You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/sound/oss/awe_wave.c

6149 lines
154 KiB

/*
* sound/awe_wave.c
*
* The low level driver for the AWE32/SB32/AWE64 wave table synth.
* version 0.4.4; Jan. 4, 2000
*
* Copyright (C) 1996-2000 Takashi Iwai
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Changelog:
* Aug 18, 2003, Adam Belay <ambx1@neo.rr.com>
* - detection code rewrite
*/
#include <linux/awe_voice.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/pnp.h>
#include "sound_config.h"
#include "awe_wave.h"
#include "awe_hw.h"
#ifdef AWE_HAS_GUS_COMPATIBILITY
#include "tuning.h"
#include <linux/ultrasound.h>
#endif
/*
* debug message
*/
#ifdef AWE_DEBUG_ON
#define DEBUG(LVL,XXX) {if (ctrls[AWE_MD_DEBUG_MODE] > LVL) { XXX; }}
#define ERRMSG(XXX) {if (ctrls[AWE_MD_DEBUG_MODE]) { XXX; }}
#define FATALERR(XXX) XXX
#else
#define DEBUG(LVL,XXX) /**/
#define ERRMSG(XXX) XXX
#define FATALERR(XXX) XXX
#endif
/*
* bank and voice record
*/
typedef struct _sf_list sf_list;
typedef struct _awe_voice_list awe_voice_list;
typedef struct _awe_sample_list awe_sample_list;
/* soundfont record */
struct _sf_list {
unsigned short sf_id; /* id number */
unsigned short type; /* lock & shared flags */
int num_info; /* current info table index */
int num_sample; /* current sample table index */
int mem_ptr; /* current word byte pointer */
awe_voice_list *infos, *last_infos; /* instruments */
awe_sample_list *samples, *last_samples; /* samples */
#ifdef AWE_ALLOW_SAMPLE_SHARING
sf_list *shared; /* shared list */
unsigned char name[AWE_PATCH_NAME_LEN]; /* sharing id */
#endif
sf_list *next, *prev;
};
/* instrument list */
struct _awe_voice_list {
awe_voice_info v; /* instrument information */
sf_list *holder; /* parent sf_list of this record */
unsigned char bank, instr; /* preset number information */
char type, disabled; /* type=normal/mapped, disabled=boolean */
awe_voice_list *next; /* linked list with same sf_id */
awe_voice_list *next_instr; /* instrument list */
awe_voice_list *next_bank; /* hash table list */
};
/* voice list type */
#define V_ST_NORMAL 0
#define V_ST_MAPPED 1
/* sample list */
struct _awe_sample_list {
awe_sample_info v; /* sample information */
sf_list *holder; /* parent sf_list of this record */
awe_sample_list *next; /* linked list with same sf_id */
};
/* sample and information table */
static int current_sf_id; /* current number of fonts */
static int locked_sf_id; /* locked position */
static sf_list *sfhead, *sftail; /* linked-lists */
#define awe_free_mem_ptr() (sftail ? sftail->mem_ptr : 0)
#define awe_free_info() (sftail ? sftail->num_info : 0)
#define awe_free_sample() (sftail ? sftail->num_sample : 0)
#define AWE_MAX_PRESETS 256
#define AWE_DEFAULT_PRESET 0
#define AWE_DEFAULT_BANK 0
#define AWE_DEFAULT_DRUM 0
#define AWE_DRUM_BANK 128
#define MAX_LAYERS AWE_MAX_VOICES
/* preset table index */
static awe_voice_list *preset_table[AWE_MAX_PRESETS];
/*
* voice table
*/
/* effects table */
typedef struct FX_Rec { /* channel effects */
unsigned char flags[AWE_FX_END];
short val[AWE_FX_END];
} FX_Rec;
/* channel parameters */
typedef struct _awe_chan_info {
int channel; /* channel number */
int bank; /* current tone bank */
int instr; /* current program */
int bender; /* midi pitchbend (-8192 - 8192) */
int bender_range; /* midi bender range (x100) */
int panning; /* panning (0-127) */
int main_vol; /* channel volume (0-127) */
int expression_vol; /* midi expression (0-127) */
int chan_press; /* channel pressure */
int sustained; /* sustain status in MIDI */
FX_Rec fx; /* effects */
FX_Rec fx_layer[MAX_LAYERS]; /* layer effects */
} awe_chan_info;
/* voice parameters */
typedef struct _voice_info {
int state;
#define AWE_ST_OFF (1<<0) /* no sound */
#define AWE_ST_ON (1<<1) /* playing */
#define AWE_ST_STANDBY (1<<2) /* stand by for playing */
#define AWE_ST_SUSTAINED (1<<3) /* sustained */
#define AWE_ST_MARK (1<<4) /* marked for allocation */
#define AWE_ST_DRAM (1<<5) /* DRAM read/write */
#define AWE_ST_FM (1<<6) /* reserved for FM */
#define AWE_ST_RELEASED (1<<7) /* released */
int ch; /* midi channel */
int key; /* internal key for search */
int layer; /* layer number (for channel mode only) */
int time; /* allocated time */
awe_chan_info *cinfo; /* channel info */
int note; /* midi key (0-127) */
int velocity; /* midi velocity (0-127) */
int sostenuto; /* sostenuto on/off */
awe_voice_info *sample; /* assigned voice */
/* EMU8000 parameters */
int apitch; /* pitch parameter */
int avol; /* volume parameter */
int apan; /* panning parameter */
int acutoff; /* cutoff parameter */
short aaux; /* aux word */
} voice_info;
/* voice information */
static voice_info voices[AWE_MAX_VOICES];
#define IS_NO_SOUND(v) (voices[v].state & (AWE_ST_OFF|AWE_ST_RELEASED|AWE_ST_STANDBY|AWE_ST_SUSTAINED))
#define IS_NO_EFFECT(v) (voices[v].state != AWE_ST_ON)
#define IS_PLAYING(v) (voices[v].state & (AWE_ST_ON|AWE_ST_SUSTAINED|AWE_ST_RELEASED))
#define IS_EMPTY(v) (voices[v].state & (AWE_ST_OFF|AWE_ST_MARK|AWE_ST_DRAM|AWE_ST_FM))
/* MIDI channel effects information (for hw control) */
static awe_chan_info channels[AWE_MAX_CHANNELS];
/*
* global variables
*/
#ifndef AWE_DEFAULT_BASE_ADDR
#define AWE_DEFAULT_BASE_ADDR 0 /* autodetect */
#endif
#ifndef AWE_DEFAULT_MEM_SIZE
#define AWE_DEFAULT_MEM_SIZE -1 /* autodetect */
#endif
static int io = AWE_DEFAULT_BASE_ADDR; /* Emu8000 base address */
static int memsize = AWE_DEFAULT_MEM_SIZE; /* memory size in Kbytes */
#ifdef CONFIG_PNP
static int isapnp = -1;
#else
static int isapnp;
#endif
MODULE_AUTHOR("Takashi Iwai <iwai@ww.uni-erlangen.de>");
MODULE_DESCRIPTION("SB AWE32/64 WaveTable driver");
MODULE_LICENSE("GPL");
module_param(io, int, 0);
MODULE_PARM_DESC(io, "base i/o port of Emu8000");
module_param(memsize, int, 0);
MODULE_PARM_DESC(memsize, "onboard DRAM size in Kbytes");
module_param(isapnp, bool, 0);
MODULE_PARM_DESC(isapnp, "use ISAPnP detection");
/* DRAM start offset */
static int awe_mem_start = AWE_DRAM_OFFSET;
/* maximum channels for playing */
static int awe_max_voices = AWE_MAX_VOICES;
static int patch_opened; /* sample already loaded? */
static char atten_relative = FALSE;
static short atten_offset;
static int awe_present = FALSE; /* awe device present? */
static int awe_busy = FALSE; /* awe device opened? */
static int my_dev = -1;
#define DEFAULT_DRUM_FLAGS ((1 << 9) | (1 << 25))
#define IS_DRUM_CHANNEL(c) (drum_flags & (1 << (c)))
#define DRUM_CHANNEL_ON(c) (drum_flags |= (1 << (c)))
#define DRUM_CHANNEL_OFF(c) (drum_flags &= ~(1 << (c)))
static unsigned int drum_flags = DEFAULT_DRUM_FLAGS; /* channel flags */
static int playing_mode = AWE_PLAY_INDIRECT;
#define SINGLE_LAYER_MODE() (playing_mode == AWE_PLAY_INDIRECT || playing_mode == AWE_PLAY_DIRECT)
#define MULTI_LAYER_MODE() (playing_mode == AWE_PLAY_MULTI || playing_mode == AWE_PLAY_MULTI2)
static int current_alloc_time; /* voice allocation index for channel mode */
static struct synth_info awe_info = {
"AWE32 Synth", /* name */
0, /* device */
SYNTH_TYPE_SAMPLE, /* synth_type */
SAMPLE_TYPE_AWE32, /* synth_subtype */
0, /* perc_mode (obsolete) */
AWE_MAX_VOICES, /* nr_voices */
0, /* nr_drums (obsolete) */
400 /* instr_bank_size */
};
static struct voice_alloc_info *voice_alloc; /* set at initialization */
/*
* function prototypes
*/
static int awe_request_region(void);
static void awe_release_region(void);
static void awe_reset_samples(void);
/* emu8000 chip i/o access */
static void setup_ports(int p1, int p2, int p3);
static void awe_poke(unsigned short cmd, unsigned short port, unsigned short data);
static void awe_poke_dw(unsigned short cmd, unsigned short port, unsigned int data);
static unsigned short awe_peek(unsigned short cmd, unsigned short port);
static unsigned int awe_peek_dw(unsigned short cmd, unsigned short port);
static void awe_wait(unsigned short delay);
/* initialize emu8000 chip */
static void awe_initialize(void);
/* set voice parameters */
static void awe_init_ctrl_parms(int init_all);
static void awe_init_voice_info(awe_voice_info *vp);
static void awe_init_voice_parm(awe_voice_parm *pp);
#ifdef AWE_HAS_GUS_COMPATIBILITY
static int freq_to_note(int freq);
static int calc_rate_offset(int Hz);
/*static int calc_parm_delay(int msec);*/
static int calc_parm_hold(int msec);
static int calc_parm_attack(int msec);
static int calc_parm_decay(int msec);
static int calc_parm_search(int msec, short *table);
#endif /* gus compat */
/* turn on/off note */
static void awe_note_on(int voice);
static void awe_note_off(int voice);
static void awe_terminate(int voice);
static void awe_exclusive_off(int voice);
static void awe_note_off_all(int do_sustain);
/* calculate voice parameters */
typedef void (*fx_affect_func)(int voice, int forced);
static void awe_set_pitch(int voice, int forced);
static void awe_set_voice_pitch(int voice, int forced);
static void awe_set_volume(int voice, int forced);
static void awe_set_voice_vol(int voice, int forced);
static void awe_set_pan(int voice, int forced);
static void awe_fx_fmmod(int voice, int forced);
static void awe_fx_tremfrq(int voice, int forced);
static void awe_fx_fm2frq2(int voice, int forced);
static void awe_fx_filterQ(int voice, int forced);
static void awe_calc_pitch(int voice);
#ifdef AWE_HAS_GUS_COMPATIBILITY
static void awe_calc_pitch_from_freq(int voice, int freq);
#endif
static void awe_calc_volume(int voice);
static void awe_update_volume(void);
static void awe_change_master_volume(short val);
static void awe_voice_init(int voice, int init_all);
static void awe_channel_init(int ch, int init_all);
static void awe_fx_init(int ch);
static void awe_send_effect(int voice, int layer, int type, int val);
static void awe_modwheel_change(int voice, int value);
/* sequencer interface */
static int awe_open(int dev, int mode);
static void awe_close(int dev);
static int awe_ioctl(int dev, unsigned int cmd, void __user * arg);
static int awe_kill_note(int dev, int voice, int note, int velocity);
static int awe_start_note(int dev, int v, int note_num, int volume);
static int awe_set_instr(int dev, int voice, int instr_no);
static int awe_set_instr_2(int dev, int voice, int instr_no);
static void awe_reset(int dev);
static void awe_hw_control(int dev, unsigned char *event);
static int awe_load_patch(int dev, int format, const char __user *addr,
int offs, int count, int pmgr_flag);
static void awe_aftertouch(int dev, int voice, int pressure);
static void awe_controller(int dev, int voice, int ctrl_num, int value);
static void awe_panning(int dev, int voice, int value);
static void awe_volume_method(int dev, int mode);
static void awe_bender(int dev, int voice, int value);
static int awe_alloc(int dev, int chn, int note, struct voice_alloc_info *alloc);
static void awe_setup_voice(int dev, int voice, int chn);
#define awe_key_pressure(dev,voice,key,press) awe_start_note(dev,voice,(key)+128,press)
/* hardware controls */
#ifdef AWE_HAS_GUS_COMPATIBILITY
static void awe_hw_gus_control(int dev, int cmd, unsigned char *event);
#endif
static void awe_hw_awe_control(int dev, int cmd, unsigned char *event);
static void awe_voice_change(int voice, fx_affect_func func);
static void awe_sostenuto_on(int voice, int forced);
static void awe_sustain_off(int voice, int forced);
static void awe_terminate_and_init(int voice, int forced);
/* voice search */
static int awe_search_key(int bank, int preset, int note);
static awe_voice_list *awe_search_instr(int bank, int preset, int note);
static int awe_search_multi_voices(awe_voice_list *rec, int note, int velocity, awe_voice_info **vlist);
static void awe_alloc_multi_voices(int ch, int note, int velocity, int key);
static void awe_alloc_one_voice(int voice, int note, int velocity);
static int awe_clear_voice(void);
/* load / remove patches */
static int awe_open_patch(awe_patch_info *patch, const char __user *addr, int count);
static int awe_close_patch(awe_patch_info *patch, const char __user *addr, int count);
static int awe_unload_patch(awe_patch_info *patch, const char __user *addr, int count);
static int awe_load_info(awe_patch_info *patch, const char __user *addr, int count);
static int awe_remove_info(awe_patch_info *patch, const char __user *addr, int count);
static int awe_load_data(awe_patch_info *patch, const char __user *addr, int count);
static int awe_replace_data(awe_patch_info *patch, const char __user *addr, int count);
static int awe_load_map(awe_patch_info *patch, const char __user *addr, int count);
#ifdef AWE_HAS_GUS_COMPATIBILITY
static int awe_load_guspatch(const char __user *addr, int offs, int size, int pmgr_flag);
#endif
/*static int awe_probe_info(awe_patch_info *patch, const char __user *addr, int count);*/
static int awe_probe_data(awe_patch_info *patch, const char __user *addr, int count);
static sf_list *check_patch_opened(int type, char *name);
static int awe_write_wave_data(const char __user *addr, int offset, awe_sample_list *sp, int channels);
static int awe_create_sf(int type, char *name);
static void awe_free_sf(sf_list *sf);
static void add_sf_info(sf_list *sf, awe_voice_list *rec);
static void add_sf_sample(sf_list *sf, awe_sample_list *smp);
static void purge_old_list(awe_voice_list *rec, awe_voice_list *next);
static void add_info_list(awe_voice_list *rec);
static void awe_remove_samples(int sf_id);
static void rebuild_preset_list(void);
static short awe_set_sample(awe_voice_list *rec);
static awe_sample_list *search_sample_index(sf_list *sf, int sample);
static int is_identical_holder(sf_list *sf1, sf_list *sf2);
#ifdef AWE_ALLOW_SAMPLE_SHARING
static int is_identical_name(unsigned char *name, sf_list *p);
static int is_shared_sf(unsigned char *name);
static int info_duplicated(sf_list *sf, awe_voice_list *rec);
#endif /* allow sharing */
/* lowlevel functions */
static void awe_init_audio(void);
static void awe_init_dma(void);
static void awe_init_array(void);
static void awe_send_array(unsigned short *data);
static void awe_tweak_voice(int voice);
static void awe_tweak(void);
static void awe_init_fm(void);
static int awe_open_dram_for_write(int offset, int channels);
static void awe_open_dram_for_check(void);
static void awe_close_dram(void);
/*static void awe_write_dram(unsigned short c);*/
static int awe_detect_base(int addr);
static int awe_detect(void);
static void awe_check_dram(void);
static int awe_load_chorus_fx(awe_patch_info *patch, const char __user *addr, int count);
static void awe_set_chorus_mode(int mode);
static void awe_update_chorus_mode(void);
static int awe_load_reverb_fx(awe_patch_info *patch, const char __user *addr, int count);
static void awe_set_reverb_mode(int mode);
static void awe_update_reverb_mode(void);
static void awe_equalizer(int bass, int treble);
static void awe_update_equalizer(void);
#ifdef CONFIG_AWE32_MIXER
static void attach_mixer(void);
static void unload_mixer(void);
#endif
#ifdef CONFIG_AWE32_MIDIEMU
static void attach_midiemu(void);
static void unload_midiemu(void);
#endif
#define limitvalue(x, a, b) if ((x) < (a)) (x) = (a); else if ((x) > (b)) (x) = (b)
/*
* control parameters
*/
#ifdef AWE_USE_NEW_VOLUME_CALC
#define DEF_VOLUME_CALC TRUE
#else
#define DEF_VOLUME_CALC FALSE
#endif /* new volume */
#define DEF_ZERO_ATTEN 32 /* 12dB below */
#define DEF_MOD_SENSE 18
#define DEF_CHORUS_MODE 2
#define DEF_REVERB_MODE 4
#define DEF_BASS_LEVEL 5
#define DEF_TREBLE_LEVEL 9
static struct CtrlParmsDef {
int value;
int init_each_time;
void (*update)(void);
} ctrl_parms[AWE_MD_END] = {
{0,0, NULL}, {0,0, NULL}, /* <-- not used */
{AWE_VERSION_NUMBER, FALSE, NULL},
{TRUE, FALSE, NULL}, /* exclusive */
{TRUE, FALSE, NULL}, /* realpan */
{AWE_DEFAULT_BANK, FALSE, NULL}, /* gusbank */
{FALSE, TRUE, NULL}, /* keep effect */
{DEF_ZERO_ATTEN, FALSE, awe_update_volume}, /* zero_atten */
{FALSE, FALSE, NULL}, /* chn_prior */
{DEF_MOD_SENSE, FALSE, NULL}, /* modwheel sense */
{AWE_DEFAULT_PRESET, FALSE, NULL}, /* def_preset */
{AWE_DEFAULT_BANK, FALSE, NULL}, /* def_bank */
{AWE_DEFAULT_DRUM, FALSE, NULL}, /* def_drum */
{FALSE, FALSE, NULL}, /* toggle_drum_bank */
{DEF_VOLUME_CALC, FALSE, awe_update_volume}, /* new_volume_calc */
{DEF_CHORUS_MODE, FALSE, awe_update_chorus_mode}, /* chorus mode */
{DEF_REVERB_MODE, FALSE, awe_update_reverb_mode}, /* reverb mode */
{DEF_BASS_LEVEL, FALSE, awe_update_equalizer}, /* bass level */
{DEF_TREBLE_LEVEL, FALSE, awe_update_equalizer}, /* treble level */
{0, FALSE, NULL}, /* debug mode */
{FALSE, FALSE, NULL}, /* pan exchange */
};
static int ctrls[AWE_MD_END];
/*
* synth operation table
*/
static struct synth_operations awe_operations =
{
.owner = THIS_MODULE,
.id = "EMU8K",
.info = &awe_info,
.midi_dev = 0,
.synth_type = SYNTH_TYPE_SAMPLE,
.synth_subtype = SAMPLE_TYPE_AWE32,
.open = awe_open,
.close = awe_close,
.ioctl = awe_ioctl,
.kill_note = awe_kill_note,
.start_note = awe_start_note,
.set_instr = awe_set_instr_2,
.reset = awe_reset,
.hw_control = awe_hw_control,
.load_patch = awe_load_patch,
.aftertouch = awe_aftertouch,
.controller = awe_controller,
.panning = awe_panning,
.volume_method = awe_volume_method,
.bender = awe_bender,
.alloc_voice = awe_alloc,
.setup_voice = awe_setup_voice
};
static void free_tables(void)
{
if (sftail) {
sf_list *p, *prev;
for (p = sftail; p; p = prev) {
prev = p->prev;
awe_free_sf(p);
}
}
sfhead = sftail = NULL;
}
/*
* clear sample tables
*/
static void
awe_reset_samples(void)
{
/* free all bank tables */
memset(preset_table, 0, sizeof(preset_table));
free_tables();
current_sf_id = 0;
locked_sf_id = 0;
patch_opened = 0;
}
/*
* EMU register access
*/
/* select a given AWE32 pointer */
static int awe_ports[5];
static int port_setuped = FALSE;
static int awe_cur_cmd = -1;
#define awe_set_cmd(cmd) \
if (awe_cur_cmd != cmd) { outw(cmd, awe_ports[Pointer]); awe_cur_cmd = cmd; }
/* write 16bit data */
static void
awe_poke(unsigned short cmd, unsigned short port, unsigned short data)
{
awe_set_cmd(cmd);
outw(data, awe_ports[port]);
}
/* write 32bit data */
static void
awe_poke_dw(unsigned short cmd, unsigned short port, unsigned int data)
{
unsigned short addr = awe_ports[port];
awe_set_cmd(cmd);
outw(data, addr); /* write lower 16 bits */
outw(data >> 16, addr + 2); /* write higher 16 bits */
}
/* read 16bit data */
static unsigned short
awe_peek(unsigned short cmd, unsigned short port)
{
unsigned short k;
awe_set_cmd(cmd);
k = inw(awe_ports[port]);
return k;
}
/* read 32bit data */
static unsigned int
awe_peek_dw(unsigned short cmd, unsigned short port)
{
unsigned int k1, k2;
unsigned short addr = awe_ports[port];
awe_set_cmd(cmd);
k1 = inw(addr);
k2 = inw(addr + 2);
k1 |= k2 << 16;
return k1;
}
/* wait delay number of AWE32 44100Hz clocks */
#ifdef WAIT_BY_LOOP /* wait by loop -- that's not good.. */
static void
awe_wait(unsigned short delay)
{
unsigned short clock, target;
unsigned short port = awe_ports[AWE_WC_Port];
int counter;
/* sample counter */
awe_set_cmd(AWE_WC_Cmd);
clock = (unsigned short)inw(port);
target = clock + delay;
counter = 0;
if (target < clock) {
for (; (unsigned short)inw(port) > target; counter++)
if (counter > 65536)
break;
}
for (; (unsigned short)inw(port) < target; counter++)
if (counter > 65536)
break;
}
#else
static void awe_wait(unsigned short delay)
{
current->state = TASK_INTERRUPTIBLE;
schedule_timeout((HZ*(unsigned long)delay + 44099)/44100);
}
/*
static void awe_wait(unsigned short delay)
{
udelay(((unsigned long)delay * 1000000L + 44099) / 44100);
}
*/
#endif /* wait by loop */
/* write a word data */
#define awe_write_dram(c) awe_poke(AWE_SMLD, c)
/*
* AWE32 voice parameters
*/
/* initialize voice_info record */
static void
awe_init_voice_info(awe_voice_info *vp)
{
vp->sample = 0;
vp->rate_offset = 0;
vp->start = 0;
vp->end = 0;
vp->loopstart = 0;
vp->loopend = 0;
vp->mode = 0;
vp->root = 60;
vp->tune = 0;
vp->low = 0;
vp->high = 127;
vp->vellow = 0;
vp->velhigh = 127;
vp->fixkey = -1;
vp->fixvel = -1;
vp->fixpan = -1;
vp->pan = -1;
vp->exclusiveClass = 0;
vp->amplitude = 127;
vp->attenuation = 0;
vp->scaleTuning = 100;
awe_init_voice_parm(&vp->parm);
}
/* initialize voice_parm record:
* Env1/2: delay=0, attack=0, hold=0, sustain=0, decay=0, release=0.
