You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

343 lines
8.6 KiB

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* io.c
*
* Buffer cache handling
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "inode.h"
#include "journal.h"
#include "uptodate.h"
#include "buffer_head_io.h"
int ocfs2_write_block(struct ocfs2_super *osb, struct buffer_head *bh,
struct inode *inode)
{
int ret = 0;
mlog_entry("(bh->b_blocknr = %llu, inode=%p)\n",
(unsigned long long)bh->b_blocknr, inode);
BUG_ON(bh->b_blocknr < OCFS2_SUPER_BLOCK_BLKNO);
BUG_ON(buffer_jbd(bh));
/* No need to check for a soft readonly file system here. non
* journalled writes are only ever done on system files which
* can get modified during recovery even if read-only. */
if (ocfs2_is_hard_readonly(osb)) {
ret = -EROFS;
goto out;
}
mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
lock_buffer(bh);
set_buffer_uptodate(bh);
/* remove from dirty list before I/O. */
clear_buffer_dirty(bh);
get_bh(bh); /* for end_buffer_write_sync() */
bh->b_end_io = end_buffer_write_sync;
submit_bh(WRITE, bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh)) {
ocfs2_set_buffer_uptodate(inode, bh);
} else {
/* We don't need to remove the clustered uptodate
* information for this bh as it's not marked locally
* uptodate. */
ret = -EIO;
put_bh(bh);
}
mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
out:
mlog_exit(ret);
return ret;
}
int ocfs2_read_blocks(struct ocfs2_super *osb, u64 block, int nr,
struct buffer_head *bhs[], int flags,
struct inode *inode)
{
int status = 0;
struct super_block *sb;
int i, ignore_cache = 0;
struct buffer_head *bh;
mlog_entry("(block=(%llu), nr=(%d), flags=%d, inode=%p)\n",
(unsigned long long)block, nr, flags, inode);
BUG_ON((flags & OCFS2_BH_READAHEAD) &&
(!inode || !(flags & OCFS2_BH_CACHED)));
if (osb == NULL || osb->sb == NULL || bhs == NULL) {
status = -EINVAL;
mlog_errno(status);
goto bail;
}
if (nr < 0) {
mlog(ML_ERROR, "asked to read %d blocks!\n", nr);
status = -EINVAL;
mlog_errno(status);
goto bail;
}
if (nr == 0) {
mlog(ML_BH_IO, "No buffers will be read!\n");
status = 0;
goto bail;
}
sb = osb->sb;
if (flags & OCFS2_BH_CACHED && !inode)
flags &= ~OCFS2_BH_CACHED;
if (inode)
mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
for (i = 0 ; i < nr ; i++) {
if (bhs[i] == NULL) {
bhs[i] = sb_getblk(sb, block++);
if (bhs[i] == NULL) {
if (inode)
mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
status = -EIO;
mlog_errno(status);
goto bail;
}
}
bh = bhs[i];
ignore_cache = 0;
/* There are three read-ahead cases here which we need to
* be concerned with. All three assume a buffer has
* previously been submitted with OCFS2_BH_READAHEAD
* and it hasn't yet completed I/O.
*
* 1) The current request is sync to disk. This rarely
* happens these days, and never when performance
* matters - the code can just wait on the buffer
* lock and re-submit.
*
* 2) The current request is cached, but not
* readahead. ocfs2_buffer_uptodate() will return
* false anyway, so we'll wind up waiting on the
* buffer lock to do I/O. We re-check the request
* with after getting the lock to avoid a re-submit.
*
* 3) The current request is readahead (and so must
* also be a caching one). We short circuit if the
* buffer is locked (under I/O) and if it's in the
* uptodate cache. The re-check from #2 catches the
* case that the previous read-ahead completes just
* before our is-it-in-flight check.
