You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
668 lines
16 KiB
668 lines
16 KiB
/*
|
|
* Re-map IO memory to kernel address space so that we can access it.
|
|
* This is needed for high PCI addresses that aren't mapped in the
|
|
* 640k-1MB IO memory area on PC's
|
|
*
|
|
* (C) Copyright 1995 1996 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mmiotrace.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pat.h>
|
|
|
|
#include "physaddr.h"
|
|
|
|
int page_is_ram(unsigned long pagenr)
|
|
{
|
|
resource_size_t addr, end;
|
|
int i;
|
|
|
|
/*
|
|
* A special case is the first 4Kb of memory;
|
|
* This is a BIOS owned area, not kernel ram, but generally
|
|
* not listed as such in the E820 table.
|
|
*/
|
|
if (pagenr == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Second special case: Some BIOSen report the PC BIOS
|
|
* area (640->1Mb) as ram even though it is not.
|
|
*/
|
|
if (pagenr >= (BIOS_BEGIN >> PAGE_SHIFT) &&
|
|
pagenr < (BIOS_END >> PAGE_SHIFT))
|
|
return 0;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
/*
|
|
* Not usable memory:
|
|
*/
|
|
if (e820.map[i].type != E820_RAM)
|
|
continue;
|
|
addr = (e820.map[i].addr + PAGE_SIZE-1) >> PAGE_SHIFT;
|
|
end = (e820.map[i].addr + e820.map[i].size) >> PAGE_SHIFT;
|
|
|
|
|
|
if ((pagenr >= addr) && (pagenr < end))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fix up the linear direct mapping of the kernel to avoid cache attribute
|
|
* conflicts.
|
|
*/
|
|
int ioremap_change_attr(unsigned long vaddr, unsigned long size,
|
|
unsigned long prot_val)
|
|
{
|
|
unsigned long nrpages = size >> PAGE_SHIFT;
|
|
int err;
|
|
|
|
switch (prot_val) {
|
|
case _PAGE_CACHE_UC:
|
|
default:
|
|
err = _set_memory_uc(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_WC:
|
|
err = _set_memory_wc(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_WB:
|
|
err = _set_memory_wb(vaddr, nrpages);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Remap an arbitrary physical address space into the kernel virtual
|
|
* address space. Needed when the kernel wants to access high addresses
|
|
* directly.
|
|
*
|
|
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
|
|
* have to convert them into an offset in a page-aligned mapping, but the
|
|
* caller shouldn't need to know that small detail.
|
|
*/
|
|
static void __iomem *__ioremap_caller(resource_size_t phys_addr,
|
|
unsigned long size, unsigned long prot_val, void *caller)
|
|
{
|
|
unsigned long pfn, offset, vaddr;
|
|
resource_size_t last_addr;
|
|
const resource_size_t unaligned_phys_addr = phys_addr;
|
|
const unsigned long unaligned_size = size;
|
|
struct vm_struct *area;
|
|
unsigned long new_prot_val;
|
|
pgprot_t prot;
|
|
int retval;
|
|
void __iomem *ret_addr;
|
|
|
|
/* Don't allow wraparound or zero size */
|
|
last_addr = phys_addr + size - 1;
|
|
if (!size || last_addr < phys_addr)
|
|
return NULL;
|
|
|
|
if (!phys_addr_valid(phys_addr)) {
|
|
printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
|
|
(unsigned long long)phys_addr);
|
|
WARN_ON_ONCE(1);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Don't remap the low PCI/ISA area, it's always mapped..
|
|
*/
|
|
if (is_ISA_range(phys_addr, last_addr))
|
|
return (__force void __iomem *)phys_to_virt(phys_addr);
|
|
|
|
/*
|
|
* Check if the request spans more than any BAR in the iomem resource
|
|
* tree.
|
|
*/
|
|
WARN_ONCE(iomem_map_sanity_check(phys_addr, size),
|
|
KERN_INFO "Info: mapping multiple BARs. Your kernel is fine.");
|
|
|
|
/*
|
|
* Don't allow anybody to remap normal RAM that we're using..