* Vibrato and Tremolo effects are zero.
* Cutoff is maximum.
* Chorus and Reverb effects are zero.
*/
static void
awe_init_voice_parm(awe_voice_parm *pp)
{
pp->moddelay = 0x8000;
pp->modatkhld = 0x7f7f;
pp->moddcysus = 0x7f7f;
pp->modrelease = 0x807f;
pp->modkeyhold = 0;
pp->modkeydecay = 0;
pp->voldelay = 0x8000;
pp->volatkhld = 0x7f7f;
pp->voldcysus = 0x7f7f;
pp->volrelease = 0x807f;
pp->volkeyhold = 0;
pp->volkeydecay = 0;
pp->lfo1delay = 0x8000;
pp->lfo2delay = 0x8000;
pp->pefe = 0;
pp->fmmod = 0;
pp->tremfrq = 0;
pp->fm2frq2 = 0;
pp->cutoff = 0xff;
pp->filterQ = 0;
pp->chorus = 0;
pp->reverb = 0;
}
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* convert frequency mHz to abstract cents (= midi key * 100) */
static int
freq_to_note(int mHz)
{
/* abscents = log(mHz/8176) / log(2) * 1200 */
unsigned int max_val = (unsigned int)0xffffffff / 10000;
int i, times;
unsigned int base;
unsigned int freq;
int note, tune;
if (mHz == 0)
return 0;
if (mHz < 0)
return 12799; /* maximum */
freq = mHz;
note = 0;
for (base = 8176 * 2; freq >= base; base *= 2) {
note += 12;
if (note >= 128) /* over maximum */
return 12799;
}
base /= 2;
/* to avoid overflow... */
times = 10000;
while (freq > max_val) {
max_val *= 10;
times /= 10;
base /= 10;
}
freq = freq * times / base;
for (i = 0; i < 12; i++) {
if (freq < semitone_tuning[i+1])
break;
note++;
}
tune = 0;
freq = freq * 10000 / semitone_tuning[i];
for (i = 0; i < 100; i++) {
if (freq < cent_tuning[i+1])
break;
tune++;
}
return note * 100 + tune;
}
/* convert Hz to AWE32 rate offset:
* sample pitch offset for the specified sample rate
* rate=44100 is no offset, each 4096 is 1 octave (twice).
* eg, when rate is 22050, this offset becomes -4096.
*/
static int
calc_rate_offset(int Hz)
{
/* offset = log(Hz / 44100) / log(2) * 4096 */
int freq, base, i;
/* maybe smaller than max (44100Hz) */
if (Hz <= 0 || Hz >= 44100) return 0;
base = 0;
for (freq = Hz * 2; freq < 44100; freq *= 2)
base++;
base *= 1200;
freq = 44100 * 10000 / (freq/2);
for (i = 0; i < 12; i++) {
if (freq < semitone_tuning[i+1])
break;
base += 100;
}
freq = freq * 10000 / semitone_tuning[i];
for (i = 0; i < 100; i++) {
if (freq < cent_tuning[i+1])
break;
base++;
}
return -base * 4096 / 1200;
}
/*
* convert envelope time parameter to AWE32 raw parameter
*/
/* attack & decay/release time table (msec) */
static short attack_time_tbl[128] = {
32767, 32767, 5989, 4235, 2994, 2518, 2117, 1780, 1497, 1373, 1259, 1154, 1058, 970, 890, 816,
707, 691, 662, 634, 607, 581, 557, 533, 510, 489, 468, 448, 429, 411, 393, 377,
361, 345, 331, 317, 303, 290, 278, 266, 255, 244, 234, 224, 214, 205, 196, 188,
180, 172, 165, 158, 151, 145, 139, 133, 127, 122, 117, 112, 107, 102, 98, 94,
90, 86, 82, 79, 75, 72, 69, 66, 63, 61, 58, 56, 53, 51, 49, 47,
45, 43, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 26, 25, 24, 23,
22, 21, 20, 19, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12,
11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 0,
};
static short decay_time_tbl[128] = {
32767, 32767, 22614, 15990, 11307, 9508, 7995, 6723, 5653, 5184, 4754, 4359, 3997, 3665, 3361, 3082,
2828, 2765, 2648, 2535, 2428, 2325, 2226, 2132, 2042, 1955, 1872, 1793, 1717, 1644, 1574, 1507,
1443, 1382, 1324, 1267, 1214, 1162, 1113, 1066, 978, 936, 897, 859, 822, 787, 754, 722,
691, 662, 634, 607, 581, 557, 533, 510, 489, 468, 448, 429, 411, 393, 377, 361,
345, 331, 317, 303, 290, 278, 266, 255, 244, 234, 224, 214, 205, 196, 188, 180,
172, 165, 158, 151, 145, 139, 133, 127, 122, 117, 112, 107, 102, 98, 94, 90,
86, 82, 79, 75, 72, 69, 66, 63, 61, 58, 56, 53, 51, 49, 47, 45,
43, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 26, 25, 24, 23, 22,
};
#define calc_parm_delay(msec) (0x8000 - (msec) * 1000 / 725);
/* delay time = 0x8000 - msec/92 */
static int
calc_parm_hold(int msec)
{
int val = (0x7f * 92 - msec) / 92;
if (val < 1) val = 1;
if (val > 127) val = 127;
return val;
}
/* attack time: search from time table */
static int
calc_parm_attack(int msec)
{
return calc_parm_search(msec, attack_time_tbl);
}
/* decay/release time: search from time table */
static int
calc_parm_decay(int msec)
{
return calc_parm_search(msec, decay_time_tbl);
}
/* search an index for specified time from given time table */
static int
calc_parm_search(int msec, short *table)
{
int left = 1, right = 127, mid;
while (left < right) {
mid = (left + right) / 2;
if (msec < (int)table[mid])
left = mid + 1;
else
right = mid;
}
return left;
}
#endif /* AWE_HAS_GUS_COMPATIBILITY */
/*
* effects table
*/
/* set an effect value */
#define FX_FLAG_OFF 0
#define FX_FLAG_SET 1
#define FX_FLAG_ADD 2
#define FX_SET(rec,type,value) \
((rec)->flags[type] = FX_FLAG_SET, (rec)->val[type] = (value))
#define FX_ADD(rec,type,value) \
((rec)->flags[type] = FX_FLAG_ADD, (rec)->val[type] = (value))
#define FX_UNSET(rec,type) \
((rec)->flags[type] = FX_FLAG_OFF, (rec)->val[type] = 0)
/* check the effect value is set */
#define FX_ON(rec,type) ((rec)->flags[type])
#define PARM_BYTE 0
#define PARM_WORD 1
#define PARM_SIGN 2
static struct PARM_DEFS {
int type; /* byte or word */
int low, high; /* value range */
fx_affect_func realtime; /* realtime paramater change */
} parm_defs[] = {
{PARM_WORD, 0, 0x8000, NULL}, /* env1 delay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env1 attack */
{PARM_BYTE, 0, 0x7e, NULL}, /* env1 hold */
{PARM_BYTE, 1, 0x7f, NULL}, /* env1 decay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env1 release */
{PARM_BYTE, 0, 0x7f, NULL}, /* env1 sustain */
{PARM_BYTE, 0, 0xff, NULL}, /* env1 pitch */
{PARM_BYTE, 0, 0xff, NULL}, /* env1 cutoff */
{PARM_WORD, 0, 0x8000, NULL}, /* env2 delay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env2 attack */
{PARM_BYTE, 0, 0x7e, NULL}, /* env2 hold */
{PARM_BYTE, 1, 0x7f, NULL}, /* env2 decay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env2 release */
{PARM_BYTE, 0, 0x7f, NULL}, /* env2 sustain */
{PARM_WORD, 0, 0x8000, NULL}, /* lfo1 delay */
{PARM_BYTE, 0, 0xff, awe_fx_tremfrq}, /* lfo1 freq */
{PARM_SIGN, -128, 127, awe_fx_tremfrq}, /* lfo1 volume */
{PARM_SIGN, -128, 127, awe_fx_fmmod}, /* lfo1 pitch */
{PARM_BYTE, 0, 0xff, awe_fx_fmmod}, /* lfo1 cutoff */
{PARM_WORD, 0, 0x8000, NULL}, /* lfo2 delay */
{PARM_BYTE, 0, 0xff, awe_fx_fm2frq2}, /* lfo2 freq */
{PARM_SIGN, -128, 127, awe_fx_fm2frq2}, /* lfo2 pitch */
{PARM_WORD, 0, 0xffff, awe_set_voice_pitch}, /* initial pitch */
{PARM_BYTE, 0, 0xff, NULL}, /* chorus */
{PARM_BYTE, 0, 0xff, NULL}, /* reverb */
{PARM_BYTE, 0, 0xff, awe_set_volume}, /* initial cutoff */
{PARM_BYTE, 0, 15, awe_fx_filterQ}, /* initial resonance */
{PARM_WORD, 0, 0xffff, NULL}, /* sample start */
{PARM_WORD, 0, 0xffff, NULL}, /* loop start */
{PARM_WORD, 0, 0xffff, NULL}, /* loop end */
{PARM_WORD, 0, 0xffff, NULL}, /* coarse sample start */
{PARM_WORD, 0, 0xffff, NULL}, /* coarse loop start */
{PARM_WORD, 0, 0xffff, NULL}, /* coarse loop end */
{PARM_BYTE, 0, 0xff, awe_set_volume}, /* initial attenuation */
};
static unsigned char
FX_BYTE(FX_Rec *rec, FX_Rec *lay, int type, unsigned char value)
{
int effect = 0;
int on = 0;
if (lay && (on = FX_ON(lay, type)) != 0)
effect = lay->val[type];
if (!on && (on = FX_ON(rec, type)) != 0)
effect = rec->val[type];
if (on == FX_FLAG_ADD) {
if (parm_defs[type].type == PARM_SIGN) {
if (value > 0x7f)
effect += (int)value - 0x100;
else
effect += (int)value;
} else {
effect += (int)value;
}
}
if (on) {
if (effect < parm_defs[type].low)
effect = parm_defs[type].low;
else if (effect > parm_defs[type].high)
effect = parm_defs[type].high;
return (unsigned char)effect;
}
return value;
}
/* get word effect value */
static unsigned short
FX_WORD(FX_Rec *rec, FX_Rec *lay, int type, unsigned short value)
{
int effect = 0;
int on = 0;
if (lay && (on = FX_ON(lay, type)) != 0)
effect = lay->val[type];
if (!on && (on = FX_ON(rec, type)) != 0)
effect = rec->val[type];
if (on == FX_FLAG_ADD)
effect += (int)value;
if (on) {
if (effect < parm_defs[type].low)
effect = parm_defs[type].low;
else if (effect > parm_defs[type].high)
effect = parm_defs[type].high;
return (unsigned short)effect;
}
return value;
}
/* get word (upper=type1/lower=type2) effect value */
static unsigned short
FX_COMB(FX_Rec *rec, FX_Rec *lay, int type1, int type2, unsigned short value)
{
unsigned short tmp;
tmp = FX_BYTE(rec, lay, type1, (unsigned char)(value >> 8));
tmp <<= 8;
tmp |= FX_BYTE(rec, lay, type2, (unsigned char)(value & 0xff));
return tmp;
}
/* address offset */
static int
FX_OFFSET(FX_Rec *rec, FX_Rec *lay, int lo, int hi, int mode)
{
int addr = 0;
if (lay && FX_ON(lay, hi))
addr = (short)lay->val[hi];
else if (FX_ON(rec, hi))
addr = (short)rec->val[hi];
addr = addr << 15;
if (lay && FX_ON(lay, lo))
addr += (short)lay->val[lo];
else if (FX_ON(rec, lo))
addr += (short)rec->val[lo];
if (!(mode & AWE_SAMPLE_8BITS))
addr /= 2;
return addr;
}
/*
* turn on/off sample
*/
/* table for volume target calculation */
static unsigned short voltarget[16] = {
0xEAC0, 0XE0C8, 0XD740, 0XCE20, 0XC560, 0XBD08, 0XB500, 0XAD58,
0XA5F8, 0X9EF0, 0X9830, 0X91C0, 0X8B90, 0X85A8, 0X8000, 0X7A90
};
static void
awe_note_on(int voice)
{
unsigned int temp;
int addr;
int vtarget, ftarget, ptarget, pitch;
awe_voice_info *vp;
awe_voice_parm_block *parm;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
/* A voice sample must assigned before calling */
if ((vp = voices[voice].sample) == NULL || vp->index == 0)
return;
parm = (awe_voice_parm_block*)&vp->parm;
/* channel to be silent and idle */
awe_poke(AWE_DCYSUSV(voice), 0x0080);
awe_poke(AWE_VTFT(voice), 0x0000FFFF);
awe_poke(AWE_CVCF(voice), 0x0000FFFF);
awe_poke(AWE_PTRX(voice), 0);
awe_poke(AWE_CPF(voice), 0);
/* set pitch offset */
awe_set_pitch(voice, TRUE);
/* modulation & volume envelope */
if (parm->modatk >= 0x80 && parm->moddelay >= 0x8000) {
awe_poke(AWE_ENVVAL(voice), 0xBFFF);
pitch = (parm->env1pit<<4) + voices[voice].apitch;
if (pitch > 0xffff) pitch = 0xffff;
/* calculate filter target */
ftarget = parm->cutoff + parm->env1fc;
limitvalue(ftarget, 0, 255);
ftarget <<= 8;
} else {
awe_poke(AWE_ENVVAL(voice),
FX_WORD(fx, fx_lay, AWE_FX_ENV1_DELAY, parm->moddelay));
ftarget = parm->cutoff;
ftarget <<= 8;
pitch = voices[voice].apitch;
}
/* calcualte pitch target */
if (pitch != 0xffff) {
ptarget = 1 << (pitch >> 12);
if (pitch & 0x800) ptarget += (ptarget*0x102e)/0x2710;
if (pitch & 0x400) ptarget += (ptarget*0x764)/0x2710;
if (pitch & 0x200) ptarget += (ptarget*0x389)/0x2710;
ptarget += (ptarget>>1);
if (ptarget > 0xffff) ptarget = 0xffff;
} else ptarget = 0xffff;
if (parm->modatk >= 0x80)
awe_poke(AWE_ATKHLD(voice),
FX_BYTE(fx, fx_lay, AWE_FX_ENV1_HOLD, parm->modhld) << 8 | 0x7f);
else
awe_poke(AWE_ATKHLD(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV1_HOLD, AWE_FX_ENV1_ATTACK,
vp->parm.modatkhld));
awe_poke(AWE_DCYSUS(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV1_SUSTAIN, AWE_FX_ENV1_DECAY,
vp->parm.moddcysus));
if (parm->volatk >= 0x80 && parm->voldelay >= 0x8000) {
awe_poke(AWE_ENVVOL(voice), 0xBFFF);
vtarget = voltarget[voices[voice].avol%0x10]>>(voices[voice].avol>>4);
} else {
awe_poke(AWE_ENVVOL(voice),
FX_WORD(fx, fx_lay, AWE_FX_ENV2_DELAY, vp->parm.voldelay));
vtarget = 0;
}
if (parm->volatk >= 0x80)
awe_poke(AWE_ATKHLDV(voice),
FX_BYTE(fx, fx_lay, AWE_FX_ENV2_HOLD, parm->volhld) << 8 | 0x7f);
else
awe_poke(AWE_ATKHLDV(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV2_HOLD, AWE_FX_ENV2_ATTACK,
vp->parm.volatkhld));
/* decay/sustain parameter for volume envelope must be set at last */
/* cutoff and volume */
awe_set_volume(voice, TRUE);
/* modulation envelope heights */
awe_poke(AWE_PEFE(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV1_PITCH, AWE_FX_ENV1_CUTOFF,
vp->parm.pefe));
/* lfo1/2 delay */
awe_poke(AWE_LFO1VAL(voice),
FX_WORD(fx, fx_lay, AWE_FX_LFO1_DELAY, vp->parm.lfo1delay));
awe_poke(AWE_LFO2VAL(voice),
FX_WORD(fx, fx_lay, AWE_FX_LFO2_DELAY, vp->parm.lfo2delay));
/* lfo1 pitch & cutoff shift */
awe_fx_fmmod(voice, TRUE);
/* lfo1 volume & freq */
awe_fx_tremfrq(voice, TRUE);
/* lfo2 pitch & freq */
awe_fx_fm2frq2(voice, TRUE);
/* pan & loop start */
awe_set_pan(voice, TRUE);
/* chorus & loop end (chorus 8bit, MSB) */
addr = vp->loopend - 1;
addr += FX_OFFSET(fx, fx_lay, AWE_FX_LOOP_END,
AWE_FX_COARSE_LOOP_END, vp->mode);
temp = FX_BYTE(fx, fx_lay, AWE_FX_CHORUS, vp->parm.chorus);
temp = (temp <<24) | (unsigned int)addr;
awe_poke_dw(AWE_CSL(voice), temp);
DEBUG(4,printk("AWE32: [-- loopend=%x/%x]\n", vp->loopend, addr));
/* Q & current address (Q 4bit value, MSB) */
addr = vp->start - 1;
addr += FX_OFFSET(fx, fx_lay, AWE_FX_SAMPLE_START,
AWE_FX_COARSE_SAMPLE_START, vp->mode);
temp = FX_BYTE(fx, fx_lay, AWE_FX_FILTERQ, vp->parm.filterQ);
temp = (temp<<28) | (unsigned int)addr;
awe_poke_dw(AWE_CCCA(voice), temp);
DEBUG(4,printk("AWE32: [-- startaddr=%x/%x]\n", vp->start, addr));
/* clear unknown registers */
awe_poke_dw(AWE_00A0(voice), 0);
awe_poke_dw(AWE_0080(voice), 0);
/* reset volume */
awe_poke_dw(AWE_VTFT(voice), (vtarget<<16)|ftarget);
awe_poke_dw(AWE_CVCF(voice), (vtarget<<16)|ftarget);
/* set reverb */
temp = FX_BYTE(fx, fx_lay, AWE_FX_REVERB, vp->parm.reverb);
temp = (temp << 8) | (ptarget << 16) | voices[voice].aaux;
awe_poke_dw(AWE_PTRX(voice), temp);
awe_poke_dw(AWE_CPF(voice), ptarget << 16);
/* turn on envelope */
awe_poke(AWE_DCYSUSV(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV2_SUSTAIN, AWE_FX_ENV2_DECAY,
vp->parm.voldcysus));
voices[voice].state = AWE_ST_ON;
/* clear voice position for the next note on this channel */
if (SINGLE_LAYER_MODE()) {
FX_UNSET(fx, AWE_FX_SAMPLE_START);
FX_UNSET(fx, AWE_FX_COARSE_SAMPLE_START);
}
}
/* turn off the voice */
static void
awe_note_off(int voice)
{
awe_voice_info *vp;
unsigned short tmp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if ((vp = voices[voice].sample) == NULL) {
voices[voice].state = AWE_ST_OFF;
return;
}
tmp = 0x8000 | FX_BYTE(fx, fx_lay, AWE_FX_ENV1_RELEASE,
(unsigned char)vp->parm.modrelease);
awe_poke(AWE_DCYSUS(voice), tmp);
tmp = 0x8000 | FX_BYTE(fx, fx_lay, AWE_FX_ENV2_RELEASE,
(unsigned char)vp->parm.volrelease);
awe_poke(AWE_DCYSUSV(voice), tmp);
voices[voice].state = AWE_ST_RELEASED;
}
/* force to terminate the voice (no releasing echo) */
static void
awe_terminate(int voice)
{
awe_poke(AWE_DCYSUSV(voice), 0x807F);
awe_tweak_voice(voice);
voices[voice].state = AWE_ST_OFF;
}
/* turn off other voices with the same exclusive class (for drums) */
static void
awe_exclusive_off(int voice)
{
int i, exclass;
if (voices[voice].sample == NULL)
return;
if ((exclass = voices[voice].sample->exclusiveClass) == 0)
return; /* not exclusive */
/* turn off voices with the same class */
for (i = 0; i < awe_max_voices; i++) {
if (i != voice && IS_PLAYING(i) &&
voices[i].sample && voices[i].ch == voices[voice].ch &&
voices[i].sample->exclusiveClass == exclass) {
DEBUG(4,printk("AWE32: [exoff(%d)]\n", i));
awe_terminate(i);
awe_voice_init(i, TRUE);
}
}
}
/*
* change the parameters of an audible voice
*/
/* change pitch */
static void
awe_set_pitch(int voice, int forced)
{
if (IS_NO_EFFECT(voice) && !forced) return;
awe_poke(AWE_IP(voice), voices[voice].apitch);
DEBUG(3,printk("AWE32: [-- pitch=%x]\n", voices[voice].apitch));
}
/* calculate & change pitch */
static void
awe_set_voice_pitch(int voice, int forced)
{
awe_calc_pitch(voice);
awe_set_pitch(voice, forced);
}
/* change volume & cutoff */
static void
awe_set_volume(int voice, int forced)
{
awe_voice_info *vp;
unsigned short tmp2;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (!IS_PLAYING(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index == 0)
return;
tmp2 = FX_BYTE(fx, fx_lay, AWE_FX_CUTOFF,
(unsigned char)voices[voice].acutoff);
tmp2 = (tmp2 << 8);
tmp2 |= FX_BYTE(fx, fx_lay, AWE_FX_ATTEN,
(unsigned char)voices[voice].avol);
awe_poke(AWE_IFATN(voice), tmp2);
}
/* calculate & change volume */
static void
awe_set_voice_vol(int voice, int forced)
{
if (IS_EMPTY(voice))
return;
awe_calc_volume(voice);
awe_set_volume(voice, forced);
}
/* change pan; this could make a click noise.. */
static void
awe_set_pan(int voice, int forced)
{
unsigned int temp;
int addr;
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index == 0)
return;
/* pan & loop start (pan 8bit, MSB, 0:right, 0xff:left) */
if (vp->fixpan > 0) /* 0-127 */
temp = 255 - (int)vp->fixpan * 2;
else {
int pos = 0;
if (vp->pan >= 0) /* 0-127 */
pos = (int)vp->pan * 2 - 128;
pos += voices[voice].cinfo->panning; /* -128 - 127 */
temp = 127 - pos;
}
limitvalue(temp, 0, 255);
if (ctrls[AWE_MD_PAN_EXCHANGE]) {
temp = 255 - temp;
}
if (forced || temp != voices[voice].apan) {
voices[voice].apan = temp;
if (temp == 0)
voices[voice].aaux = 0xff;
else
voices[voice].aaux = (-temp) & 0xff;
addr = vp->loopstart - 1;
addr += FX_OFFSET(fx, fx_lay, AWE_FX_LOOP_START,
AWE_FX_COARSE_LOOP_START, vp->mode);
temp = (temp<<24) | (unsigned int)addr;
awe_poke_dw(AWE_PSST(voice), temp);
DEBUG(4,printk("AWE32: [-- loopstart=%x/%x]\n", vp->loopstart, addr));
}
}
/* effects change during playing */
static void
awe_fx_fmmod(int voice, int forced)
{
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index == 0)
return;
awe_poke(AWE_FMMOD(voice),
FX_COMB(fx, fx_lay, AWE_FX_LFO1_PITCH, AWE_FX_LFO1_CUTOFF,
vp->parm.fmmod));
}
/* set tremolo (lfo1) volume & frequency */
static void
awe_fx_tremfrq(int voice, int forced)
{
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index == 0)
return;
awe_poke(AWE_TREMFRQ(voice),
FX_COMB(fx, fx_lay, AWE_FX_LFO1_VOLUME, AWE_FX_LFO1_FREQ,
vp->parm.tremfrq));
}
/* set lfo2 pitch & frequency */
static void
awe_fx_fm2frq2(int voice, int forced)
{
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index == 0)
return;
awe_poke(AWE_FM2FRQ2(voice),
FX_COMB(fx, fx_lay, AWE_FX_LFO2_PITCH, AWE_FX_LFO2_FREQ,
vp->parm.fm2frq2));
}
/* Q & current address (Q 4bit value, MSB) */
static void
awe_fx_filterQ(int voice, int forced)
{
unsigned int addr;
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index == 0)
return;
addr = awe_peek_dw(AWE_CCCA(voice)) & 0xffffff;
addr |= (FX_BYTE(fx, fx_lay, AWE_FX_FILTERQ, vp->parm.filterQ) << 28);
awe_poke_dw(AWE_CCCA(voice), addr);
}
/*
* calculate pitch offset
*
* 0xE000 is no pitch offset at 44100Hz sample.
