* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
ret = futex_fd(uaddr, val);
break;
case FUTEX_REQUEUE:
ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
break;
case FUTEX_CMP_REQUEUE:
ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
break;
case FUTEX_WAKE_OP:
ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
break;
default:
ret = -ENOSYS;
}
return ret;
}
asmlinkage long sys_futex(u32 __user *uaddr, int op, int val,
struct timespec __user *utime, u32 __user *uaddr2,
int val3)
{
struct timespec t;
unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
int val2 = 0;
if ((op == FUTEX_WAIT) && utime) {
if (copy_from_user(&t, utime, sizeof(t)) != 0)
return -EFAULT;
timeout = timespec_to_jiffies(&t) + 1;
}
/*
* requeue parameter in 'utime' if op == FUTEX_REQUEUE.
*/
if (op >= FUTEX_REQUEUE)
val2 = (int) (unsigned long) utime;
return do_futex((unsigned long)uaddr, op, val, timeout,
(unsigned long)uaddr2, val2, val3);
}
static struct super_block *
futexfs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA);
}
static struct file_system_type futex_fs_type = {
.name = "futexfs",
.get_sb = futexfs_get_sb,
.kill_sb = kill_anon_super,
};
static int __init init(void)
{
unsigned int i;
register_filesystem(&futex_fs_type);
futex_mnt = kern_mount(&futex_fs_type);
for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
INIT_LIST_HEAD(&futex_queues[i].chain);
spin_lock_init(&futex_queues[i].lock);
}
return 0;
}
__initcall(init);