|
|
*/
|
|
for (pfn = phys_addr >> PAGE_SHIFT;
|
|
(pfn << PAGE_SHIFT) < (last_addr & PAGE_MASK);
|
|
pfn++) {
|
|
|
|
int is_ram = page_is_ram(pfn);
|
|
|
|
if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn)))
|
|
return NULL;
|
|
WARN_ON_ONCE(is_ram);
|
|
}
|
|
|
|
/*
|
|
* Mappings have to be page-aligned
|
|
*/
|
|
offset = phys_addr & ~PAGE_MASK;
|
|
phys_addr &= PAGE_MASK;
|
|
size = PAGE_ALIGN(last_addr+1) - phys_addr;
|
|
|
|
retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
|
|
prot_val, &new_prot_val);
|
|
if (retval) {
|
|
printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
|
|
return NULL;
|
|
}
|
|
|
|
if (prot_val != new_prot_val) {
|
|
if (!is_new_memtype_allowed(phys_addr, size,
|
|
prot_val, new_prot_val)) {
|
|
printk(KERN_ERR
|
|
"ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n",
|
|
(unsigned long long)phys_addr,
|
|
(unsigned long long)(phys_addr + size),
|
|
prot_val, new_prot_val);
|
|
goto err_free_memtype;
|
|
}
|
|
prot_val = new_prot_val;
|
|
}
|
|
|
|
switch (prot_val) {
|
|
case _PAGE_CACHE_UC:
|
|
default:
|
|
prot = PAGE_KERNEL_IO_NOCACHE;
|
|
break;
|
|
case _PAGE_CACHE_UC_MINUS:
|
|
prot = PAGE_KERNEL_IO_UC_MINUS;
|
|
break;
|
|
case _PAGE_CACHE_WC:
|
|
prot = PAGE_KERNEL_IO_WC;
|
|
break;
|
|
case _PAGE_CACHE_WB:
|
|
prot = PAGE_KERNEL_IO;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ok, go for it..
|
|
*/
|
|
area = get_vm_area_caller(size, VM_IOREMAP, caller);
|
|
if (!area)
|
|
goto err_free_memtype;
|
|
area->phys_addr = phys_addr;
|
|
vaddr = (unsigned long) area->addr;
|
|
|
|
if (kernel_map_sync_memtype(phys_addr, size, prot_val))
|
|
goto err_free_area;
|
|
|
|
if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
|
|
goto err_free_area;
|
|
|
|
ret_addr = (void __iomem *) (vaddr + offset);
|
|
mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
|
|
|
|
return ret_addr;
|
|
err_free_area:
|
|
free_vm_area(area);
|
|
err_free_memtype:
|
|
free_memtype(phys_addr, phys_addr + size);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ioremap_nocache - map bus memory into CPU space
|
|
* @offset: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* ioremap_nocache performs a platform specific sequence of operations to
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
* address.
|
|
*
|
|
* This version of ioremap ensures that the memory is marked uncachable
|
|
* on the CPU as well as honouring existing caching rules from things like
|
|
* the PCI bus. Note that there are other caches and buffers on many
|
|
* busses. In particular driver authors should read up on PCI writes
|
|
*
|
|
* It's useful if some control registers are in such an area and
|
|
* write combining or read caching is not desirable:
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
/*
|
|
* Ideally, this should be:
|
|
* pat_enabled ? _PAGE_CACHE_UC : _PAGE_CACHE_UC_MINUS;
|
|
*
|
|
* Till we fix all X drivers to use ioremap_wc(), we will use
|
|
* UC MINUS.
|
|
*/
|
|
unsigned long val = _PAGE_CACHE_UC_MINUS;
|
|
|
|
return __ioremap_caller(phys_addr, size, val,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_nocache);
|
|
|
|
/**
|
|
* ioremap_wc - map memory into CPU space write combined
|
|
* @offset: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* This version of ioremap ensures that the memory is marked write combining.
|
|
* Write combining allows faster writes to some hardware devices.
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
if (pat_enabled)
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC,
|
|
__builtin_return_address(0));
|
|
else
|
|
return ioremap_nocache(phys_addr, size);
|
|
}
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
|
|
void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_cache);
|
|
|
|
static void __iomem *ioremap_default(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
unsigned long flags;
|
|
void __iomem *ret;
|
|
int err;
|
|
|
|
/*
|
|
* - WB for WB-able memory and no other conflicting mappings
|
|
* - UC_MINUS for non-WB-able memory with no other conflicting mappings
|
|
* - Inherit from confliting mappings otherwise
|
|
*/
|
|
err = reserve_memtype(phys_addr, phys_addr + size,
|
|
_PAGE_CACHE_WB, &flags);
|
|
if (err < 0)
|
|
return NULL;
|
|
|
|
ret = __ioremap_caller(phys_addr, size, flags,
|
|
__builtin_return_address(0));
|
|
|
|
free_memtype(phys_addr, phys_addr + size);
|
|
return ret;
|
|
}
|
|
|
|
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
|
|
unsigned long prot_val)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, (prot_val & _PAGE_CACHE_MASK),
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_prot);
|
|
|
|
/**
|
|
* iounmap - Free a IO remapping
|
|
* @addr: virtual address from ioremap_*
|
|
*
|
|
* Caller must ensure there is only one unmapping for the same pointer.