* Every 4096 is one octave.
*/
static void
awe_calc_pitch(int voice)
{
voice_info *vp = &voices[voice];
awe_voice_info *ap;
awe_chan_info *cp = voices[voice].cinfo;
int offset;
/* search voice information */
if ((ap = vp->sample) == NULL)
return;
if (ap->index == 0) {
DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample));
if (awe_set_sample((awe_voice_list*)ap) == 0)
return;
}
/* calculate offset */
if (ap->fixkey >= 0) {
DEBUG(3,printk("AWE32: p-> fixkey(%d) tune(%d)\n", ap->fixkey, ap->tune));
offset = (ap->fixkey - ap->root) * 4096 / 12;
} else {
DEBUG(3,printk("AWE32: p(%d)-> root(%d) tune(%d)\n", vp->note, ap->root, ap->tune));
offset = (vp->note - ap->root) * 4096 / 12;
DEBUG(4,printk("AWE32: p-> ofs=%d\n", offset));
}
offset = (offset * ap->scaleTuning) / 100;
DEBUG(4,printk("AWE32: p-> scale* ofs=%d\n", offset));
offset += ap->tune * 4096 / 1200;
DEBUG(4,printk("AWE32: p-> tune+ ofs=%d\n", offset));
if (cp->bender != 0) {
DEBUG(3,printk("AWE32: p-> bend(%d) %d\n", voice, cp->bender));
/* (819200: 1 semitone) ==> (4096: 12 semitones) */
offset += cp->bender * cp->bender_range / 2400;
}
/* add initial pitch correction */
if (FX_ON(&cp->fx_layer[vp->layer], AWE_FX_INIT_PITCH))
offset += cp->fx_layer[vp->layer].val[AWE_FX_INIT_PITCH];
else if (FX_ON(&cp->fx, AWE_FX_INIT_PITCH))
offset += cp->fx.val[AWE_FX_INIT_PITCH];
/* 0xe000: root pitch */
vp->apitch = 0xe000 + ap->rate_offset + offset;
DEBUG(4,printk("AWE32: p-> sum aofs=%x, rate_ofs=%d\n", vp->apitch, ap->rate_offset));
if (vp->apitch > 0xffff)
vp->apitch = 0xffff;
if (vp->apitch < 0)
vp->apitch = 0;
}
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* calculate MIDI key and semitone from the specified frequency */
static void
awe_calc_pitch_from_freq(int voice, int freq)
{
voice_info *vp = &voices[voice];
awe_voice_info *ap;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
int offset;
int note;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
/* search voice information */
if ((ap = vp->sample) == NULL)
return;
if (ap->index == 0) {
DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample));
if (awe_set_sample((awe_voice_list*)ap) == 0)
return;
}
note = freq_to_note(freq);
offset = (note - ap->root * 100 + ap->tune) * 4096 / 1200;
offset = (offset * ap->scaleTuning) / 100;
if (fx_lay && FX_ON(fx_lay, AWE_FX_INIT_PITCH))
offset += fx_lay->val[AWE_FX_INIT_PITCH];
else if (FX_ON(fx, AWE_FX_INIT_PITCH))
offset += fx->val[AWE_FX_INIT_PITCH];
vp->apitch = 0xe000 + ap->rate_offset + offset;
if (vp->apitch > 0xffff)
vp->apitch = 0xffff;
if (vp->apitch < 0)
vp->apitch = 0;
}
#endif /* AWE_HAS_GUS_COMPATIBILITY */
/*
* calculate volume attenuation
*
* Voice volume is controlled by volume attenuation parameter.
* So volume becomes maximum when avol is 0 (no attenuation), and
* minimum when 255 (-96dB or silence).
*/
static int vol_table[128] = {
255,111,95,86,79,74,70,66,63,61,58,56,54,52,50,49,
47,46,45,43,42,41,40,39,38,37,36,35,34,34,33,32,
31,31,30,29,29,28,27,27,26,26,25,24,24,23,23,22,
22,21,21,21,20,20,19,19,18,18,18,17,17,16,16,16,
15,15,15,14,14,14,13,13,13,12,12,12,11,11,11,10,
10,10,10,9,9,9,8,8,8,8,7,7,7,7,6,6,
6,6,5,5,5,5,5,4,4,4,4,3,3,3,3,3,
2,2,2,2,2,1,1,1,1,1,0,0,0,0,0,0,
};
/* tables for volume->attenuation calculation */
static unsigned char voltab1[128] = {
0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63,
0x63, 0x2b, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22,
0x21, 0x20, 0x1f, 0x1e, 0x1e, 0x1d, 0x1c, 0x1b, 0x1b, 0x1a,
0x19, 0x19, 0x18, 0x17, 0x17, 0x16, 0x16, 0x15, 0x15, 0x14,
0x14, 0x13, 0x13, 0x13, 0x12, 0x12, 0x11, 0x11, 0x11, 0x10,
0x10, 0x10, 0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e, 0x0e, 0x0d,
0x0d, 0x0d, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0b, 0x0b, 0x0b,
0x0b, 0x0a, 0x0a, 0x0a, 0x0a, 0x09, 0x09, 0x09, 0x09, 0x09,
0x08, 0x08, 0x08, 0x08, 0x08, 0x07, 0x07, 0x07, 0x07, 0x06,
0x06, 0x06, 0x06, 0x06, 0x05, 0x05, 0x05, 0x05, 0x05, 0x04,
0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static unsigned char voltab2[128] = {
0x32, 0x31, 0x30, 0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x2a,
0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x24, 0x23, 0x22, 0x21,
0x21, 0x20, 0x1f, 0x1e, 0x1e, 0x1d, 0x1c, 0x1c, 0x1b, 0x1a,
0x1a, 0x19, 0x19, 0x18, 0x18, 0x17, 0x16, 0x16, 0x15, 0x15,
0x14, 0x14, 0x13, 0x13, 0x13, 0x12, 0x12, 0x11, 0x11, 0x10,
0x10, 0x10, 0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e, 0x0d, 0x0d,
0x0d, 0x0c, 0x0c, 0x0c, 0x0b, 0x0b, 0x0b, 0x0b, 0x0a, 0x0a,
0x0a, 0x0a, 0x09, 0x09, 0x09, 0x09, 0x09, 0x08, 0x08, 0x08,
0x08, 0x08, 0x07, 0x07, 0x07, 0x07, 0x07, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x01, 0x01,
0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
};
static unsigned char expressiontab[128] = {
0x7f, 0x6c, 0x62, 0x5a, 0x54, 0x50, 0x4b, 0x48, 0x45, 0x42,
0x40, 0x3d, 0x3b, 0x39, 0x38, 0x36, 0x34, 0x33, 0x31, 0x30,
0x2f, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28, 0x27, 0x26, 0x25,
0x24, 0x24, 0x23, 0x22, 0x21, 0x21, 0x20, 0x1f, 0x1e, 0x1e,
0x1d, 0x1d, 0x1c, 0x1b, 0x1b, 0x1a, 0x1a, 0x19, 0x18, 0x18,
0x17, 0x17, 0x16, 0x16, 0x15, 0x15, 0x15, 0x14, 0x14, 0x13,
0x13, 0x12, 0x12, 0x11, 0x11, 0x11, 0x10, 0x10, 0x0f, 0x0f,
0x0f, 0x0e, 0x0e, 0x0e, 0x0d, 0x0d, 0x0d, 0x0c, 0x0c, 0x0c,
0x0b, 0x0b, 0x0b, 0x0a, 0x0a, 0x0a, 0x09, 0x09, 0x09, 0x09,
0x08, 0x08, 0x08, 0x07, 0x07, 0x07, 0x07, 0x06, 0x06, 0x06,
0x06, 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03,
0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01,
0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static void
awe_calc_volume(int voice)
{
voice_info *vp = &voices[voice];
awe_voice_info *ap;
awe_chan_info *cp = voices[voice].cinfo;
int vol;
/* search voice information */
if ((ap = vp->sample) == NULL)
return;
ap = vp->sample;
if (ap->index == 0) {
DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample));
if (awe_set_sample((awe_voice_list*)ap) == 0)
return;
}
if (ctrls[AWE_MD_NEW_VOLUME_CALC]) {
int main_vol = cp->main_vol * ap->amplitude / 127;
limitvalue(vp->velocity, 0, 127);
limitvalue(main_vol, 0, 127);
limitvalue(cp->expression_vol, 0, 127);
vol = voltab1[main_vol] + voltab2[vp->velocity];
vol = (vol * 8) / 3;
vol += ap->attenuation;
if (cp->expression_vol < 127)
vol += ((0x100 - vol) * expressiontab[cp->expression_vol])/128;
vol += atten_offset;
if (atten_relative)
vol += ctrls[AWE_MD_ZERO_ATTEN];
limitvalue(vol, 0, 255);
vp->avol = vol;
} else {
/* 0 - 127 */
vol = (vp->velocity * cp->main_vol * cp->expression_vol) / (127*127);
vol = vol * ap->amplitude / 127;
if (vol < 0) vol = 0;
if (vol > 127) vol = 127;
/* calc to attenuation */
vol = vol_table[vol];
vol += (int)ap->attenuation;
vol += atten_offset;
if (atten_relative)
vol += ctrls[AWE_MD_ZERO_ATTEN];
if (vol > 255) vol = 255;
vp->avol = vol;
}
if (cp->bank != AWE_DRUM_BANK && ((awe_voice_parm_block*)(&ap->parm))->volatk < 0x7d) {
int atten;
if (vp->velocity < 70) atten = 70;
else atten = vp->velocity;
vp->acutoff = (atten * ap->parm.cutoff + 0xa0) >> 7;
} else {
vp->acutoff = ap->parm.cutoff;
}
DEBUG(3,printk("AWE32: [-- voice(%d) vol=%x]\n", voice, vol));
}
/* change master volume */
static void
awe_change_master_volume(short val)
{
limitvalue(val, 0, 127);
atten_offset = vol_table[val];
atten_relative = TRUE;
awe_update_volume();
}
/* update volumes of all available channels */
static void awe_update_volume(void)
{
int i;
for (i = 0; i < awe_max_voices; i++)
awe_set_voice_vol(i, TRUE);
}
/* set sostenuto on */
static void awe_sostenuto_on(int voice, int forced)
{
if (IS_NO_EFFECT(voice) && !forced) return;
voices[voice].sostenuto = 127;
}
/* drop sustain */
static void awe_sustain_off(int voice, int forced)
{
if (voices[voice].state == AWE_ST_SUSTAINED) {
awe_note_off(voice);
awe_fx_init(voices[voice].ch);
awe_voice_init(voice, FALSE);
}
}
/* terminate and initialize voice */
static void awe_terminate_and_init(int voice, int forced)
{
awe_terminate(voice);
awe_fx_init(voices[voice].ch);
awe_voice_init(voice, TRUE);
}
/*
* synth operation routines
*/
#define AWE_VOICE_KEY(v) (0x8000 | (v))
#define AWE_CHAN_KEY(c,n) (((c) << 8) | ((n) + 1))
#define KEY_CHAN_MATCH(key,c) (((key) >> 8) == (c))
/* initialize the voice */
static void
awe_voice_init(int voice, int init_all)
{
voice_info *vp = &voices[voice];
/* reset voice search key */
if (playing_mode == AWE_PLAY_DIRECT)
vp->key = AWE_VOICE_KEY(voice);
else
vp->key = 0;
/* clear voice mapping */
voice_alloc->map[voice] = 0;
/* touch the timing flag */
vp->time = current_alloc_time;
/* initialize other parameters if necessary */
if (init_all) {
vp->note = -1;
vp->velocity = 0;
vp->sostenuto = 0;
vp->sample = NULL;
vp->cinfo = &channels[voice];
vp->ch = voice;
vp->state = AWE_ST_OFF;
/* emu8000 parameters */
vp->apitch = 0;
vp->avol = 255;
vp->apan = -1;
}
}
/* clear effects */
static void awe_fx_init(int ch)
{
if (SINGLE_LAYER_MODE() && !ctrls[AWE_MD_KEEP_EFFECT]) {
memset(&channels[ch].fx, 0, sizeof(channels[ch].fx));
memset(&channels[ch].fx_layer, 0, sizeof(&channels[ch].fx_layer));
}
}
/* initialize channel info */
static void awe_channel_init(int ch, int init_all)
{
awe_chan_info *cp = &channels[ch];
cp->channel = ch;
if (init_all) {
cp->panning = 0; /* zero center */
cp->bender_range = 200; /* sense * 100 */
cp->main_vol = 127;
if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(ch)) {
cp->instr = ctrls[AWE_MD_DEF_DRUM];
cp->bank = AWE_DRUM_BANK;
} else {
cp->instr = ctrls[AWE_MD_DEF_PRESET];
cp->bank = ctrls[AWE_MD_DEF_BANK];
}
}
cp->bender = 0; /* zero tune skew */
cp->expression_vol = 127;
cp->chan_press = 0;
cp->sustained = 0;
if (! ctrls[AWE_MD_KEEP_EFFECT]) {
memset(&cp->fx, 0, sizeof(cp->fx));
memset(&cp->fx_layer, 0, sizeof(cp->fx_layer));
}
}
/* change the voice parameters; voice = channel */
static void awe_voice_change(int voice, fx_affect_func func)
{
int i;
switch (playing_mode) {
case AWE_PLAY_DIRECT:
func(voice, FALSE);
break;
case AWE_PLAY_INDIRECT:
for (i = 0; i < awe_max_voices; i++)
if (voices[i].key == AWE_VOICE_KEY(voice))
func(i, FALSE);
break;
default:
for (i = 0; i < awe_max_voices; i++)
if (KEY_CHAN_MATCH(voices[i].key, voice))
func(i, FALSE);
break;
}
}
/*
* device open / close
*/
/* open device:
* reset status of all voices, and clear sample position flag
*/
static int
awe_open(int dev, int mode)
{
if (awe_busy)
return -EBUSY;
awe_busy = TRUE;
/* set default mode */
awe_init_ctrl_parms(FALSE);
atten_relative = TRUE;
atten_offset = 0;
drum_flags = DEFAULT_DRUM_FLAGS;
playing_mode = AWE_PLAY_INDIRECT;
/* reset voices & channels */
awe_reset(dev);
patch_opened = 0;
return 0;
}
/* close device:
* reset all voices again (terminate sounds)
*/
static void
awe_close(int dev)
{
awe_reset(dev);
awe_busy = FALSE;
}
/* set miscellaneous mode parameters
*/
static void
awe_init_ctrl_parms(int init_all)
{
int i;
for (i = 0; i < AWE_MD_END; i++) {
if (init_all || ctrl_parms[i].init_each_time)
ctrls[i] = ctrl_parms[i].value;
}
}
/* sequencer I/O control:
*/
static int
awe_ioctl(int dev, unsigned int cmd, void __user *arg)
{
switch (cmd) {
case SNDCTL_SYNTH_INFO:
if (playing_mode == AWE_PLAY_DIRECT)
awe_info.nr_voices = awe_max_voices;
else
awe_info.nr_voices = AWE_MAX_CHANNELS;
if (copy_to_user(arg, &awe_info, sizeof(awe_info)))
return -EFAULT;
return 0;
break;
case SNDCTL_SEQ_RESETSAMPLES:
awe_reset(dev);
awe_reset_samples();
return 0;
break;
case SNDCTL_SEQ_PERCMODE:
/* what's this? */
return 0;
break;
case SNDCTL_SYNTH_MEMAVL:
return memsize - awe_free_mem_ptr() * 2;
break;
default:
printk(KERN_WARNING "AWE32: unsupported ioctl %d\n", cmd);
return -EINVAL;
break;
}
}
static int voice_in_range(int voice)
{
if (playing_mode == AWE_PLAY_DIRECT) {
if (voice < 0 || voice >= awe_max_voices)
return FALSE;
} else {
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return FALSE;
}
return TRUE;
}
static void release_voice(int voice, int do_sustain)
{
if (IS_NO_SOUND(voice))
return;
if (do_sustain && (voices[voice].cinfo->sustained == 127 ||
voices[voice].sostenuto == 127))
voices[voice].state = AWE_ST_SUSTAINED;
else {
awe_note_off(voice);
awe_fx_init(voices[voice].ch);
awe_voice_init(voice, FALSE);
}
}
/* release all notes */
static void awe_note_off_all(int do_sustain)
{
int i;
for (i = 0; i < awe_max_voices; i++)
release_voice(i, do_sustain);
}
/* kill a voice:
* not terminate, just release the voice.