*/
if (flags & OCFS2_BH_CACHED &&
!ocfs2_buffer_uptodate(inode, bh)) {
mlog(ML_UPTODATE,
"bh (%llu), inode %llu not uptodate\n",
(unsigned long long)bh->b_blocknr,
(unsigned long long)OCFS2_I(inode)->ip_blkno);
ignore_cache = 1;
}
/* XXX: Can we ever get this and *not* have the cached
* flag set? */
if (buffer_jbd(bh)) {
if (!(flags & OCFS2_BH_CACHED) || ignore_cache)
mlog(ML_BH_IO, "trying to sync read a jbd "
"managed bh (blocknr = %llu)\n",
(unsigned long long)bh->b_blocknr);
continue;
}
if (!(flags & OCFS2_BH_CACHED) || ignore_cache) {
if (buffer_dirty(bh)) {
/* This should probably be a BUG, or
* at least return an error. */
mlog(ML_BH_IO, "asking me to sync read a dirty "
"buffer! (blocknr = %llu)\n",
(unsigned long long)bh->b_blocknr);
continue;
}
/* A read-ahead request was made - if the
* buffer is already under read-ahead from a
* previously submitted request than we are
* done here. */
if ((flags & OCFS2_BH_READAHEAD)
&& ocfs2_buffer_read_ahead(inode, bh))
continue;
lock_buffer(bh);
if (buffer_jbd(bh)) {
#ifdef CATCH_BH_JBD_RACES
mlog(ML_ERROR, "block %llu had the JBD bit set "
"while I was in lock_buffer!",
(unsigned long long)bh->b_blocknr);
BUG();
#else
unlock_buffer(bh);
continue;
#endif
}
/* Re-check ocfs2_buffer_uptodate() as a
* previously read-ahead buffer may have
* completed I/O while we were waiting for the
* buffer lock. */
if ((flags & OCFS2_BH_CACHED)
&& !(flags & OCFS2_BH_READAHEAD)
&& ocfs2_buffer_uptodate(inode, bh)) {
unlock_buffer(bh);
continue;
}
clear_buffer_uptodate(bh);
get_bh(bh); /* for end_buffer_read_sync() */
bh->b_end_io = end_buffer_read_sync;
submit_bh(READ, bh);
continue;
}
}
status = 0;
for (i = (nr - 1); i >= 0; i--) {
bh = bhs[i];
if (!(flags & OCFS2_BH_READAHEAD)) {
/* We know this can't have changed as we hold the
* inode sem. Avoid doing any work on the bh if the
* journal has it. */
if (!buffer_jbd(bh))
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
/* Status won't be cleared from here on out,
* so we can safely record this and loop back
* to cleanup the other buffers. Don't need to
* remove the clustered uptodate information
* for this bh as it's not marked locally
* uptodate. */
status = -EIO;
put_bh(bh);
bhs[i] = NULL;
continue;
}
}
/* Always set the buffer in the cache, even if it was
* a forced read, or read-ahead which hasn't yet
* completed. */
if (inode)
ocfs2_set_buffer_uptodate(inode, bh);
}
if (inode)
mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
mlog(ML_BH_IO, "block=(%llu), nr=(%d), cached=%s, flags=0x%x\n",
(unsigned long long)block, nr,
(!(flags & OCFS2_BH_CACHED) || ignore_cache) ? "no" : "yes", flags);
bail:
mlog_exit(status);
return status;
}
/* Check whether the blkno is the super block or one of the backups. */
static void ocfs2_check_super_or_backup(struct super_block *sb,
sector_t blkno)
{
int i;
u64 backup_blkno;
if (blkno == OCFS2_SUPER_BLOCK_BLKNO)
return;
for (i = 0; i < OCFS2_MAX_BACKUP_SUPERBLOCKS; i++) {
backup_blkno = ocfs2_backup_super_blkno(sb, i);
if (backup_blkno == blkno)
return;
}
BUG();
}
/*
* Write super block and backups doesn't need to collaborate with journal,
* so we don't need to lock ip_io_mutex and inode doesn't need to bea passed
* into this function.
*/
int ocfs2_write_super_or_backup(struct ocfs2_super *osb,
struct buffer_head *bh)
{
int ret = 0;
mlog_entry_void();
BUG_ON(buffer_jbd(bh));
ocfs2_check_super_or_backup(osb->sb, bh->b_blocknr);
if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) {
ret = -EROFS;
goto out;
}
lock_buffer(bh);
set_buffer_uptodate(bh);
/* remove from dirty list before I/O. */
clear_buffer_dirty(bh);
get_bh(bh); /* for end_buffer_write_sync() */
bh->b_end_io = end_buffer_write_sync;
submit_bh(WRITE, bh);
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
ret = -EIO;
put_bh(bh);
}
out:
mlog_exit(ret);
return ret;
}