|
|
*/
|
|
void iounmap(volatile void __iomem *addr)
|
|
{
|
|
struct vm_struct *p, *o;
|
|
|
|
if ((void __force *)addr <= high_memory)
|
|
return;
|
|
|
|
/*
|
|
* __ioremap special-cases the PCI/ISA range by not instantiating a
|
|
* vm_area and by simply returning an address into the kernel mapping
|
|
* of ISA space. So handle that here.
|
|
*/
|
|
if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
|
|
(void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
|
|
return;
|
|
|
|
addr = (volatile void __iomem *)
|
|
(PAGE_MASK & (unsigned long __force)addr);
|
|
|
|
mmiotrace_iounmap(addr);
|
|
|
|
/* Use the vm area unlocked, assuming the caller
|
|
ensures there isn't another iounmap for the same address
|
|
in parallel. Reuse of the virtual address is prevented by
|
|
leaving it in the global lists until we're done with it.
|
|
cpa takes care of the direct mappings. */
|
|
read_lock(&vmlist_lock);
|
|
for (p = vmlist; p; p = p->next) {
|
|
if (p->addr == (void __force *)addr)
|
|
break;
|
|
}
|
|
read_unlock(&vmlist_lock);
|
|
|
|
if (!p) {
|
|
printk(KERN_ERR "iounmap: bad address %p\n", addr);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
|
|
|
|
/* Finally remove it */
|
|
o = remove_vm_area((void __force *)addr);
|
|
BUG_ON(p != o || o == NULL);
|
|
kfree(p);
|
|
}
|
|
EXPORT_SYMBOL(iounmap);
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
void *xlate_dev_mem_ptr(unsigned long phys)
|
|
{
|
|
void *addr;
|
|
unsigned long start = phys & PAGE_MASK;
|
|
|
|
/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
|
|
if (page_is_ram(start >> PAGE_SHIFT))
|
|
return __va(phys);
|
|
|
|
addr = (void __force *)ioremap_default(start, PAGE_SIZE);
|
|
if (addr)
|
|
addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK));
|
|
|
|
return addr;
|
|
}
|
|
|
|
void unxlate_dev_mem_ptr(unsigned long phys, void *addr)
|
|
{
|
|
if (page_is_ram(phys >> PAGE_SHIFT))
|
|
return;
|
|
|
|
iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
|
|
return;
|
|
}
|
|
|
|
static int __initdata early_ioremap_debug;
|
|
|
|
static int __init early_ioremap_debug_setup(char *str)
|
|
{
|
|
early_ioremap_debug = 1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("early_ioremap_debug", early_ioremap_debug_setup);
|
|
|
|
static __initdata int after_paging_init;
|
|
static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
|
|
|
|
static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
|
|
{
|
|
/* Don't assume we're using swapper_pg_dir at this point */
|
|
pgd_t *base = __va(read_cr3());
|
|
pgd_t *pgd = &base[pgd_index(addr)];
|
|
pud_t *pud = pud_offset(pgd, addr);
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static inline pte_t * __init early_ioremap_pte(unsigned long addr)
|
|
{
|
|
return &bm_pte[pte_index(addr)];
|
|
}
|
|
|
|
static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata;
|
|
|
|
void __init early_ioremap_init(void)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
if (early_ioremap_debug)
|
|
printk(KERN_INFO "early_ioremap_init()\n");
|
|
|
|
for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
|
|
slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
|
|
|
|
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
|
|
memset(bm_pte, 0, sizeof(bm_pte));
|
|
pmd_populate_kernel(&init_mm, pmd, bm_pte);
|
|
|
|
/*
|
|
* The boot-ioremap range spans multiple pmds, for which
|
|
* we are not prepared:
|
|
*/
|
|
if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
|
|
WARN_ON(1);
|
|
printk(KERN_WARNING "pmd %p != %p\n",
|
|
pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
|
|
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_BEGIN));
|
|
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_END));
|
|
|
|
printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
|
|
printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
|
|
FIX_BTMAP_BEGIN);
|
|
}
|
|
}
|
|
|
|
void __init early_ioremap_reset(void)
|
|
{
|
|
after_paging_init = 1;
|
|
}
|
|
|
|
static void __init __early_set_fixmap(enum fixed_addresses idx,
|
|
phys_addr_t phys, pgprot_t flags)
|
|
{
|
|
unsigned long addr = __fix_to_virt(idx);
|
|
pte_t *pte;
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pte = early_ioremap_pte(addr);
|
|
|
|
if (pgprot_val(flags))
|
|
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
else
|
|
pte_clear(&init_mm, addr, pte);
|
|
__flush_tlb_one(addr);
|
|
}
|
|
|
|