*/
static int
awe_kill_note(int dev, int voice, int note, int velocity)
{
int i, v2, key;
DEBUG(2,printk("AWE32: [off(%d) nt=%d vl=%d]\n", voice, note, velocity));
if (! voice_in_range(voice))
return -EINVAL;
switch (playing_mode) {
case AWE_PLAY_DIRECT:
case AWE_PLAY_INDIRECT:
key = AWE_VOICE_KEY(voice);
break;
case AWE_PLAY_MULTI2:
v2 = voice_alloc->map[voice] >> 8;
voice_alloc->map[voice] = 0;
voice = v2;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return -EINVAL;
/* continue to below */
default:
key = AWE_CHAN_KEY(voice, note);
break;
}
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key)
release_voice(i, TRUE);
}
return 0;
}
static void start_or_volume_change(int voice, int velocity)
{
voices[voice].velocity = velocity;
awe_calc_volume(voice);
if (voices[voice].state == AWE_ST_STANDBY)
awe_note_on(voice);
else if (voices[voice].state == AWE_ST_ON)
awe_set_volume(voice, FALSE);
}
static void set_and_start_voice(int voice, int state)
{
/* calculate pitch & volume parameters */
voices[voice].state = state;
awe_calc_pitch(voice);
awe_calc_volume(voice);
if (state == AWE_ST_ON)
awe_note_on(voice);
}
/* start a voice:
* if note is 255, identical with aftertouch function.
* Otherwise, start a voice with specified not and volume.
*/
static int
awe_start_note(int dev, int voice, int note, int velocity)
{
int i, key, state, volonly;
DEBUG(2,printk("AWE32: [on(%d) nt=%d vl=%d]\n", voice, note, velocity));
if (! voice_in_range(voice))
return -EINVAL;
if (velocity == 0)
state = AWE_ST_STANDBY; /* stand by for playing */
else
state = AWE_ST_ON; /* really play */
volonly = FALSE;
switch (playing_mode) {
case AWE_PLAY_DIRECT:
case AWE_PLAY_INDIRECT:
key = AWE_VOICE_KEY(voice);
if (note == 255)
volonly = TRUE;
break;
case AWE_PLAY_MULTI2:
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return -EINVAL;
/* continue to below */
default:
if (note >= 128) { /* key volume mode */
note -= 128;
volonly = TRUE;
}
key = AWE_CHAN_KEY(voice, note);
break;
}
/* dynamic volume change */
if (volonly) {
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key)
start_or_volume_change(i, velocity);
}
return 0;
}
/* if the same note still playing, stop it */
if (playing_mode != AWE_PLAY_DIRECT || ctrls[AWE_MD_EXCLUSIVE_SOUND]) {
for (i = 0; i < awe_max_voices; i++)
if (voices[i].key == key) {
if (voices[i].state == AWE_ST_ON) {
awe_note_off(i);
awe_voice_init(i, FALSE);
} else if (voices[i].state == AWE_ST_STANDBY)
awe_voice_init(i, TRUE);
}
}
/* allocate voices */
if (playing_mode == AWE_PLAY_DIRECT)
awe_alloc_one_voice(voice, note, velocity);
else
awe_alloc_multi_voices(voice, note, velocity, key);
/* turn off other voices exlusively (for drums) */
for (i = 0; i < awe_max_voices; i++)
if (voices[i].key == key)
awe_exclusive_off(i);
/* set up pitch and volume parameters */
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key && voices[i].state == AWE_ST_OFF)
set_and_start_voice(i, state);
}
return 0;
}
/* calculate hash key */
static int
awe_search_key(int bank, int preset, int note)
{
unsigned int key;
#if 1 /* new hash table */
if (bank == AWE_DRUM_BANK)
key = preset + note + 128;
else
key = bank + preset;
#else
key = preset;
#endif
key %= AWE_MAX_PRESETS;
return (int)key;
}
/* search instrument from hash table */
static awe_voice_list *
awe_search_instr(int bank, int preset, int note)
{
awe_voice_list *p;
int key, key2;
key = awe_search_key(bank, preset, note);
for (p = preset_table[key]; p; p = p->next_bank) {
if (p->instr == preset && p->bank == bank)
return p;
}
key2 = awe_search_key(bank, preset, 0); /* search default */
if (key == key2)
return NULL;
for (p = preset_table[key2]; p; p = p->next_bank) {
if (p->instr == preset && p->bank == bank)
return p;
}
return NULL;
}
/* assign the instrument to a voice */
static int
awe_set_instr_2(int dev, int voice, int instr_no)
{
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return -EINVAL;
}
return awe_set_instr(dev, voice, instr_no);
}
/* assign the instrument to a channel; voice is the channel number */
static int
awe_set_instr(int dev, int voice, int instr_no)
{
awe_chan_info *cinfo;
if (! voice_in_range(voice))
return -EINVAL;
if (instr_no < 0 || instr_no >= AWE_MAX_PRESETS)
return -EINVAL;
cinfo = &channels[voice];
cinfo->instr = instr_no;
DEBUG(2,printk("AWE32: [program(%d) %d]\n", voice, instr_no));
return 0;
}
/* reset all voices; terminate sounds and initialize parameters */
static void
awe_reset(int dev)
{
int i;
current_alloc_time = 0;
/* don't turn off voice 31 and 32. they are used also for FM voices */
for (i = 0; i < awe_max_voices; i++) {
awe_terminate(i);
awe_voice_init(i, TRUE);
}
for (i = 0; i < AWE_MAX_CHANNELS; i++)
awe_channel_init(i, TRUE);
for (i = 0; i < 16; i++) {
awe_operations.chn_info[i].controllers[CTL_MAIN_VOLUME] = 127;
awe_operations.chn_info[i].controllers[CTL_EXPRESSION] = 127;
}
awe_init_fm();
awe_tweak();
}
/* hardware specific control:
* GUS specific and AWE32 specific controls are available.
*/
static void
awe_hw_control(int dev, unsigned char *event)
{
int cmd = event[2];
if (cmd & _AWE_MODE_FLAG)
awe_hw_awe_control(dev, cmd & _AWE_MODE_VALUE_MASK, event);
#ifdef AWE_HAS_GUS_COMPATIBILITY
else
awe_hw_gus_control(dev, cmd & _AWE_MODE_VALUE_MASK, event);
#endif
}
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* GUS compatible controls */
static void
awe_hw_gus_control(int dev, int cmd, unsigned char *event)
{
int voice, i, key;
unsigned short p1;
short p2;
int plong;
if (MULTI_LAYER_MODE())
return;
if (cmd == _GUS_NUMVOICES)
return;
voice = event[3];
if (! voice_in_range(voice))
return;
p1 = *(unsigned short *) &event[4];
p2 = *(short *) &event[6];
plong = *(int*) &event[4];
switch (cmd) {
case _GUS_VOICESAMPLE:
awe_set_instr(dev, voice, p1);
return;
case _GUS_VOICEBALA:
/* 0 to 15 --> -128 to 127 */
awe_panning(dev, voice, ((int)p1 << 4) - 128);
return;
case _GUS_VOICEVOL:
case _GUS_VOICEVOL2:
/* not supported yet */
return;
case _GUS_RAMPRANGE:
case _GUS_RAMPRATE:
case _GUS_RAMPMODE:
case _GUS_RAMPON:
case _GUS_RAMPOFF:
/* volume ramping not supported */
return;
case _GUS_VOLUME_SCALE:
return;
case _GUS_VOICE_POS:
FX_SET(&channels[voice].fx, AWE_FX_SAMPLE_START,
(short)(plong & 0x7fff));
FX_SET(&channels[voice].fx, AWE_FX_COARSE_SAMPLE_START,
(plong >> 15) & 0xffff);
return;
}
key = AWE_VOICE_KEY(voice);
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key) {
switch (cmd) {
case _GUS_VOICEON:
awe_note_on(i);
break;
case _GUS_VOICEOFF:
awe_terminate(i);
awe_fx_init(voices[i].ch);
awe_voice_init(i, TRUE);
break;
case _GUS_VOICEFADE:
awe_note_off(i);
awe_fx_init(voices[i].ch);
awe_voice_init(i, FALSE);
break;
case _GUS_VOICEFREQ:
awe_calc_pitch_from_freq(i, plong);
break;
}
}
}
}
#endif /* gus_compat */
/* AWE32 specific controls */
static void
awe_hw_awe_control(int dev, int cmd, unsigned char *event)
{
int voice;
unsigned short p1;
short p2;
int i;
voice = event[3];
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
p1 = *(unsigned short *) &event[4];
p2 = *(short *) &event[6];
switch (cmd) {
case _AWE_DEBUG_MODE:
ctrls[AWE_MD_DEBUG_MODE] = p1;
printk(KERN_DEBUG "AWE32: debug mode = %d\n", ctrls[AWE_MD_DEBUG_MODE]);
break;
case _AWE_REVERB_MODE:
ctrls[AWE_MD_REVERB_MODE] = p1;
awe_update_reverb_mode();
break;
case _AWE_CHORUS_MODE:
ctrls[AWE_MD_CHORUS_MODE] = p1;
awe_update_chorus_mode();
break;
case _AWE_REMOVE_LAST_SAMPLES:
DEBUG(0,printk("AWE32: remove last samples\n"));
awe_reset(0);
if (locked_sf_id > 0)
awe_remove_samples(locked_sf_id);
break;
case _AWE_INITIALIZE_CHIP:
awe_initialize();
break;
case _AWE_SEND_EFFECT:
i = -1;
if (p1 >= 0x100) {
i = (p1 >> 8);
if (i < 0 || i >= MAX_LAYERS)
break;
}
awe_send_effect(voice, i, p1, p2);
break;
case _AWE_RESET_CHANNEL:
awe_channel_init(voice, !p1);
break;
case _AWE_TERMINATE_ALL:
awe_reset(0);
break;
case _AWE_TERMINATE_CHANNEL:
awe_voice_change(voice, awe_terminate_and_init);
break;
case _AWE_RELEASE_ALL:
awe_note_off_all(FALSE);
break;
case _AWE_NOTEOFF_ALL:
awe_note_off_all(TRUE);
break;
case _AWE_INITIAL_VOLUME:
DEBUG(0,printk("AWE32: init attenuation %d\n", p1));
atten_relative = (char)p2;
atten_offset = (short)p1;
awe_update_volume();
break;
case _AWE_CHN_PRESSURE:
channels[voice].chan_press = p1;
awe_modwheel_change(voice, p1);
break;
case _AWE_CHANNEL_MODE:
DEBUG(0,printk("AWE32: channel mode = %d\n", p1));
playing_mode = p1;
awe_reset(0);
break;
case _AWE_DRUM_CHANNELS:
DEBUG(0,printk("AWE32: drum flags = %x\n", p1));
drum_flags = *(unsigned int*)&event[4];
break;
case _AWE_MISC_MODE:
DEBUG(0,printk("AWE32: ctrl parms = %d %d\n", p1, p2));
if (p1 > AWE_MD_VERSION && p1 < AWE_MD_END) {
ctrls[p1] = p2;
if (ctrl_parms[p1].update)
ctrl_parms[p1].update();
}
break;
case _AWE_EQUALIZER:
ctrls[AWE_MD_BASS_LEVEL] = p1;
ctrls[AWE_MD_TREBLE_LEVEL] = p2;
awe_update_equalizer();
break;
default:
DEBUG(0,printk("AWE32: hw control cmd=%d voice=%d\n", cmd, voice));
break;
}
}
/* change effects */
static void
awe_send_effect(int voice, int layer, int type, int val)
{
awe_chan_info *cinfo;
FX_Rec *fx;
int mode;
cinfo = &channels[voice];
if (layer >= 0 && layer < MAX_LAYERS)
fx = &cinfo->fx_layer[layer];
else
fx = &cinfo->fx;
if (type & 0x40)
mode = FX_FLAG_OFF;
else if (type & 0x80)
mode = FX_FLAG_ADD;
else
mode = FX_FLAG_SET;
type &= 0x3f;
if (type >= 0 && type < AWE_FX_END) {
DEBUG(2,printk("AWE32: effects (%d) %d %d\n", voice, type, val));
if (mode == FX_FLAG_SET)
FX_SET(fx, type, val);
else if (mode == FX_FLAG_ADD)
FX_ADD(fx, type, val);
else
FX_UNSET(fx, type);
if (mode != FX_FLAG_OFF && parm_defs[type].realtime) {
DEBUG(2,printk("AWE32: fx_realtime (%d)\n", voice));
awe_voice_change(voice, parm_defs[type].realtime);
}
}
}
/* change modulation wheel; voice is already mapped on multi2 mode */
static void
awe_modwheel_change(int voice, int value)
{
int i;
awe_chan_info *cinfo;
cinfo = &channels[voice];
i = value * ctrls[AWE_MD_MOD_SENSE] / 1200;
FX_ADD(&cinfo->fx, AWE_FX_LFO1_PITCH, i);
awe_voice_change(voice, awe_fx_fmmod);
FX_ADD(&cinfo->fx, AWE_FX_LFO2_PITCH, i);
awe_voice_change(voice, awe_fx_fm2frq2);
}
/* voice pressure change */
static void
awe_aftertouch(int dev, int voice, int pressure)
{
int note;
DEBUG(2,printk("AWE32: [after(%d) %d]\n", voice, pressure));
if (! voice_in_range(voice))
return;
switch (playing_mode) {
case AWE_PLAY_DIRECT:
case AWE_PLAY_INDIRECT:
awe_start_note(dev, voice, 255, pressure);
break;
case AWE_PLAY_MULTI2:
note = (voice_alloc->map[voice] & 0xff) - 1;
awe_key_pressure(dev, voice, note + 0x80, pressure);
break;
}
}
/* voice control change */
static void
awe_controller(int dev, int voice, int ctrl_num, int value)
{
awe_chan_info *cinfo;
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
cinfo = &channels[voice];
switch (ctrl_num) {
case CTL_BANK_SELECT: /* MIDI control #0 */
DEBUG(2,printk("AWE32: [bank(%d) %d]\n", voice, value));
if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(voice) &&
!ctrls[AWE_MD_TOGGLE_DRUM_BANK])
break;
if (value < 0 || value > 255)
break;
cinfo->bank = value;
if (cinfo->bank == AWE_DRUM_BANK)
DRUM_CHANNEL_ON(cinfo->channel);
else
DRUM_CHANNEL_OFF(cinfo->channel);
awe_set_instr(dev, voice, cinfo->instr);
break;
case CTL_MODWHEEL: /* MIDI control #1 */
DEBUG(2,printk("AWE32: [modwheel(%d) %d]\n", voice, value));
awe_modwheel_change(voice, value);
break;
case CTRL_PITCH_BENDER: /* SEQ1 V2 contorl */
DEBUG(2,printk("AWE32: [bend(%d) %d]\n", voice, value));
/* zero centered */
cinfo->bender = value;
awe_voice_change(voice, awe_set_voice_pitch);
break;
case CTRL_PITCH_BENDER_RANGE: /* SEQ1 V2 control */
DEBUG(2,printk("AWE32: [range(%d) %d]\n", voice, value));
/* value = sense x 100 */
cinfo->bender_range = value;
/* no audible pitch change yet.. */
break;
case CTL_EXPRESSION: /* MIDI control #11 */
if (SINGLE_LAYER_MODE())
value /= 128;
case CTRL_EXPRESSION: /* SEQ1 V2 control */
DEBUG(2,printk("AWE32: [expr(%d) %d]\n", voice, value));
/* 0 - 127 */
cinfo->expression_vol = value;
awe_voice_change(voice, awe_set_voice_vol);
break;
case CTL_PAN: /* MIDI control #10 */
DEBUG(2,printk("AWE32: [pan(%d) %d]\n", voice, value));
/* (0-127) -> signed 8bit */
cinfo->panning = value * 2 - 128;
if (ctrls[AWE_MD_REALTIME_PAN])
awe_voice_change(voice, awe_set_pan);
break;
case CTL_MAIN_VOLUME: /* MIDI control #7 */
if (SINGLE_LAYER_MODE())
value = (value * 100) / 16383;
case CTRL_MAIN_VOLUME: /* SEQ1 V2 control */
DEBUG(2,printk("AWE32: [mainvol(%d) %d]\n", voice, value));
/* 0 - 127 */
cinfo->main_vol = value;
awe_voice_change(voice, awe_set_voice_vol);
break;
case CTL_EXT_EFF_DEPTH: /* reverb effects: 0-127 */
DEBUG(2,printk("AWE32: [reverb(%d) %d]\n", voice, value));
FX_SET(&cinfo->fx, AWE_FX_REVERB, value * 2);
break;
case CTL_CHORUS_DEPTH: /* chorus effects: 0-127 */
DEBUG(2,printk("AWE32: [chorus(%d) %d]\n", voice, value));
FX_SET(&cinfo->fx, AWE_FX_CHORUS, value * 2);
break;
case 120: /* all sounds off */
awe_note_off_all(FALSE);
break;
case 123: /* all notes off */
awe_note_off_all(TRUE);
break;
case CTL_SUSTAIN: /* MIDI control #64 */
cinfo->sustained = value;
if (value != 127)
awe_voice_change(voice, awe_sustain_off);
break;
case CTL_SOSTENUTO: /* MIDI control #66 */
if (value == 127)
awe_voice_change(voice, awe_sostenuto_on);
else
awe_voice_change(voice, awe_sustain_off);
break;
default:
DEBUG(0,printk("AWE32: [control(%d) ctrl=%d val=%d]\n",
voice, ctrl_num, value));
break;
}
}
/* voice pan change (value = -128 - 127) */
static void
awe_panning(int dev, int voice, int value)
{
awe_chan_info *cinfo;
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
cinfo = &channels[voice];
cinfo->panning = value;
DEBUG(2,printk("AWE32: [pan(%d) %d]\n", voice, cinfo->panning));
if (ctrls[AWE_MD_REALTIME_PAN])
awe_voice_change(voice, awe_set_pan);
}
/* volume mode change */
static void
awe_volume_method(int dev, int mode)
{
/* not impremented */
DEBUG(0,printk("AWE32: [volmethod mode=%d]\n", mode));
}
/* pitch wheel change: 0-16384 */
static void
awe_bender(int dev, int voice, int value)
{
awe_chan_info *cinfo;
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
/* convert to zero centered value */
cinfo = &channels[voice];
cinfo->bender = value - 8192;
DEBUG(2,printk("AWE32: [bend(%d) %d]\n", voice, cinfo->bender));
awe_voice_change(voice, awe_set_voice_pitch);
}
/*
* load a sound patch:
* three types of patches are accepted: AWE, GUS, and SYSEX.
*/
static int
awe_load_patch(int dev, int format, const char __user *addr,
int offs, int count, int pmgr_flag)
{
awe_patch_info patch;
int rc = 0;
#ifdef AWE_HAS_GUS_COMPATIBILITY
if (format == GUS_PATCH) {
return awe_load_guspatch(addr, offs, count, pmgr_flag);
} else
#endif
if (format == SYSEX_PATCH) {
/* no system exclusive message supported yet */
return 0;
} else if (format != AWE_PATCH) {
printk(KERN_WARNING "AWE32 Error: Invalid patch format (key) 0x%x\n", format);
return -EINVAL;
}
if (count < AWE_PATCH_INFO_SIZE) {
printk(KERN_WARNING "AWE32 Error: Patch header too short\n");
return -EINVAL;
}
if (copy_from_user(((char*)&patch) + offs, addr + offs,
AWE_PATCH_INFO_SIZE - offs))
return -EFAULT;
count -= AWE_PATCH_INFO_SIZE;
if (count < patch.len) {
printk(KERN_WARNING "AWE32: sample: Patch record too short (%d<%d)\n",
count, patch.len);
return -EINVAL;
}
switch (patch.type) {
case AWE_LOAD_INFO:
rc = awe_load_info(&patch, addr, count);
break;
case AWE_LOAD_DATA:
rc = awe_load_data(&patch, addr, count);
break;
case AWE_OPEN_PATCH:
rc = awe_open_patch(&patch, addr, count);
break;
case AWE_CLOSE_PATCH:
rc = awe_close_patch(&patch, addr, count);
break;
case AWE_UNLOAD_PATCH:
rc = awe_unload_patch(&patch, addr, count);
break;
case AWE_REPLACE_DATA:
rc = awe_replace_data(&patch, addr, count);
break;
case AWE_MAP_PRESET:
rc = awe_load_map(&patch, addr, count);
break;
/* case AWE_PROBE_INFO:
rc = awe_probe_info(&patch, addr, count);
break;*/
case AWE_PROBE_DATA:
rc = awe_probe_data(&patch, addr, count);
break;
case AWE_REMOVE_INFO:
rc = awe_remove_info(&patch, addr, count);
break;
case AWE_LOAD_CHORUS_FX:
rc = awe_load_chorus_fx(&patch, addr, count);
break;
case AWE_LOAD_REVERB_FX:
rc = awe_load_reverb_fx(&patch, addr, count);
break;
default:
printk(KERN_WARNING "AWE32 Error: unknown patch format type %d\n",
patch.type);
rc = -EINVAL;
}
return rc;
}
/* create an sf list record */
static int
awe_create_sf(int type, char *name)
{
sf_list *rec;
/* terminate sounds */
awe_reset(0);
rec = (sf_list *)kmalloc(sizeof(*rec), GFP_KERNEL);
if (rec == NULL)
return 1; /* no memory */
rec->sf_id = current_sf_id + 1;
rec->type = type;
if (/*current_sf_id == 0 ||*/ (type & AWE_PAT_LOCKED) != 0)
locked_sf_id = current_sf_id + 1;
rec->num_info = awe_free_info();
rec->num_sample = awe_free_sample();
rec->mem_ptr = awe_free_mem_ptr();
rec->infos = rec->last_infos = NULL;
rec->samples = rec->last_samples = NULL;
/* add to linked-list */
rec->next = NULL;
rec->prev = sftail;
if (sftail)
sftail->next = rec;
else
sfhead = rec;
sftail = rec;
current_sf_id++;
#ifdef AWE_ALLOW_SAMPLE_SHARING
rec->shared = NULL;
if (name)
memcpy(rec->name, name, AWE_PATCH_NAME_LEN);
else
strcpy(rec->name, "*TEMPORARY*");
if (current_sf_id > 1 && name && (type & AWE_PAT_SHARED) != 0) {
/* is the current font really a shared font? */
if (is_shared_sf(rec->name)) {
/* check if the shared font is already installed */
sf_list *p;
for (p = rec->prev; p; p = p->prev) {
if (is_identical_name(rec->name, p)) {
rec->shared = p;
break;
}
}
}
}
#endif /* allow sharing */
return 0;
}
#ifdef AWE_ALLOW_SAMPLE_SHARING
/* check if the given name is a valid shared name */
#define ASC_TO_KEY(c) ((c) - 'A' + 1)
static int is_shared_sf(unsigned char *name)
{
static unsigned char id_head[4] = {
ASC_TO_KEY('A'), ASC_TO_KEY('W'), ASC_TO_KEY('E'),
AWE_MAJOR_VERSION,
};
if (memcmp(name, id_head, 4) == 0)
return TRUE;
return FALSE;
}
/* check if the given name matches to the existing list */
static int is_identical_name(unsigned char *name, sf_list *p)
{
char *id = p->name;
if (is_shared_sf(id) && memcmp(id, name, AWE_PATCH_NAME_LEN) == 0)
return TRUE;
return FALSE;
}
/* check if the given voice info exists */
static int info_duplicated(sf_list *sf, awe_voice_list *rec)
{
/* search for all sharing lists */
for (; sf; sf = sf->shared) {
awe_voice_list *p;
for (p = sf->infos; p; p = p->next) {
if (p->type == V_ST_NORMAL &&
p->bank == rec->bank &&
p->instr == rec->instr &&
p->v.low == rec->v.low &&
p->v.high == rec->v.high &&
p->v.sample == rec->v.sample)
return TRUE;
}
}
return FALSE;
}
#endif /* AWE_ALLOW_SAMPLE_SHARING */
/* free sf_list record */
/* linked-list in this function is not cared */
static void
awe_free_sf(sf_list *sf)
{
if (sf->infos) {
awe_voice_list *p, *next;
for (p = sf->infos; p; p = next) {
next = p->next;
kfree(p);
}
}
if (sf->samples) {
awe_sample_list *p, *next;
for (p = sf->samples; p; p = next) {
next = p->next;
kfree(p);
}
}
kfree(sf);
}
/* open patch; create sf list and set opened flag */
static int
awe_open_patch(awe_patch_info *patch, const char __user *addr, int count)
{
awe_open_parm parm;
int shared;
if (copy_from_user(&parm, addr + AWE_PATCH_INFO_SIZE, sizeof(parm)))
return -EFAULT;
shared = FALSE;
#ifdef AWE_ALLOW_SAMPLE_SHARING
if (sftail && (parm.type & AWE_PAT_SHARED) != 0) {
/* is the previous font the same font? */
if (is_identical_name(parm.name, sftail)) {
/* then append to the previous */
shared = TRUE;
awe_reset(0);
if (parm.type & AWE_PAT_LOCKED)
locked_sf_id = current_sf_id;
}
}
#endif /* allow sharing */
if (! shared) {
if (awe_create_sf(parm.type, parm.name)) {
printk(KERN_ERR "AWE32: can't open: failed to alloc new list\n");
return -ENOMEM;
}
}
patch_opened = TRUE;
return current_sf_id;
}
/* check if the patch is already opened */
static sf_list *
check_patch_opened(int type, char *name)
{
if (! patch_opened) {
if (awe_create_sf(type, name)) {
printk(KERN_ERR "AWE32: failed to alloc new list\n");
return NULL;
}
patch_opened = TRUE;
return sftail;
}
return sftail;
}
/* close the patch; if no voice is loaded, remove the patch */
static int
awe_close_patch(awe_patch_info *patch, const char __user *addr, int count)
{
if (patch_opened && sftail) {
/* if no voice is loaded, release the current patch */
if (sftail->infos == NULL) {
awe_reset(0);
awe_remove_samples(current_sf_id - 1);
}
}
patch_opened = 0;
return 0;
}
/* remove the latest patch */
static int
awe_unload_patch(awe_patch_info *patch, const char __user *addr, int count)
{
if (current_sf_id > 0 && current_sf_id > locked_sf_id) {
awe_reset(0);
awe_remove_samples(current_sf_id - 1);
}
return 0;
}
/* allocate voice info list records */
static awe_voice_list *
alloc_new_info(void)
{
awe_voice_list *newlist;
newlist = kmalloc(sizeof(*newlist), GFP_KERNEL);
if (newlist == NULL) {
printk(KERN_ERR "AWE32: can't alloc info table\n");
return NULL;
}
return newlist;
}
/* allocate sample info list records */
static awe_sample_list *
alloc_new_sample(void)
{
awe_sample_list *newlist;
newlist = (awe_sample_list *)kmalloc(sizeof(*newlist), GFP_KERNEL);
if (newlist == NULL) {
printk(KERN_ERR "AWE32: can't alloc sample table\n");
return NULL;
}
return newlist;
}
/* load voice map */
static int
awe_load_map(awe_patch_info *patch, const char __user *addr, int count)
{
awe_voice_map map;
awe_voice_list *rec, *p;
sf_list *sf;
/* get the link info */
if (count < sizeof(map)) {
printk(KERN_WARNING "AWE32 Error: invalid patch info length\n");
return -EINVAL;
}
if (copy_from_user(&map, addr + AWE_PATCH_INFO_SIZE, sizeof(map)))
return -EFAULT;
/* check if the identical mapping already exists */
p = awe_search_instr(map.map_bank, map.map_instr, map.map_key);
for (; p; p = p->next_instr) {
if (p->type == V_ST_MAPPED &&
p->v.start == map.src_instr &&
p->v.end == map.src_bank &&
p->v.fixkey == map.src_key)
return 0; /* already present! */
}
if ((sf = check_patch_opened(AWE_PAT_TYPE_MAP, NULL)) == NULL)
return -ENOMEM;
if ((rec = alloc_new_info()) == NULL)
return -ENOMEM;
rec->bank = map.map_bank;
rec->instr = map.map_instr;
rec->type = V_ST_MAPPED;
rec->disabled = FALSE;
awe_init_voice_info(&rec->v);
if (map.map_key >= 0) {
rec->v.low = map.map_key;
rec->v.high = map.map_key;
}
rec->v.start = map.src_instr;
rec->v.end = map.src_bank;
rec->v.fixkey = map.src_key;
add_sf_info(sf, rec);
add_info_list(rec);
return 0;
}
#if 0
/* probe preset in the current list -- nothing to be loaded */
static int
awe_probe_info(awe_patch_info *patch, const char __user *addr, int count)
{
#ifdef AWE_ALLOW_SAMPLE_SHARING
awe_voice_map map;
awe_voice_list *p;
if (! patch_opened)
return -EINVAL;
/* get the link info */
if (count < sizeof(map)) {
printk(KERN_WARNING "AWE32 Error: invalid patch info length\n");
return -EINVAL;
}
if (copy_from_user(&map, addr + AWE_PATCH_INFO_SIZE, sizeof(map)))
return -EFAULT;
/* check if the identical mapping already exists */
if (sftail == NULL)
return -EINVAL;
p = awe_search_instr(map.src_bank, map.src_instr, map.src_key);
for (; p; p = p->next_instr) {
if (p->type == V_ST_NORMAL &&
is_identical_holder(p->holder, sftail) &&
p->v.low <= map.src_key &&
p->v.high >= map.src_key)
return 0; /* already present! */
}
#endif /* allow sharing */
return -EINVAL;
}
#endif
/* probe sample in the current list -- nothing to be loaded */
static int
awe_probe_data(awe_patch_info *patch, const char __user *addr, int count)
{
#ifdef AWE_ALLOW_SAMPLE_SHARING
if (! patch_opened)
return -EINVAL;
/* search the specified sample by optarg */
if (search_sample_index(sftail, patch->optarg) != NULL)
return 0;
#endif /* allow sharing */
return -EINVAL;
}
/* remove the present instrument layers */
static int
remove_info(sf_list *sf, int bank, int instr)
{
awe_voice_list *prev, *next, *p;
int removed = 0;
prev = NULL;
for (p = sf->infos; p; p = next) {
next = p->next;
if (p->type == V_ST_NORMAL &&
p->bank == bank && p->instr == instr) {
/* remove this layer */
if (prev)
prev->next = next;
else
sf->infos = next;
if (p == sf->last_infos)
sf->last_infos = prev;
sf->num_info--;
removed++;
kfree(p);
} else
prev = p;
}
if (removed)
rebuild_preset_list();
return removed;
}
/* load voice information data */
static int
awe_load_info(awe_patch_info *patch, const char __user *addr, int count)
{
int offset;
awe_voice_rec_hdr hdr;
int i;
int total_size;
sf_list *sf;
awe_voice_list *rec;
if (count < AWE_VOICE_REC_SIZE) {
printk(KERN_WARNING "AWE32 Error: invalid patch info length\n");
return -EINVAL;
}
offset = AWE_PATCH_INFO_SIZE;
if (copy_from_user((char*)&hdr, addr + offset, AWE_VOICE_REC_SIZE))
return -EFAULT;
offset += AWE_VOICE_REC_SIZE;
if (hdr.nvoices <= 0 || hdr.nvoices >= 100) {
printk(KERN_WARNING "AWE32 Error: Invalid voice number %d\n", hdr.nvoices);
return -EINVAL;
}
total_size = AWE_VOICE_REC_SIZE + AWE_VOICE_INFO_SIZE * hdr.nvoices;
if (count < total_size) {
printk(KERN_WARNING "AWE32 Error: patch length(%d) is smaller than nvoices(%d)\n",
count, hdr.nvoices);
return -EINVAL;
}
if ((sf = check_patch_opened(AWE_PAT_TYPE_MISC, NULL)) == NULL)
return -ENOMEM;
switch (hdr.write_mode) {
case AWE_WR_EXCLUSIVE:
/* exclusive mode - if the instrument already exists,
return error */
for (rec = sf->infos; rec; rec = rec->next) {
if (rec->type == V_ST_NORMAL &&
rec->bank == hdr.bank &&
rec->instr == hdr.instr)
return -EINVAL;
}
break;
case AWE_WR_REPLACE:
/* replace mode - remove the instrument if it already exists */
remove_info(sf, hdr.bank, hdr.instr);
break;
}
/* append new layers */
for (i = 0; i < hdr.nvoices; i++) {
rec = alloc_new_info();
if (rec == NULL)
return -ENOMEM;
rec->bank = hdr.bank;
rec->instr = hdr.instr;
rec->type = V_ST_NORMAL;
rec->disabled = FALSE;
/* copy awe_voice_info parameters */
if (copy_from_user(&rec->v, addr + offset, AWE_VOICE_INFO_SIZE)) {
kfree(rec);
return -EFAULT;
}
offset += AWE_VOICE_INFO_SIZE;
#ifdef AWE_ALLOW_SAMPLE_SHARING
if (sf && sf->shared) {
if (info_duplicated(sf, rec)) {
kfree(rec);
continue;
}
}
#endif /* allow sharing */
if (rec->v.mode & AWE_MODE_INIT_PARM)
awe_init_voice_parm(&rec->v.parm);
add_sf_info(sf, rec);
awe_set_sample(rec);
add_info_list(rec);
}
return 0;
}
/* remove instrument layers */
static int
awe_remove_info(awe_patch_info *patch, const char __user *addr, int count)
{
unsigned char bank, instr;
sf_list *sf;
if (! patch_opened || (sf = sftail) == NULL) {
printk(KERN_WARNING "AWE32: remove_info: patch not opened\n");
return -EINVAL;
}
bank = ((unsigned short)patch->optarg >> 8) & 0xff;
instr = (unsigned short)patch->optarg & 0xff;
if (! remove_info(sf, bank, instr))
return -EINVAL;
return 0;
}
/* load wave sample data */
static int
awe_load_data(awe_patch_info *patch, const char __user *addr, int count)
{
int offset, size;
int rc;
awe_sample_info tmprec;
awe_sample_list *rec;
sf_list *sf;
if ((sf = check_patch_opened(AWE_PAT_TYPE_MISC, NULL)) == NULL)
return -ENOMEM;
size = (count - AWE_SAMPLE_INFO_SIZE) / 2;
offset = AWE_PATCH_INFO_SIZE;
if (copy_from_user(&tmprec, addr + offset, AWE_SAMPLE_INFO_SIZE))
return -EFAULT;
offset += AWE_SAMPLE_INFO_SIZE;
if (size != tmprec.size) {
printk(KERN_WARNING "AWE32: load: sample size differed (%d != %d)\n",
tmprec.size, size);
return -EINVAL;
}
if (search_sample_index(sf, tmprec.sample) != NULL) {
#ifdef AWE_ALLOW_SAMPLE_SHARING
/* if shared sample, skip this data */
if (sf->type & AWE_PAT_SHARED)
return 0;
#endif /* allow sharing */
DEBUG(1,printk("AWE32: sample data %d already present\n", tmprec.sample));
return -EINVAL;
}
if ((rec = alloc_new_sample()) == NULL)
return -ENOMEM;
memcpy(&rec->v, &tmprec, sizeof(tmprec));
if (rec->v.size > 0) {
if ((rc = awe_write_wave_data(addr, offset, rec, -1)) < 0) {
kfree(rec);
return rc;
}
sf->mem_ptr += rc;
}
add_sf_sample(sf, rec);
return 0;
}
/* replace wave sample data */
static int
awe_replace_data(awe_patch_info *patch, const char __user *addr, int count)
{
int offset;
int size;
int rc;
int channels;
awe_sample_info cursmp;
int save_mem_ptr;
sf_list *sf;
awe_sample_list *rec;
if (! patch_opened || (sf = sftail) == NULL) {
printk(KERN_WARNING "AWE32: replace: patch not opened\n");
return -EINVAL;
}
size = (count - AWE_SAMPLE_INFO_SIZE) / 2;
offset = AWE_PATCH_INFO_SIZE;
if (copy_from_user(&cursmp, addr + offset, AWE_SAMPLE_INFO_SIZE))
return -EFAULT;
offset += AWE_SAMPLE_INFO_SIZE;
if (cursmp.size == 0 || size != cursmp.size) {
printk(KERN_WARNING "AWE32: replace: invalid sample size (%d!=%d)\n",
cursmp.size, size);
return -EINVAL;
}
channels = patch->optarg;
if (channels <= 0 || channels > AWE_NORMAL_VOICES) {
printk(KERN_WARNING "AWE32: replace: invalid channels %d\n", channels);
return -EINVAL;
}
for (rec = sf->samples; rec; rec = rec->next) {
if (rec->v.sample == cursmp.sample)
break;
}
if (rec == NULL) {
printk(KERN_WARNING "AWE32: replace: cannot find existing sample data %d\n",
cursmp.sample);
return -EINVAL;
}
if (rec->v.size != cursmp.size) {
printk(KERN_WARNING "AWE32: replace: exiting size differed (%d!=%d)\n",
rec->v.size, cursmp.size);
return -EINVAL;
}
save_mem_ptr = awe_free_mem_ptr();
sftail->mem_ptr = rec->v.start - awe_mem_start;
memcpy(&rec->v, &cursmp, sizeof(cursmp));
rec->v.sf_id = current_sf_id;
if ((rc = awe_write_wave_data(addr, offset, rec, channels)) < 0)
return rc;
sftail->mem_ptr = save_mem_ptr;
return 0;
}
/*----------------------------------------------------------------*/
static const char __user *readbuf_addr;
static int readbuf_offs;
static int readbuf_flags;
/* initialize read buffer */
static int
readbuf_init(const char __user *addr, int offset, awe_sample_info *sp)
{
readbuf_addr = addr;
readbuf_offs = offset;
readbuf_flags = sp->mode_flags;
return 0;
}
/* read directly from user buffer */
static unsigned short
readbuf_word(int pos)
{
unsigned short c;
/* read from user buffer */
if (readbuf_flags & AWE_SAMPLE_8BITS) {
unsigned char cc;
get_user(cc, (unsigned char __user *)(readbuf_addr + readbuf_offs + pos));
c = (unsigned short)cc << 8; /* convert 8bit -> 16bit */
} else {
get_user(c, (unsigned short __user *)(readbuf_addr + readbuf_offs + pos * 2));
}
if (readbuf_flags & AWE_SAMPLE_UNSIGNED)
c ^= 0x8000; /* unsigned -> signed */
return c;
}
#define readbuf_word_cache readbuf_word
#define readbuf_end() /**/
/*----------------------------------------------------------------*/
#define BLANK_LOOP_START 8
#define BLANK_LOOP_END 40
#define BLANK_LOOP_SIZE 48
/* loading onto memory - return the actual written size */
static int
awe_write_wave_data(const char __user *addr, int offset, awe_sample_list *list, int channels)
{
int i, truesize, dram_offset;
awe_sample_info *sp = &list->v;
int rc;
/* be sure loop points start < end */
if (sp->loopstart > sp->loopend) {
int tmp = sp->loopstart;
sp->loopstart = sp->loopend;
sp->loopend = tmp;
}
/* compute true data size to be loaded */
truesize = sp->size;
if (sp->mode_flags & (AWE_SAMPLE_BIDIR_LOOP|AWE_SAMPLE_REVERSE_LOOP))
truesize += sp->loopend - sp->loopstart;
if (sp->mode_flags & AWE_SAMPLE_NO_BLANK)
truesize += BLANK_LOOP_SIZE;
if (awe_free_mem_ptr() + truesize >= memsize/2) {
DEBUG(-1,printk("AWE32 Error: Sample memory full\n"));
return -ENOSPC;
}
/* recalculate address offset */
sp->end -= sp->start;
sp->loopstart -= sp->start;
sp->loopend -= sp->start;
dram_offset = awe_free_mem_ptr() + awe_mem_start;
sp->start = dram_offset;
sp->end += dram_offset;
sp->loopstart += dram_offset;
sp->loopend += dram_offset;
/* set the total size (store onto obsolete checksum value) */
if (sp->size == 0)
sp->checksum = 0;
else
sp->checksum = truesize;
if ((rc = awe_open_dram_for_write(dram_offset, channels)) != 0)
return rc;
if (readbuf_init(addr, offset, sp) < 0)
return -ENOSPC;
for (i = 0; i < sp->size; i++) {
unsigned short c;
c = readbuf_word(i);
awe_write_dram(c);
if (i == sp->loopend &&
(sp->mode_flags & (AWE_SAMPLE_BIDIR_LOOP|AWE_SAMPLE_REVERSE_LOOP))) {
int looplen = sp->loopend - sp->loopstart;
/* copy reverse loop */
int k;
for (k = 1; k <= looplen; k++) {
c = readbuf_word_cache(i - k);
awe_write_dram(c);
}
if (sp->mode_flags & AWE_SAMPLE_BIDIR_LOOP) {
sp->end += looplen;
} else {
sp->start += looplen;
sp->end += looplen;
}
}
}
readbuf_end();
/* if no blank loop is attached in the sample, add it */
if (sp->mode_flags & AWE_SAMPLE_NO_BLANK) {
for (i = 0; i < BLANK_LOOP_SIZE; i++)
awe_write_dram(0);
if (sp->mode_flags & AWE_SAMPLE_SINGLESHOT) {
sp->loopstart = sp->end + BLANK_LOOP_START;
sp->loopend = sp->end + BLANK_LOOP_END;
}
}
awe_close_dram();
/* initialize FM */
awe_init_fm();
return truesize;
}
/*----------------------------------------------------------------*/
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* calculate GUS envelope time:
* is this correct? i have no idea..