static inline void __init early_set_fixmap(enum fixed_addresses idx,
|
|
phys_addr_t phys, pgprot_t prot)
|
|
{
|
|
if (after_paging_init)
|
|
__set_fixmap(idx, phys, prot);
|
|
else
|
|
__early_set_fixmap(idx, phys, prot);
|
|
}
|
|
|
|
static inline void __init early_clear_fixmap(enum fixed_addresses idx)
|
|
{
|
|
if (after_paging_init)
|
|
clear_fixmap(idx);
|
|
else
|
|
__early_set_fixmap(idx, 0, __pgprot(0));
|
|
}
|
|
|
|
static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata;
|
|
static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata;
|
|
|
|
static int __init check_early_ioremap_leak(void)
|
|
{
|
|
int count = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
|
|
if (prev_map[i])
|
|
count++;
|
|
|
|
if (!count)
|
|
return 0;
|
|
WARN(1, KERN_WARNING
|
|
"Debug warning: early ioremap leak of %d areas detected.\n",
|
|
count);
|
|
printk(KERN_WARNING
|
|
"please boot with early_ioremap_debug and report the dmesg.\n");
|
|
|
|
return 1;
|
|
}
|
|
late_initcall(check_early_ioremap_leak);
|
|
|
|
static void __init __iomem *
|
|
__early_ioremap(resource_size_t phys_addr, unsigned long size, pgprot_t prot)
|
|
{
|
|
unsigned long offset;
|
|
resource_size_t last_addr;
|
|
unsigned int nrpages;
|
|
enum fixed_addresses idx0, idx;
|
|
int i, slot;
|
|
|
|
WARN_ON(system_state != SYSTEM_BOOTING);
|
|
|
|
slot = -1;
|
|
for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
|
|
if (!prev_map[i]) {
|
|
slot = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (slot < 0) {
|
|
printk(KERN_INFO "early_iomap(%08llx, %08lx) not found slot\n",
|
|
(u64)phys_addr, size);
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
|
|
if (early_ioremap_debug) {
|
|
printk(KERN_INFO "early_ioremap(%08llx, %08lx) [%d] => ",
|
|
(u64)phys_addr, size, slot);
|
|
dump_stack();
|
|
}
|
|
|
|
/* Don't allow wraparound or zero size */
|
|
last_addr = phys_addr + size - 1;
|
|
if (!size || last_addr < phys_addr) {
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
|
|
prev_size[slot] = size;
|
|
/*
|
|
* Mappings have to be page-aligned
|
|
*/
|
|
offset = phys_addr & ~PAGE_MASK;
|
|
phys_addr &= PAGE_MASK;
|
|
size = PAGE_ALIGN(last_addr + 1) - phys_addr;
|
|
|
|
/*
|
|
* Mappings have to fit in the FIX_BTMAP area.
|
|
*/
|
|
nrpages = size >> PAGE_SHIFT;
|
|
if (nrpages > NR_FIX_BTMAPS) {
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Ok, go for it..
|
|
*/
|
|
idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
|
|
idx = idx0;
|
|
while (nrpages > 0) {
|
|
early_set_fixmap(idx, phys_addr, prot);
|
|
phys_addr += PAGE_SIZE;
|
|
--idx;
|
|
--nrpages;
|
|
}
|
|
if (early_ioremap_debug)
|
|
printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]);
|
|
|
|
prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]);
|
|
return prev_map[slot];
|
|
}
|
|
|
|
/* Remap an IO device */
|
|
void __init __iomem *
|
|
early_ioremap(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __early_ioremap(phys_addr, size, PAGE_KERNEL_IO);
|
|
}
|
|
|
|
/* Remap memory */
|
|
void __init __iomem *
|
|
early_memremap(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __early_ioremap(phys_addr, size, PAGE_KERNEL);
|
|
}
|
|
|
|
void __init early_iounmap(void __iomem *addr, unsigned long size)
|
|
{
|
|
unsigned long virt_addr;
|
|
unsigned long offset;
|
|
unsigned int nrpages;
|
|
enum fixed_addresses idx;
|
|
int i, slot;
|
|
|
|
slot = -1;
|
|
for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
|
|
if (prev_map[i] == addr) {
|
|
slot = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (slot < 0) {
|
|
printk(KERN_INFO "early_iounmap(%p, %08lx) not found slot\n",
|
|
addr, size);
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
if (prev_size[slot] != size) {
|
|
printk(KERN_INFO "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n",
|
|
addr, size, slot, prev_size[slot]);
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
if (early_ioremap_debug) {
|
|
printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr,
|
|
size, slot);
|
|
dump_stack();
|
|
}
|
|
|
|
virt_addr = (unsigned long)addr;
|
|
if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
offset = virt_addr & ~PAGE_MASK;
|
|
nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT;
|
|
|
|
idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
|
|
while (nrpages > 0) {
|
|
early_clear_fixmap(idx);
|
|
--idx;
|
|
--nrpages;
|
|
}
|
|
prev_map[slot] = NULL;
|
|
}
|
|
|