*/
static int
calc_gus_envelope_time(int rate, int start, int end)
{
int r, p, t;
r = (3 - ((rate >> 6) & 3)) * 3;
p = rate & 0x3f;
t = end - start;
if (t < 0) t = -t;
if (13 > r)
t = t << (13 - r);
else
t = t >> (r - 13);
return (t * 10) / (p * 441);
}
#define calc_gus_sustain(val) (0x7f - vol_table[(val)/2])
#define calc_gus_attenuation(val) vol_table[(val)/2]
/* load GUS patch */
static int
awe_load_guspatch(const char __user *addr, int offs, int size, int pmgr_flag)
{
struct patch_info patch;
awe_voice_info *rec;
awe_sample_info *smp;
awe_voice_list *vrec;
awe_sample_list *smprec;
int sizeof_patch;
int note, rc;
sf_list *sf;
sizeof_patch = (int)((long)&patch.data[0] - (long)&patch); /* header size */
if (size < sizeof_patch) {
printk(KERN_WARNING "AWE32 Error: Patch header too short\n");
return -EINVAL;
}
if (copy_from_user(((char*)&patch) + offs, addr + offs, sizeof_patch - offs))
return -EFAULT;
size -= sizeof_patch;
if (size < patch.len) {
printk(KERN_WARNING "AWE32 Error: Patch record too short (%d<%d)\n",
size, patch.len);
return -EINVAL;
}
if ((sf = check_patch_opened(AWE_PAT_TYPE_GUS, NULL)) == NULL)
return -ENOMEM;
if ((smprec = alloc_new_sample()) == NULL)
return -ENOMEM;
if ((vrec = alloc_new_info()) == NULL) {
kfree(smprec);
return -ENOMEM;
}
smp = &smprec->v;
smp->sample = sf->num_sample;
smp->start = 0;
smp->end = patch.len;
smp->loopstart = patch.loop_start;
smp->loopend = patch.loop_end;
smp->size = patch.len;
/* set up mode flags */
smp->mode_flags = 0;
if (!(patch.mode & WAVE_16_BITS))
smp->mode_flags |= AWE_SAMPLE_8BITS;
if (patch.mode & WAVE_UNSIGNED)
smp->mode_flags |= AWE_SAMPLE_UNSIGNED;
smp->mode_flags |= AWE_SAMPLE_NO_BLANK;
if (!(patch.mode & (WAVE_LOOPING|WAVE_BIDIR_LOOP|WAVE_LOOP_BACK)))
smp->mode_flags |= AWE_SAMPLE_SINGLESHOT;
if (patch.mode & WAVE_BIDIR_LOOP)
smp->mode_flags |= AWE_SAMPLE_BIDIR_LOOP;
if (patch.mode & WAVE_LOOP_BACK)
smp->mode_flags |= AWE_SAMPLE_REVERSE_LOOP;
DEBUG(0,printk("AWE32: [sample %d mode %x]\n", patch.instr_no, smp->mode_flags));
if (patch.mode & WAVE_16_BITS) {
/* convert to word offsets */
smp->size /= 2;
smp->end /= 2;
smp->loopstart /= 2;
smp->loopend /= 2;
}
smp->checksum_flag = 0;
smp->checksum = 0;
if ((rc = awe_write_wave_data(addr, sizeof_patch, smprec, -1)) < 0) {
kfree(vrec);
return rc;
}
sf->mem_ptr += rc;
add_sf_sample(sf, smprec);
/* set up voice info */
rec = &vrec->v;
awe_init_voice_info(rec);
rec->sample = sf->num_info; /* the last sample */
rec->rate_offset = calc_rate_offset(patch.base_freq);
note = freq_to_note(patch.base_note);
rec->root = note / 100;
rec->tune = -(note % 100);
rec->low = freq_to_note(patch.low_note) / 100;
rec->high = freq_to_note(patch.high_note) / 100;
DEBUG(1,printk("AWE32: [gus base offset=%d, note=%d, range=%d-%d(%d-%d)]\n",
rec->rate_offset, note,
rec->low, rec->high,
patch.low_note, patch.high_note));
/* panning position; -128 - 127 => 0-127 */
rec->pan = (patch.panning + 128) / 2;
/* detuning is ignored */
/* 6points volume envelope */
if (patch.mode & WAVE_ENVELOPES) {
int attack, hold, decay, release;
attack = calc_gus_envelope_time
(patch.env_rate[0], 0, patch.env_offset[0]);
hold = calc_gus_envelope_time
(patch.env_rate[1], patch.env_offset[0],
patch.env_offset[1]);
decay = calc_gus_envelope_time
(patch.env_rate[2], patch.env_offset[1],
patch.env_offset[2]);
release = calc_gus_envelope_time
(patch.env_rate[3], patch.env_offset[1],
patch.env_offset[4]);
release += calc_gus_envelope_time
(patch.env_rate[4], patch.env_offset[3],
patch.env_offset[4]);
release += calc_gus_envelope_time
(patch.env_rate[5], patch.env_offset[4],
patch.env_offset[5]);
rec->parm.volatkhld = (calc_parm_hold(hold) << 8) |
calc_parm_attack(attack);
rec->parm.voldcysus = (calc_gus_sustain(patch.env_offset[2]) << 8) |
calc_parm_decay(decay);
rec->parm.volrelease = 0x8000 | calc_parm_decay(release);
DEBUG(2,printk("AWE32: [gusenv atk=%d, hld=%d, dcy=%d, rel=%d]\n", attack, hold, decay, release));
rec->attenuation = calc_gus_attenuation(patch.env_offset[0]);
}
/* tremolo effect */
if (patch.mode & WAVE_TREMOLO) {
int rate = (patch.tremolo_rate * 1000 / 38) / 42;
rec->parm.tremfrq = ((patch.tremolo_depth / 2) << 8) | rate;
DEBUG(2,printk("AWE32: [gusenv tremolo rate=%d, dep=%d, tremfrq=%x]\n",
patch.tremolo_rate, patch.tremolo_depth,
rec->parm.tremfrq));
}
/* vibrato effect */
if (patch.mode & WAVE_VIBRATO) {
int rate = (patch.vibrato_rate * 1000 / 38) / 42;
rec->parm.fm2frq2 = ((patch.vibrato_depth / 6) << 8) | rate;
DEBUG(2,printk("AWE32: [gusenv vibrato rate=%d, dep=%d, tremfrq=%x]\n",
patch.tremolo_rate, patch.tremolo_depth,
rec->parm.tremfrq));
}
/* scale_freq, scale_factor, volume, and fractions not implemented */
/* append to the tail of the list */
vrec->bank = ctrls[AWE_MD_GUS_BANK];
vrec->instr = patch.instr_no;
vrec->disabled = FALSE;
vrec->type = V_ST_NORMAL;
add_sf_info(sf, vrec);
add_info_list(vrec);
/* set the voice index */
awe_set_sample(vrec);
return 0;
}
#endif /* AWE_HAS_GUS_COMPATIBILITY */
/*
* sample and voice list handlers
*/
/* append this to the current sf list */
static void add_sf_info(sf_list *sf, awe_voice_list *rec)
{
if (sf == NULL)
return;
rec->holder = sf;
rec->v.sf_id = sf->sf_id;
if (sf->last_infos)
sf->last_infos->next = rec;
else
sf->infos = rec;
sf->last_infos = rec;
rec->next = NULL;
sf->num_info++;
}
/* prepend this sample to sf list */
static void add_sf_sample(sf_list *sf, awe_sample_list *rec)
{
if (sf == NULL)
return;
rec->holder = sf;
rec->v.sf_id = sf->sf_id;
if (sf->last_samples)
sf->last_samples->next = rec;
else
sf->samples = rec;
sf->last_samples = rec;
rec->next = NULL;
sf->num_sample++;
}
/* purge the old records which don't belong with the same file id */
static void purge_old_list(awe_voice_list *rec, awe_voice_list *next)
{
rec->next_instr = next;
if (rec->bank == AWE_DRUM_BANK) {
/* remove samples with the same note range */
awe_voice_list *cur, *prev = rec;
int low = rec->v.low;
int high = rec->v.high;
for (cur = next; cur; cur = cur->next_instr) {
if (cur->v.low == low &&
cur->v.high == high &&
! is_identical_holder(cur->holder, rec->holder))
prev->next_instr = cur->next_instr;
else
prev = cur;
}
} else {
if (! is_identical_holder(next->holder, rec->holder))
/* remove all samples */
rec->next_instr = NULL;
}
}
/* prepend to top of the preset table */
static void add_info_list(awe_voice_list *rec)
{
awe_voice_list *prev, *cur;
int key;
if (rec->disabled)
return;
key = awe_search_key(rec->bank, rec->instr, rec->v.low);
prev = NULL;
for (cur = preset_table[key]; cur; cur = cur->next_bank) {
/* search the first record with the same bank number */
if (cur->instr == rec->instr && cur->bank == rec->bank) {
/* replace the list with the new record */
rec->next_bank = cur->next_bank;
if (prev)
prev->next_bank = rec;
else
preset_table[key] = rec;
purge_old_list(rec, cur);
return;
}
prev = cur;
}
/* this is the first bank record.. just add this */
rec->next_instr = NULL;
rec->next_bank = preset_table[key];
preset_table[key] = rec;
}
/* remove samples later than the specified sf_id */
static void
awe_remove_samples(int sf_id)
{
sf_list *p, *prev;
if (sf_id <= 0) {
awe_reset_samples();
return;
}
/* already removed? */
if (current_sf_id <= sf_id)
return;
for (p = sftail; p; p = prev) {
if (p->sf_id <= sf_id)
break;
prev = p->prev;
awe_free_sf(p);
}
sftail = p;
if (sftail) {
sf_id = sftail->sf_id;
sftail->next = NULL;
} else {
sf_id = 0;
sfhead = NULL;
}
current_sf_id = sf_id;
if (locked_sf_id > sf_id)
locked_sf_id = sf_id;
rebuild_preset_list();
}
/* rebuild preset search list */
static void rebuild_preset_list(void)
{
sf_list *p;
awe_voice_list *rec;
memset(preset_table, 0, sizeof(preset_table));
for (p = sfhead; p; p = p->next) {
for (rec = p->infos; rec; rec = rec->next)
add_info_list(rec);
}
}
/* compare the given sf_id pair */
static int is_identical_holder(sf_list *sf1, sf_list *sf2)
{
if (sf1 == NULL || sf2 == NULL)
return FALSE;
if (sf1 == sf2)
return TRUE;
#ifdef AWE_ALLOW_SAMPLE_SHARING
{
/* compare with the sharing id */
sf_list *p;
int counter = 0;
if (sf1->sf_id < sf2->sf_id) { /* make sure id1 > id2 */
sf_list *tmp; tmp = sf1; sf1 = sf2; sf2 = tmp;
}
for (p = sf1->shared; p; p = p->shared) {
if (counter++ > current_sf_id)
break; /* strange sharing loop.. quit */
if (p == sf2)
return TRUE;
}
}
#endif /* allow sharing */
return FALSE;
}
/* search the sample index matching with the given sample id */
static awe_sample_list *
search_sample_index(sf_list *sf, int sample)
{
awe_sample_list *p;
#ifdef AWE_ALLOW_SAMPLE_SHARING
int counter = 0;
while (sf) {
for (p = sf->samples; p; p = p->next) {
if (p->v.sample == sample)
return p;
}
sf = sf->shared;
if (counter++ > current_sf_id)
break; /* strange sharing loop.. quit */
}
#else
if (sf) {
for (p = sf->samples; p; p = p->next) {
if (p->v.sample == sample)
return p;
}
}
#endif
return NULL;
}
/* search the specified sample */
/* non-zero = found */
static short
awe_set_sample(awe_voice_list *rec)
{
awe_sample_list *smp;
awe_voice_info *vp = &rec->v;
vp->index = 0;
if ((smp = search_sample_index(rec->holder, vp->sample)) == NULL)
return 0;
/* set the actual sample offsets */
vp->start += smp->v.start;
vp->end += smp->v.end;
vp->loopstart += smp->v.loopstart;
vp->loopend += smp->v.loopend;
/* copy mode flags */
vp->mode = smp->v.mode_flags;
/* set flag */
vp->index = 1;
return 1;
}
/*
* voice allocation
*/
/* look for all voices associated with the specified note & velocity */
static int
awe_search_multi_voices(awe_voice_list *rec, int note, int velocity,
awe_voice_info **vlist)
{
int nvoices;
nvoices = 0;
for (; rec; rec = rec->next_instr) {
if (note >= rec->v.low &&
note <= rec->v.high &&
velocity >= rec->v.vellow &&
velocity <= rec->v.velhigh) {
if (rec->type == V_ST_MAPPED) {
/* mapper */
vlist[0] = &rec->v;
return -1;
}
vlist[nvoices++] = &rec->v;
if (nvoices >= AWE_MAX_VOICES)
break;
}
}
return nvoices;
}
/* store the voice list from the specified note and velocity.
if the preset is mapped, seek for the destination preset, and rewrite
the note number if necessary.
*/
static int
really_alloc_voices(int bank, int instr, int *note, int velocity, awe_voice_info **vlist)
{
int nvoices;
awe_voice_list *vrec;
int level = 0;
for (;;) {
vrec = awe_search_instr(bank, instr, *note);
nvoices = awe_search_multi_voices(vrec, *note, velocity, vlist);
if (nvoices == 0) {
if (bank == AWE_DRUM_BANK)
/* search default drumset */
vrec = awe_search_instr(bank, ctrls[AWE_MD_DEF_DRUM], *note);
else
/* search default preset */
vrec = awe_search_instr(ctrls[AWE_MD_DEF_BANK], instr, *note);
nvoices = awe_search_multi_voices(vrec, *note, velocity, vlist);
}
if (nvoices == 0) {
if (bank == AWE_DRUM_BANK && ctrls[AWE_MD_DEF_DRUM] != 0)
/* search default drumset */
vrec = awe_search_instr(bank, 0, *note);
else if (bank != AWE_DRUM_BANK && ctrls[AWE_MD_DEF_BANK] != 0)
/* search default preset */
vrec = awe_search_instr(0, instr, *note);
nvoices = awe_search_multi_voices(vrec, *note, velocity, vlist);
}
if (nvoices < 0) { /* mapping */
int key = vlist[0]->fixkey;
instr = vlist[0]->start;
bank = vlist[0]->end;
if (level++ > 5) {
printk(KERN_ERR "AWE32: too deep mapping level\n");
return 0;
}
if (key >= 0)
*note = key;
} else
break;
}
return nvoices;
}
/* allocate voices corresponding note and velocity; supports multiple insts. */
static void
awe_alloc_multi_voices(int ch, int note, int velocity, int key)
{
int i, v, nvoices, bank;
awe_voice_info *vlist[AWE_MAX_VOICES];
if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(ch))
bank = AWE_DRUM_BANK; /* always search drumset */
else
bank = channels[ch].bank;
/* check the possible voices; note may be changeable if mapped */
nvoices = really_alloc_voices(bank, channels[ch].instr,
&note, velocity, vlist);
/* set the voices */
current_alloc_time++;
for (i = 0; i < nvoices; i++) {
v = awe_clear_voice();
voices[v].key = key;
voices[v].ch = ch;
voices[v].note = note;
voices[v].velocity = velocity;
voices[v].time = current_alloc_time;
voices[v].cinfo = &channels[ch];
voices[v].sample = vlist[i];
voices[v].state = AWE_ST_MARK;
voices[v].layer = nvoices - i - 1; /* in reverse order */
}
/* clear the mark in allocated voices */
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].state == AWE_ST_MARK)
voices[i].state = AWE_ST_OFF;
}
}
/* search an empty voice.
if no empty voice is found, at least terminate a voice
*/
static int
awe_clear_voice(void)
{
enum {
OFF=0, RELEASED, SUSTAINED, PLAYING, END
};
struct voice_candidate_t {
int best;
int time;
int vtarget;
} candidate[END];
int i, type, vtarget;
vtarget = 0xffff;
for (type = OFF; type < END; type++) {
candidate[type].best = -1;
candidate[type].time = current_alloc_time + 1;
candidate[type].vtarget = vtarget;
}
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].state & AWE_ST_OFF)
type = OFF;
else if (voices[i].state & AWE_ST_RELEASED)
type = RELEASED;
else if (voices[i].state & AWE_ST_SUSTAINED)
type = SUSTAINED;
else if (voices[i].state & ~AWE_ST_MARK)
type = PLAYING;
else
continue;
#ifdef AWE_CHECK_VTARGET
/* get current volume */
vtarget = (awe_peek_dw(AWE_VTFT(i)) >> 16) & 0xffff;
#endif
if (candidate[type].best < 0 ||
vtarget < candidate[type].vtarget ||
(vtarget == candidate[type].vtarget &&
voices[i].time < candidate[type].time)) {
candidate[type].best = i;
candidate[type].time = voices[i].time;
candidate[type].vtarget = vtarget;
}
}
for (type = OFF; type < END; type++) {
if ((i = candidate[type].best) >= 0) {
if (voices[i].state != AWE_ST_OFF)
awe_terminate(i);
awe_voice_init(i, TRUE);
return i;
}
}
return 0;
}
/* search sample for the specified note & velocity and set it on the voice;
* note that voice is the voice index (not channel index)
*/
static void
awe_alloc_one_voice(int voice, int note, int velocity)
{
int ch, nvoices, bank;
awe_voice_info *vlist[AWE_MAX_VOICES];
ch = voices[voice].ch;
if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(voice))
bank = AWE_DRUM_BANK; /* always search drumset */
else
bank = voices[voice].cinfo->bank;
nvoices = really_alloc_voices(bank, voices[voice].cinfo->instr,
&note, velocity, vlist);
if (nvoices > 0) {
voices[voice].time = ++current_alloc_time;
voices[voice].sample = vlist[0]; /* use the first one */
voices[voice].layer = 0;
voices[voice].note = note;
voices[voice].velocity = velocity;
}
}
/*
* sequencer2 functions
*/
/* search an empty voice; used by sequencer2 */
static int
awe_alloc(int dev, int chn, int note, struct voice_alloc_info *alloc)
{
playing_mode = AWE_PLAY_MULTI2;
awe_info.nr_voices = AWE_MAX_CHANNELS;
return awe_clear_voice();
}
/* set up voice; used by sequencer2 */
static void
awe_setup_voice(int dev, int voice, int chn)
{
struct channel_info *info;
if (synth_devs[dev] == NULL ||
(info = &synth_devs[dev]->chn_info[chn]) == NULL)
return;
if (voice < 0 || voice >= awe_max_voices)
return;
DEBUG(2,printk("AWE32: [setup(%d) ch=%d]\n", voice, chn));
channels[chn].expression_vol = info->controllers[CTL_EXPRESSION];
channels[chn].main_vol = info->controllers[CTL_MAIN_VOLUME];
channels[chn].panning =
info->controllers[CTL_PAN] * 2 - 128; /* signed 8bit */
channels[chn].bender = info->bender_value; /* zero center */
channels[chn].bank = info->controllers[CTL_BANK_SELECT];
channels[chn].sustained = info->controllers[CTL_SUSTAIN];
if (info->controllers[CTL_EXT_EFF_DEPTH]) {
FX_SET(&channels[chn].fx, AWE_FX_REVERB,
info->controllers[CTL_EXT_EFF_DEPTH] * 2);
}
if (info->controllers[CTL_CHORUS_DEPTH]) {
FX_SET(&channels[chn].fx, AWE_FX_CHORUS,
info->controllers[CTL_CHORUS_DEPTH] * 2);
}
awe_set_instr(dev, chn, info->pgm_num);
}
#ifdef CONFIG_AWE32_MIXER
/*
* AWE32 mixer device control
*/
static int awe_mixer_ioctl(int dev, unsigned int cmd, void __user *arg);
static int my_mixerdev = -1;
static struct mixer_operations awe_mixer_operations = {
.owner = THIS_MODULE,
.id = "AWE",
.name = "AWE32 Equalizer",
.ioctl = awe_mixer_ioctl,
};
static void __init attach_mixer(void)
{
if ((my_mixerdev = sound_alloc_mixerdev()) >= 0) {
mixer_devs[my_mixerdev] = &awe_mixer_operations;
}
}
static void unload_mixer(void)
{
if (my_mixerdev >= 0)
sound_unload_mixerdev(my_mixerdev);
}
static int
awe_mixer_ioctl(int dev, unsigned int cmd, void __user * arg)
{
int i, level, value;
if (((cmd >> 8) & 0xff) != 'M')
return -EINVAL;
if (get_user(level, (int __user *)arg))
return -EFAULT;
level = ((level & 0xff) + (level >> 8)) / 2;
DEBUG(0,printk("AWEMix: cmd=%x val=%d\n", cmd & 0xff, level));
if (_SIOC_DIR(cmd) & _SIOC_WRITE) {
switch (cmd & 0xff) {
case SOUND_MIXER_BASS:
value = level * 12 / 100;
if (value >= 12)
value = 11;
ctrls[AWE_MD_BASS_LEVEL] = value;
awe_update_equalizer();
break;
case SOUND_MIXER_TREBLE:
value = level * 12 / 100;
if (value >= 12)
value = 11;
ctrls[AWE_MD_TREBLE_LEVEL] = value;
awe_update_equalizer();
break;
case SOUND_MIXER_VOLUME:
level = level * 127 / 100;
if (level >= 128) level = 127;
atten_relative = FALSE;
atten_offset = vol_table[level];
awe_update_volume();
break;
}
}
switch (cmd & 0xff) {
case SOUND_MIXER_BASS:
level = ctrls[AWE_MD_BASS_LEVEL] * 100 / 24;
level = (level << 8) | level;
break;
case SOUND_MIXER_TREBLE:
level = ctrls[AWE_MD_TREBLE_LEVEL] * 100 / 24;
level = (level << 8) | level;
break;
case SOUND_MIXER_VOLUME:
value = atten_offset;
if (atten_relative)
value += ctrls[AWE_MD_ZERO_ATTEN];
for (i = 127; i > 0; i--) {
if (value <= vol_table[i])
break;
}
level = i * 100 / 127;
level = (level << 8) | level;
break;
case SOUND_MIXER_DEVMASK:
level = SOUND_MASK_BASS|SOUND_MASK_TREBLE|SOUND_MASK_VOLUME;
break;
default:
level = 0;
break;
}
if (put_user(level, (int __user *)arg))
return -EFAULT;
return level;
}
#endif /* CONFIG_AWE32_MIXER */
/*
* initialization of Emu8000
*/
/* intiailize audio channels */
static void
awe_init_audio(void)
{
int ch;
/* turn off envelope engines */
for (ch = 0; ch < AWE_MAX_VOICES; ch++) {
awe_poke(AWE_DCYSUSV(ch), 0x80);
}
/* reset all other parameters to zero */
for (ch = 0; ch < AWE_MAX_VOICES; ch++) {
awe_poke(AWE_ENVVOL(ch), 0);
awe_poke(AWE_ENVVAL(ch), 0);
awe_poke(AWE_DCYSUS(ch), 0);
awe_poke(AWE_ATKHLDV(ch), 0);
awe_poke(AWE_LFO1VAL(ch), 0);
awe_poke(AWE_ATKHLD(ch), 0);
awe_poke(AWE_LFO2VAL(ch), 0);
awe_poke(AWE_IP(ch), 0);
awe_poke(AWE_IFATN(ch), 0);
awe_poke(AWE_PEFE(ch), 0);
awe_poke(AWE_FMMOD(ch), 0);
awe_poke(AWE_TREMFRQ(ch), 0);
awe_poke(AWE_FM2FRQ2(ch), 0);
awe_poke_dw(AWE_PTRX(ch), 0);
awe_poke_dw(AWE_VTFT(ch), 0);
awe_poke_dw(AWE_PSST(ch), 0);
awe_poke_dw(AWE_CSL(ch), 0);
awe_poke_dw(AWE_CCCA(ch), 0);
}
for (ch = 0; ch < AWE_MAX_VOICES; ch++) {
awe_poke_dw(AWE_CPF(ch), 0);
awe_poke_dw(AWE_CVCF(ch), 0);
}
}
/* initialize DMA address */
static void
awe_init_dma(void)
{
awe_poke_dw(AWE_SMALR, 0);
awe_poke_dw(AWE_SMARR, 0);
awe_poke_dw(AWE_SMALW, 0);
awe_poke_dw(AWE_SMARW, 0);
}
/* initialization arrays; from ADIP */
static unsigned short init1[128] = {
0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330,
0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730,
0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30,
0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30,
0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330,
0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730,
0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30,
0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30,
0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330,
0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730,
0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30,
0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30,
0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330,
0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730,
0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30,
0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30,
};
static unsigned short init2[128] = {
0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
};
static unsigned short init3[128] = {
0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
};
static unsigned short init4[128] = {
0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
};
/* send initialization arrays to start up */
static void
awe_init_array(void)
{
awe_send_array(init1);
awe_wait(1024);
awe_send_array(init2);
awe_send_array(init3);
awe_poke_dw(AWE_HWCF4, 0);
awe_poke_dw(AWE_HWCF5, 0x83);
awe_poke_dw(AWE_HWCF6, 0x8000);
awe_send_array(init4);
}
/* send an initialization array */
static void
awe_send_array(unsigned short *data)
{
int i;
unsigned short *p;
p = data;
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT1(i), *p);
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT2(i), *p);
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT3(i), *p);
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT4(i), *p);
}
/*
* set up awe32 channels to some known state.
*/
/* set the envelope & LFO parameters to the default values; see ADIP */
static void
awe_tweak_voice(int i)
{
/* set all mod/vol envelope shape to minimum */
awe_poke(AWE_ENVVOL(i), 0x8000);
awe_poke(AWE_ENVVAL(i), 0x8000);
awe_poke(AWE_DCYSUS(i), 0x7F7F);
awe_poke(AWE_ATKHLDV(i), 0x7F7F);
awe_poke(AWE_ATKHLD(i), 0x7F7F);
awe_poke(AWE_PEFE(i), 0); /* mod envelope height to zero */
awe_poke(AWE_LFO1VAL(i), 0x8000); /* no delay for LFO1 */
awe_poke(AWE_LFO2VAL(i), 0x8000);
awe_poke(AWE_IP(i), 0xE000); /* no pitch shift */
awe_poke(AWE_IFATN(i), 0xFF00); /* volume to minimum */
awe_poke(AWE_FMMOD(i), 0);
awe_poke(AWE_TREMFRQ(i), 0);
awe_poke(AWE_FM2FRQ2(i), 0);
}
static void
awe_tweak(void)
{
int i;
/* reset all channels */
for (i = 0; i < awe_max_voices; i++)
awe_tweak_voice(i);
}
/*
* initializes the FM section of AWE32;
* see Vince Vu's unofficial AWE32 programming guide
*/
static void
awe_init_fm(void)
{
#ifndef AWE_ALWAYS_INIT_FM
/* if no extended memory is on board.. */
if (memsize <= 0)
return;
#endif
DEBUG(3,printk("AWE32: initializing FM\n"));
/* Initialize the last two channels for DRAM refresh and producing
the reverb and chorus effects for Yamaha OPL-3 synthesizer */
/* 31: FM left channel, 0xffffe0-0xffffe8 */
awe_poke(AWE_DCYSUSV(30), 0x80);
awe_poke_dw(AWE_PSST(30), 0xFFFFFFE0); /* full left */
awe_poke_dw(AWE_CSL(30), 0x00FFFFE8 |
(DEF_FM_CHORUS_DEPTH << 24));
awe_poke_dw(AWE_PTRX(30), (DEF_FM_REVERB_DEPTH << 8));
awe_poke_dw(AWE_CPF(30), 0);
awe_poke_dw(AWE_CCCA(30), 0x00FFFFE3);
/* 32: FM right channel, 0xfffff0-0xfffff8 */
awe_poke(AWE_DCYSUSV(31), 0x80);
awe_poke_dw(AWE_PSST(31), 0x00FFFFF0); /* full right */
awe_poke_dw(AWE_CSL(31), 0x00FFFFF8 |
(DEF_FM_CHORUS_DEPTH << 24));
awe_poke_dw(AWE_PTRX(31), (DEF_FM_REVERB_DEPTH << 8));
awe_poke_dw(AWE_CPF(31), 0x8000);
awe_poke_dw(AWE_CCCA(31), 0x00FFFFF3);
/* skew volume & cutoff */
awe_poke_dw(AWE_VTFT(30), 0x8000FFFF);
awe_poke_dw(AWE_VTFT(31), 0x8000FFFF);
voices[30].state = AWE_ST_FM;
voices[31].state = AWE_ST_FM;
/* change maximum channels to 30 */
awe_max_voices = AWE_NORMAL_VOICES;
if (playing_mode == AWE_PLAY_DIRECT)
awe_info.nr_voices = awe_max_voices;
else
awe_info.nr_voices = AWE_MAX_CHANNELS;
voice_alloc->max_voice = awe_max_voices;
}
/*
* AWE32 DRAM access routines
*/
/* open DRAM write accessing mode */
static int
awe_open_dram_for_write(int offset, int channels)
{
int vidx[AWE_NORMAL_VOICES];
int i;
if (channels < 0 || channels >= AWE_NORMAL_VOICES) {
channels = AWE_NORMAL_VOICES;
for (i = 0; i < AWE_NORMAL_VOICES; i++)
vidx[i] = i;
} else {
for (i = 0; i < channels; i++) {
vidx[i] = awe_clear_voice();
voices[vidx[i]].state = AWE_ST_MARK;
}
}
/* use all channels for DMA transfer */
for (i = 0; i < channels; i++) {
if (vidx[i] < 0) continue;
awe_poke(AWE_DCYSUSV(vidx[i]), 0x80);
awe_poke_dw(AWE_VTFT(vidx[i]), 0);
awe_poke_dw(AWE_CVCF(vidx[i]), 0);
awe_poke_dw(AWE_PTRX(vidx[i]), 0x40000000);
awe_poke_dw(AWE_CPF(vidx[i]), 0x40000000);
awe_poke_dw(AWE_PSST(vidx[i]), 0);
awe_poke_dw(AWE_CSL(vidx[i]), 0);
awe_poke_dw(AWE_CCCA(vidx[i]), 0x06000000);
voices[vidx[i]].state = AWE_ST_DRAM;
}
/* point channels 31 & 32 to ROM samples for DRAM refresh */
awe_poke_dw(AWE_VTFT(30), 0);
awe_poke_dw(AWE_PSST(30), 0x1d8);
awe_poke_dw(AWE_CSL(30), 0x1e0);
awe_poke_dw(AWE_CCCA(30), 0x1d8);
awe_poke_dw(AWE_VTFT(31), 0);
awe_poke_dw(AWE_PSST(31), 0x1d8);
awe_poke_dw(AWE_CSL(31), 0x1e0);
awe_poke_dw(AWE_CCCA(31), 0x1d8);
voices[30].state = AWE_ST_FM;
voices[31].state = AWE_ST_FM;
/* if full bit is on, not ready to write on */
if (awe_peek_dw(AWE_SMALW) & 0x80000000) {
for (i = 0; i < channels; i++) {
awe_poke_dw(AWE_CCCA(vidx[i]), 0);
voices[vidx[i]].state = AWE_ST_OFF;
}
printk("awe: not ready to write..\n");
return -EPERM;
}
/* set address to write */
awe_poke_dw(AWE_SMALW, offset);
return 0;
}
/* open DRAM for RAM size detection */
static void
awe_open_dram_for_check(void)
{
int i;
for (i = 0; i < AWE_NORMAL_VOICES; i++) {
awe_poke(AWE_DCYSUSV(i), 0x80);
awe_poke_dw(AWE_VTFT(i), 0);
awe_poke_dw(AWE_CVCF(i), 0);
awe_poke_dw(AWE_PTRX(i), 0x40000000);
awe_poke_dw(AWE_CPF(i), 0x40000000);
awe_poke_dw(AWE_PSST(i), 0);
awe_poke_dw(AWE_CSL(i), 0);
if (i & 1) /* DMA write */
awe_poke_dw(AWE_CCCA(i), 0x06000000);
else /* DMA read */
awe_poke_dw(AWE_CCCA(i), 0x04000000);
voices[i].state = AWE_ST_DRAM;
}
}
/* close dram access */
static void
awe_close_dram(void)
{
int i;
/* wait until FULL bit in SMAxW register be false */
for (i = 0; i < 10000; i++) {
if (!(awe_peek_dw(AWE_SMALW) & 0x80000000))
break;
awe_wait(10);
}
for (i = 0; i < AWE_NORMAL_VOICES; i++) {
if (voices[i].state == AWE_ST_DRAM) {
awe_poke_dw(AWE_CCCA(i), 0);
awe_poke(AWE_DCYSUSV(i), 0x807F);
voices[i].state = AWE_ST_OFF;
}
}
}
/*
* check dram size on AWE board
*/
/* any three numbers you like */
#define UNIQUE_ID1 0x1234
#define UNIQUE_ID2 0x4321
#define UNIQUE_ID3 0xABCD
static void __init
awe_check_dram(void)
{
if (awe_present) /* already initialized */
return;
if (memsize >= 0) { /* given by config file or module option */
memsize *= 1024; /* convert to Kbytes */
return;
}
awe_open_dram_for_check();
memsize = 0;
/* set up unique two id numbers */
awe_poke_dw(AWE_SMALW, AWE_DRAM_OFFSET);
awe_poke(AWE_SMLD, UNIQUE_ID1);
awe_poke(AWE_SMLD, UNIQUE_ID2);
while (memsize < AWE_MAX_DRAM_SIZE) {
awe_wait(5);
/* read a data on the DRAM start address */
awe_poke_dw(AWE_SMALR, AWE_DRAM_OFFSET);
awe_peek(AWE_SMLD); /* discard stale data */
if (awe_peek(AWE_SMLD) != UNIQUE_ID1)
break;
if (awe_peek(AWE_SMLD) != UNIQUE_ID2)
break;
memsize += 512; /* increment 512kbytes */
/* Write a unique data on the test address;
* if the address is out of range, the data is written on
* 0x200000(=AWE_DRAM_OFFSET). Then the two id words are
* broken by this data.
*/
awe_poke_dw(AWE_SMALW, AWE_DRAM_OFFSET + memsize*512L);
awe_poke(AWE_SMLD, UNIQUE_ID3);
awe_wait(5);
/* read a data on the just written DRAM address */
awe_poke_dw(AWE_SMALR, AWE_DRAM_OFFSET + memsize*512L);
awe_peek(AWE_SMLD); /* discard stale data */
if (awe_peek(AWE_SMLD) != UNIQUE_ID3)
break;
}
awe_close_dram();
DEBUG(0,printk("AWE32: %d Kbytes memory detected\n", memsize));
/* convert to Kbytes */
memsize *= 1024;
}
/*----------------------------------------------------------------*/
/*
* chorus and reverb controls; from VV's guide
*/
/* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
static char chorus_defined[AWE_CHORUS_NUMBERS];
static awe_chorus_fx_rec chorus_parm[AWE_CHORUS_NUMBERS] = {
{0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
{0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
{0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
{0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
{0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
{0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
{0xE600, 0x0B06, 0xBC00, 0x0000E000, 0x00000083}, /* short delay */
{0xE6C0, 0x0B06, 0xBC00, 0x0000E000, 0x00000083}, /* short delay + feedback */
};
static int
awe_load_chorus_fx(awe_patch_info *patch, const char __user *addr, int count)
{
if (patch->optarg < AWE_CHORUS_PREDEFINED || patch->optarg >= AWE_CHORUS_NUMBERS) {
printk(KERN_WARNING "AWE32 Error: invalid chorus mode %d for uploading\n", patch->optarg);
return -EINVAL;
}
if (count < sizeof(awe_chorus_fx_rec)) {
printk(KERN_WARNING "AWE32 Error: too short chorus fx parameters\n");
return -EINVAL;
}
if (copy_from_user(&chorus_parm[patch->optarg], addr + AWE_PATCH_INFO_SIZE,
sizeof(awe_chorus_fx_rec)))
return -EFAULT;
chorus_defined[patch->optarg] = TRUE;
return 0;
}
static void
awe_set_chorus_mode(int effect)
{
if (effect < 0 || effect >= AWE_CHORUS_NUMBERS ||
(effect >= AWE_CHORUS_PREDEFINED && !chorus_defined[effect]))
return;
awe_poke(AWE_INIT3(9), chorus_parm[effect].feedback);
awe_poke(AWE_INIT3(12), chorus_parm[effect].delay_offset);
awe_poke(AWE_INIT4(3), chorus_parm[effect].lfo_depth);
awe_poke_dw(AWE_HWCF4, chorus_parm[effect].delay);
awe_poke_dw(AWE_HWCF5, chorus_parm[effect].lfo_freq);
awe_poke_dw(AWE_HWCF6, 0x8000);
awe_poke_dw(AWE_HWCF7, 0x0000);
}
static void
awe_update_chorus_mode(void)
{
awe_set_chorus_mode(ctrls[AWE_MD_CHORUS_MODE]);
}
/*----------------------------------------------------------------*/
/* reverb mode settings; write the following 28 data of 16 bit length
* on the corresponding ports in the reverb_cmds array
*/
static char reverb_defined[AWE_CHORUS_NUMBERS];
static awe_reverb_fx_rec reverb_parm[AWE_REVERB_NUMBERS] = {
{{ /* room 1 */
0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* room 2 */
0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* room 3 */
0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
}},
{{ /* hall 1 */
0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
}},
{{ /* hall 2 */
0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* plate */
0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* delay */
0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
{{ /* panning delay */
0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
};
static struct ReverbCmdPair {
unsigned short cmd, port;
} reverb_cmds[28] = {
{AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
{AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
{AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
{AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
{AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
{AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
{AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
};
static int
awe_load_reverb_fx(awe_patch_info *patch, const char __user *addr, int count)
{
if (patch->optarg < AWE_REVERB_PREDEFINED || patch->optarg >= AWE_REVERB_NUMBERS) {
printk(KERN_WARNING "AWE32 Error: invalid reverb mode %d for uploading\n", patch->optarg);
return -EINVAL;
}
if (count < sizeof(awe_reverb_fx_rec)) {
printk(KERN_WARNING "AWE32 Error: too short reverb fx parameters\n");
return -EINVAL;
}
if (copy_from_user(&reverb_parm[patch->optarg], addr + AWE_PATCH_INFO_SIZE,
sizeof(awe_reverb_fx_rec)))
return -EFAULT;
reverb_defined[patch->optarg] = TRUE;
return 0;
}
static void
awe_set_reverb_mode(int effect)
{
int i;
if (effect < 0 || effect >= AWE_REVERB_NUMBERS ||
(effect >= AWE_REVERB_PREDEFINED && !reverb_defined[effect]))
return;
for (i = 0; i < 28; i++)
awe_poke(reverb_cmds[i].cmd, reverb_cmds[i].port,
reverb_parm[effect].parms[i]);
}
static void
awe_update_reverb_mode(void)
{
awe_set_reverb_mode(ctrls[AWE_MD_REVERB_MODE]);
}
/*
* treble/bass equalizer control
*/
static unsigned short bass_parm[12][3] = {
{0xD26A, 0xD36A, 0x0000}, /* -12 dB */
{0xD25B, 0xD35B, 0x0000}, /* -8 */
{0xD24C, 0xD34C, 0x0000}, /* -6 */
{0xD23D, 0xD33D, 0x0000}, /* -4 */
{0xD21F, 0xD31F, 0x0000}, /* -2 */
{0xC208, 0xC308, 0x0001}, /* 0 (HW default) */
{0xC219, 0xC319, 0x0001}, /* +2 */
{0xC22A, 0xC32A, 0x0001}, /* +4 */
{0xC24C, 0xC34C, 0x0001}, /* +6 */
{0xC26E, 0xC36E, 0x0001}, /* +8 */
{0xC248, 0xC348, 0x0002}, /* +10 */
{0xC26A, 0xC36A, 0x0002}, /* +12 dB */
};
static unsigned short treble_parm[12][9] = {
{0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
{0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
{0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
{0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +12 dB */
};
/*
* set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
*/
static void
awe_equalizer(int bass, int treble)
{
unsigned short w;
if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
return;
awe_poke(AWE_INIT4(0x01), bass_parm[bass][0]);
awe_poke(AWE_INIT4(0x11), bass_parm[bass][1]);
awe_poke(AWE_INIT3(0x11), treble_parm[treble][0]);
awe_poke(AWE_INIT3(0x13), treble_parm[treble][1]);
awe_poke(AWE_INIT3(0x1B), treble_parm[treble][2]);
awe_poke(AWE_INIT4(0x07), treble_parm[treble][3]);
awe_poke(AWE_INIT4(0x0B), treble_parm[treble][4]);
awe_poke(AWE_INIT4(0x0D), treble_parm[treble][5]);
awe_poke(AWE_INIT4(0x17), treble_parm[treble][6]);
awe_poke(AWE_INIT4(0x19), treble_parm[treble][7]);
w = bass_parm[bass][2] + treble_parm[treble][8];
awe_poke(AWE_INIT4(0x15), (unsigned short)(w + 0x0262));
awe_poke(AWE_INIT4(0x1D), (unsigned short)(w + 0x8362));
}
static void awe_update_equalizer(void)
{
awe_equalizer(ctrls[AWE_MD_BASS_LEVEL], ctrls[AWE_MD_TREBLE_LEVEL]);
}
/*----------------------------------------------------------------*/
#ifdef CONFIG_AWE32_MIDIEMU
/*
* Emu8000 MIDI Emulation
*/
/*
* midi queue record
*/
/* queue type */
enum { Q_NONE, Q_VARLEN, Q_READ, Q_SYSEX, };
#define MAX_MIDIBUF 64
/* midi status */
typedef struct MidiStatus {
int queue; /* queue type */
int qlen; /* queue length */
int read; /* chars read */
int status; /* current status */
int chan; /* current channel */
unsigned char buf[MAX_MIDIBUF];
} MidiStatus;
/* MIDI mode type */
enum { MODE_GM, MODE_GS, MODE_XG, };
/* NRPN / CC -> Emu8000 parameter converter */
typedef struct {
int control;
int awe_effect;
unsigned short (*convert)(int val);
} ConvTable;
/*
* prototypes
*/
static int awe_midi_open(int dev, int mode, void (*input)(int,unsigned char), void (*output)(int));
static void awe_midi_close(int dev);
static int awe_midi_ioctl(int dev, unsigned cmd, void __user * arg);
static int awe_midi_outputc(int dev, unsigned char midi_byte);
static void init_midi_status(MidiStatus *st);
static void clear_rpn(void);
static void get_midi_char(MidiStatus *st, int c);
/*static void queue_varlen(MidiStatus *st, int c);*/
static void special_event(MidiStatus *st, int c);
static void queue_read(MidiStatus *st, int c);
static void midi_note_on(MidiStatus *st);
static void midi_note_off(MidiStatus *st);
static void midi_key_pressure(MidiStatus *st);
static void midi_channel_pressure(MidiStatus *st);
static void midi_pitch_wheel(MidiStatus *st);
static void midi_program_change(MidiStatus *st);
static void midi_control_change(MidiStatus *st);
static void midi_select_bank(MidiStatus *st, int val);
static void midi_nrpn_event(MidiStatus *st);
static void midi_rpn_event(MidiStatus *st);
static void midi_detune(int chan, int coarse, int fine);
static void midi_system_exclusive(MidiStatus *st);
static int send_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val);
static int add_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val);
static int xg_control_change(MidiStatus *st, int cmd, int val);
#define numberof(ary) (sizeof(ary)/sizeof(ary[0]))
/*
* OSS Midi device record
*/
static struct midi_operations awe_midi_operations =
{
.owner = THIS_MODULE,
.info = {"AWE Midi Emu", 0, 0, SNDCARD_SB},
.in_info = {0},
.open = awe_midi_open, /*open*/
.close = awe_midi_close, /*close*/
.ioctl = awe_midi_ioctl, /*ioctl*/
.outputc = awe_midi_outputc, /*outputc*/
};
static int my_mididev = -1;
static void __init attach_midiemu(void)
{
if ((my_mididev = sound_alloc_mididev()) < 0)
printk ("Sound: Too many midi devices detected\n");
else
midi_devs[my_mididev] = &awe_midi_operations;
}
static void unload_midiemu(void)
{
if (my_mididev >= 0)
sound_unload_mididev(my_mididev);
}
/*
* open/close midi device
*/
static int midi_opened = FALSE;
static int midi_mode;
static int coarsetune, finetune;
static int xg_mapping = TRUE;
static int xg_bankmode;
/* effect sensitivity */
#define FX_CUTOFF 0
#define FX_RESONANCE 1
#define FX_ATTACK 2
#define FX_RELEASE 3
#define FX_VIBRATE 4
#define FX_VIBDEPTH 5
#define FX_VIBDELAY 6
#define FX_NUMS 7
#define DEF_FX_CUTOFF 170
#define DEF_FX_RESONANCE 6
#define DEF_FX_ATTACK 50
#define DEF_FX_RELEASE 50
#define DEF_FX_VIBRATE 30
#define DEF_FX_VIBDEPTH 4
#define DEF_FX_VIBDELAY 1500
/* effect sense: */
static int gs_sense[] =
{
DEF_FX_CUTOFF, DEF_FX_RESONANCE, DEF_FX_ATTACK, DEF_FX_RELEASE,
DEF_FX_VIBRATE, DEF_FX_VIBDEPTH, DEF_FX_VIBDELAY
};
static int xg_sense[] =
{
DEF_FX_CUTOFF, DEF_FX_RESONANCE, DEF_FX_ATTACK, DEF_FX_RELEASE,
DEF_FX_VIBRATE, DEF_FX_VIBDEPTH, DEF_FX_VIBDELAY
};
/* current status */
static MidiStatus curst;
static int
awe_midi_open (int dev, int mode,
void (*input)(int,unsigned char),
void (*output)(int))
{
if (midi_opened)
return -EBUSY;
midi_opened = TRUE;
midi_mode = MODE_GM;
curst.queue = Q_NONE;
curst.qlen = 0;
curst.read = 0;
curst.status = 0;
curst.chan = 0;
memset(curst.buf, 0, sizeof(curst.buf));
init_midi_status(&curst);
return 0;
}
static void
awe_midi_close (int dev)
{
midi_opened = FALSE;
}
static int
awe_midi_ioctl (int dev, unsigned cmd, void __user *arg)
{
return -EPERM;
}
static int
awe_midi_outputc (int dev, unsigned char midi_byte)
{
if (! midi_opened)
return 1;
/* force to change playing mode */
playing_mode = AWE_PLAY_MULTI;
get_midi_char(&curst, midi_byte);
return 1;
}
/*
* initialize
*/
static void init_midi_status(MidiStatus *st)
{
clear_rpn();
coarsetune = 0;
finetune = 0;
}
/*
* RPN & NRPN
*/
#define MAX_MIDI_CHANNELS 16
/* RPN & NRPN */
static unsigned char nrpn[MAX_MIDI_CHANNELS]; /* current event is NRPN? */
static int msb_bit; /* current event is msb for RPN/NRPN */
/* RPN & NRPN indeces */
static unsigned char rpn_msb[MAX_MIDI_CHANNELS], rpn_lsb[MAX_MIDI_CHANNELS];
/* RPN & NRPN values */
static int rpn_val[MAX_MIDI_CHANNELS];
static void clear_rpn(void)
{
int i;
for (i = 0; i < MAX_MIDI_CHANNELS; i++) {
nrpn[i] = 0;
rpn_msb[i] = 127;
rpn_lsb[i] = 127;
rpn_val[i] = 0;
}
msb_bit = 0;
}
/*
* process midi queue
*/
/* status event types */
typedef void (*StatusEvent)(MidiStatus *st);
static struct StatusEventList {
StatusEvent process;
int qlen;
} status_event[8] = {
{midi_note_off, 2},
{midi_note_on, 2},
{midi_key_pressure, 2},
{midi_control_change, 2},
{midi_program_change, 1},
{midi_channel_pressure, 1},
{midi_pitch_wheel, 2},
{NULL, 0},
};
/* read a char from fifo and process it */
static void get_midi_char(MidiStatus *st, int c)
{
if (c == 0xfe) {
/* ignore active sense */
st->queue = Q_NONE;
return;
}
switch (st->queue) {
/* case Q_VARLEN: queue_varlen(st, c); break;*/
case Q_READ:
case Q_SYSEX:
queue_read(st, c);
break;
case Q_NONE:
st->read = 0;
if ((c & 0xf0) == 0xf0) {
special_event(st, c);
} else if (c & 0x80) { /* status change */
st->status = (c >> 4) & 0x07;
st->chan = c & 0x0f;
st->queue = Q_READ;
st->qlen = status_event[st->status].qlen;
if (st->qlen == 0)
st->queue = Q_NONE;
}
break;
}
}
/* 0xfx events */
static void special_event(MidiStatus *st, int c)
{
switch (c) {
case 0xf0: /* system exclusive */
st->queue = Q_SYSEX;
st->qlen = 0;
break;
case 0xf1: /* MTC quarter frame */
case 0xf3: /* song select */
st->queue = Q_READ;
st->qlen = 1;
break;
case 0xf2: /* song position */
st->queue = Q_READ;
st->qlen = 2;
break;
}
}
#if 0
/* read variable length value */
static void queue_varlen(MidiStatus *st, int c)
{
st->qlen += (c & 0x7f);
if (c & 0x80) {
st->qlen <<= 7;
return;
}
if (st->qlen <= 0) {
st->qlen = 0;
st->queue = Q_NONE;
}
st->queue = Q_READ;
st->read = 0;
}
#endif
/* read a char */
static void queue_read(MidiStatus *st, int c)
{
if (st->read < MAX_MIDIBUF) {
if (st->queue != Q_SYSEX)
c &= 0x7f;
st->buf[st->read] = (unsigned char)c;
}
st->read++;
if (st->queue == Q_SYSEX && c == 0xf7) {
midi_system_exclusive(st);
st->queue = Q_NONE;
} else if (st->queue == Q_READ && st->read >= st->qlen) {
if (status_event[st->status].process)
status_event[st->status].process(st);
st->queue = Q_NONE;
}
}
/*
* status events
*/
/* note on */
static void midi_note_on(MidiStatus *st)
{
DEBUG(2,printk("midi: note_on (%d) %d %d\n", st->chan, st->buf[0], st->buf[1]));
if (st->buf[1] == 0)
midi_note_off(st);
else
awe_start_note(0, st->chan, st->buf[0], st->buf[1]);
}
/* note off */
static void midi_note_off(MidiStatus *st)
{
DEBUG(2,printk("midi: note_off (%d) %d %d\n", st->chan, st->buf[0], st->buf[1]));
awe_kill_note(0, st->chan, st->buf[0], st->buf[1]);
}
/* key pressure change */
static void midi_key_pressure(MidiStatus *st)
{
awe_key_pressure(0, st->chan, st->buf[0], st->buf[1]);
}
/* channel pressure change */
static void midi_channel_pressure(MidiStatus *st)
{
channels[st->chan].chan_press = st->buf[0];
awe_modwheel_change(st->chan, st->buf[0]);
}
/* pitch wheel change */
static void midi_pitch_wheel(MidiStatus *st)
{
int val = (int)st->buf[1] * 128 + st->buf[0];
awe_bender(0, st->chan, val);
}
/* program change */
static void midi_program_change(MidiStatus *st)
{
int preset;
preset = st->buf[0];
if (midi_mode == MODE_GS && IS_DRUM_CHANNEL(st->chan) && preset == 127)
preset = 0;
else if (midi_mode == MODE_XG && xg_mapping && IS_DRUM_CHANNEL(st->chan))
preset += 64;
awe_set_instr(0, st->chan, preset);
}
#define send_effect(chan,type,val) awe_send_effect(chan,-1,type,val)
#define add_effect(chan,type,val) awe_send_effect(chan,-1,(type)|0x80,val)
#define unset_effect(chan,type) awe_send_effect(chan,-1,(type)|0x40,0)
/* midi control change */
static void midi_control_change(MidiStatus *st)
{
int cmd = st->buf[0];
int val = st->buf[1];
DEBUG(2,printk("midi: control (%d) %d %d\n", st->chan, cmd, val));
if (midi_mode == MODE_XG) {
if (xg_control_change(st, cmd, val))
return;
}
/* controls #31 - #64 are LSB of #0 - #31 */
msb_bit = 1;
if (cmd >= 0x20 && cmd < 0x40) {
msb_bit = 0;
cmd -= 0x20;
}
switch (cmd) {
case CTL_SOFT_PEDAL:
if (val == 127)
add_effect(st->chan, AWE_FX_CUTOFF, -160);
else
unset_effect(st->chan, AWE_FX_CUTOFF);
break;
case CTL_BANK_SELECT:
midi_select_bank(st, val);
break;
/* set RPN/NRPN parameter */
case CTL_REGIST_PARM_NUM_MSB:
nrpn[st->chan]=0; rpn_msb[st->chan]=val;
break;
case CTL_REGIST_PARM_NUM_LSB:
nrpn[st->chan]=0; rpn_lsb[st->chan]=val;
break;
case CTL_NONREG_PARM_NUM_MSB:
nrpn[st->chan]=1; rpn_msb[st->chan]=val;
break;
case CTL_NONREG_PARM_NUM_LSB:
nrpn[st->chan]=1; rpn_lsb[st->chan]=val;
break;
/* send RPN/NRPN entry */
case CTL_DATA_ENTRY:
if (msb_bit)
rpn_val[st->chan] = val * 128;
else
rpn_val[st->chan] |= val;
if (nrpn[st->chan])
midi_nrpn_event(st);
else
midi_rpn_event(st);
break;
/* increase/decrease data entry */
case CTL_DATA_INCREMENT:
rpn_val[st->chan]++;
midi_rpn_event(st);
break;
case CTL_DATA_DECREMENT:
rpn_val[st->chan]--;
midi_rpn_event(st);
break;
/* default */
default:
awe_controller(0, st->chan, cmd, val);
break;
}
}
/* tone bank change */
static void midi_select_bank(MidiStatus *st, int val)
{
if (midi_mode == MODE_XG && msb_bit) {
xg_bankmode = val;
/* XG MSB value; not normal bank selection */
switch (val) {
case 127: /* remap to drum channel */
awe_controller(0, st->chan, CTL_BANK_SELECT, 128);
break;
default: /* remap to normal channel */
awe_controller(0, st->chan, CTL_BANK_SELECT, val);
break;
}
return;
} else if (midi_mode == MODE_GS && !msb_bit)
/* ignore LSB bank in GS mode (used for mapping) */
return;
/* normal bank controls; accept both MSB and LSB */
if (! IS_DRUM_CHANNEL(st->chan)) {
if (midi_mode == MODE_XG) {
if (xg_bankmode) return;
if (val == 64 || val == 126)
val = 0;
} else if (midi_mode == MODE_GS && val == 127)
val = 0;
awe_controller(0, st->chan, CTL_BANK_SELECT, val);
}
}
/*
* RPN events
*/
static void midi_rpn_event(MidiStatus *st)
{
int type;
type = (rpn_msb[st->chan]<<8) | rpn_lsb[st->chan];
switch (type) {
case 0x0000: /* Pitch bend sensitivity */
/* MSB only / 1 semitone per 128 */
if (msb_bit) {
channels[st->chan].bender_range =
rpn_val[st->chan] * 100 / 128;
}
break;
case 0x0001: /* fine tuning: */
/* MSB/LSB, 8192=center, 100/8192 cent step */
finetune = rpn_val[st->chan] - 8192;
midi_detune(st->chan, coarsetune, finetune);
break;
case 0x0002: /* coarse tuning */
/* MSB only / 8192=center, 1 semitone per 128 */
if (msb_bit) {
coarsetune = rpn_val[st->chan] - 8192;
midi_detune(st->chan, coarsetune, finetune);
}
break;
case 0x7F7F: /* "lock-in" RPN */
break;
}
}
/* tuning:
* coarse = -8192 to 8192 (100 cent per 128)
* fine = -8192 to 8192 (max=100cent)
*/
static void midi_detune(int chan, int coarse, int fine)
{
/* 4096 = 1200 cents in AWE parameter */
int val;
val = coarse * 4096 / (12 * 128);
val += fine / 24;
if (val)
send_effect(chan, AWE_FX_INIT_PITCH, val);
else
unset_effect(chan, AWE_FX_INIT_PITCH);
}
/*
* system exclusive message
* GM/GS/XG macros are accepted
*/
static void midi_system_exclusive(MidiStatus *st)
{
/* GM on */
static unsigned char gm_on_macro[] = {
0x7e,0x7f,0x09,0x01,
};
/* XG on */
static unsigned char xg_on_macro[] = {
0x43,0x10,0x4c,0x00,0x00,0x7e,0x00,
};
/* GS prefix
* drum channel: XX=0x1?(channel), YY=0x15, ZZ=on/off
* reverb mode: XX=0x01, YY=0x30, ZZ=0-7
* chorus mode: XX=0x01, YY=0x38, ZZ=0-7
*/
static unsigned char gs_pfx_macro[] = {
0x41,0x10,0x42,0x12,0x40,/*XX,YY,ZZ*/
};
#if 0
/* SC88 system mode set
* single module mode: XX=1
* double module mode: XX=0
*/
static unsigned char gs_mode_macro[] = {
0x41,0x10,0x42,0x12,0x00,0x00,0x7F,/*ZZ*/
};
/* SC88 display macro: XX=01:bitmap, 00:text
*/
static unsigned char gs_disp_macro[] = {
0x41,0x10,0x45,0x12,0x10,/*XX,00*/
};
#endif
/* GM on */
if (memcmp(st->buf, gm_on_macro, sizeof(gm_on_macro)) == 0) {
if (midi_mode != MODE_GS && midi_mode != MODE_XG)
midi_mode = MODE_GM;
init_midi_status(st);
}
/* GS macros */
else if (memcmp(st->buf, gs_pfx_macro, sizeof(gs_pfx_macro)) == 0) {
if (midi_mode != MODE_GS && midi_mode != MODE_XG)
midi_mode = MODE_GS;
if (st->buf[5] == 0x00 && st->buf[6] == 0x7f && st->buf[7] == 0x00) {
/* GS reset */
init_midi_status(st);
}
else if ((st->buf[5] & 0xf0) == 0x10 && st->buf[6] == 0x15) {
/* drum pattern */
int p = st->buf[5] & 0x0f;
if (p == 0) p = 9;
else if (p < 10) p--;
if (st->buf[7] == 0)
DRUM_CHANNEL_OFF(p);
else
DRUM_CHANNEL_ON(p);
} else if ((st->buf[5] & 0xf0) == 0x10 && st->buf[6] == 0x21) {
/* program */
int p = st->buf[5] & 0x0f;
if (p == 0) p = 9;
else if (p < 10) p--;
if (! IS_DRUM_CHANNEL(p))
awe_set_instr(0, p, st->buf[7]);
} else if (st->buf[5] == 0x01 && st->buf[6] == 0x30) {
/* reverb mode */
awe_set_reverb_mode(st->buf[7]);
} else if (st->buf[5] == 0x01 && st->buf[6] == 0x38) {
/* chorus mode */
awe_set_chorus_mode(st->buf[7]);
} else if (st->buf[5] == 0x00 && st->buf[6] == 0x04) {
/* master volume */
awe_change_master_volume(st->buf[7]);
}
}
/* XG on */
else if (memcmp(st->buf, xg_on_macro, sizeof(xg_on_macro)) == 0) {
midi_mode = MODE_XG;
xg_mapping = TRUE;
xg_bankmode = 0;
}
}
/*----------------------------------------------------------------*/
/*
* convert NRPN/control values
*/
static int send_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val)
{
int i, cval;
for (i = 0; i < num_tables; i++) {
if (table[i].control == type) {
cval = table[i].convert(val);
send_effect(st->chan, table[i].awe_effect, cval);
return TRUE;
}
}
return FALSE;
}
static int add_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val)
{
int i, cval;
for (i = 0; i < num_tables; i++) {
if (table[i].control == type) {
cval = table[i].convert(val);
add_effect(st->chan, table[i].awe_effect|0x80, cval);
return TRUE;
}
}
return FALSE;
}
/*
* AWE32 NRPN effects
*/
static unsigned short fx_delay(int val);
static unsigned short fx_attack(int val);
static unsigned short fx_hold(int val);
static unsigned short fx_decay(int val);
static unsigned short fx_the_value(int val);
static unsigned short fx_twice_value(int val);
static unsigned short fx_conv_pitch(int val);
static unsigned short fx_conv_Q(int val);
/* function for each NRPN */ /* [range] units */
#define fx_env1_delay fx_delay /* [0,5900] 4msec */
#define fx_env1_attack fx_attack /* [0,5940] 1msec */
#define fx_env1_hold fx_hold /* [0,8191] 1msec */
#define fx_env1_decay fx_decay /* [0,5940] 4msec */
#define fx_env1_release fx_decay /* [0,5940] 4msec */
#define fx_env1_sustain fx_the_value /* [0,127] 0.75dB */
#define fx_env1_pitch fx_the_value /* [-127,127] 9.375cents */
#define fx_env1_cutoff fx_the_value /* [-127,127] 56.25cents */
#define fx_env2_delay fx_delay /* [0,5900] 4msec */
#define fx_env2_attack fx_attack /* [0,5940] 1msec */
#define fx_env2_hold fx_hold /* [0,8191] 1msec */
#define fx_env2_decay fx_decay /* [0,5940] 4msec */
#define fx_env2_release fx_decay /* [0,5940] 4msec */
#define fx_env2_sustain fx_the_value /* [0,127] 0.75dB */
#define fx_lfo1_delay fx_delay /* [0,5900] 4msec */
#define fx_lfo1_freq fx_twice_value /* [0,127] 84mHz */
#define fx_lfo1_volume fx_twice_value /* [0,127] 0.1875dB */
#define fx_lfo1_pitch fx_the_value /* [-127,127] 9.375cents */
#define fx_lfo1_cutoff fx_twice_value /* [-64,63] 56.25cents */
#define fx_lfo2_delay fx_delay /* [0,5900] 4msec */
#define fx_lfo2_freq fx_twice_value /* [0,127] 84mHz */
#define fx_lfo2_pitch fx_the_value /* [-127,127] 9.375cents */
#define fx_init_pitch fx_conv_pitch /* [-8192,8192] cents */
#define fx_chorus fx_the_value /* [0,255] -- */
#define fx_reverb fx_the_value /* [0,255] -- */
#define fx_cutoff fx_twice_value /* [0,127] 62Hz */
#define fx_filterQ fx_conv_Q /* [0,127] -- */
static unsigned short fx_delay(int val)
{
return (unsigned short)calc_parm_delay(val);
}
static unsigned short fx_attack(int val)
{
return (unsigned short)calc_parm_attack(val);
}
static unsigned short fx_hold(int val)
{
return (unsigned short)calc_parm_hold(val);
}
static unsigned short fx_decay(int val)
{
return (unsigned short)calc_parm_decay(val);
}
static unsigned short fx_the_value(int val)
{
return (unsigned short)(val & 0xff);
}
static unsigned short fx_twice_value(int val)
{
return (unsigned short)((val * 2) & 0xff);
}
static unsigned short fx_conv_pitch(int val)
{
return (short)(val * 4096 / 1200);
}
static unsigned short fx_conv_Q(int val)
{
return (unsigned short)((val / 8) & 0xff);
}
static ConvTable awe_effects[] =
{
{ 0, AWE_FX_LFO1_DELAY, fx_lfo1_delay},
{ 1, AWE_FX_LFO1_FREQ, fx_lfo1_freq},
{ 2, AWE_FX_LFO2_DELAY, fx_lfo2_delay},
{ 3, AWE_FX_LFO2_FREQ, fx_lfo2_freq},
{ 4, AWE_FX_ENV1_DELAY, fx_env1_delay},
{ 5, AWE_FX_ENV1_ATTACK,fx_env1_attack},
{ 6, AWE_FX_ENV1_HOLD, fx_env1_hold},
{ 7, AWE_FX_ENV1_DECAY, fx_env1_decay},
{ 8, AWE_FX_ENV1_SUSTAIN, fx_env1_sustain},
{ 9, AWE_FX_ENV1_RELEASE, fx_env1_release},
{10, AWE_FX_ENV2_DELAY, fx_env2_delay},
{11, AWE_FX_ENV2_ATTACK, fx_env2_attack},
{12, AWE_FX_ENV2_HOLD, fx_env2_hold},
{13, AWE_FX_ENV2_DECAY, fx_env2_decay},
{14, AWE_FX_ENV2_SUSTAIN, fx_env2_sustain},
{15, AWE_FX_ENV2_RELEASE, fx_env2_release},
{16, AWE_FX_INIT_PITCH, fx_init_pitch},
{17, AWE_FX_LFO1_PITCH, fx_lfo1_pitch},
{18, AWE_FX_LFO2_PITCH, fx_lfo2_pitch},
{19, AWE_FX_ENV1_PITCH, fx_env1_pitch},
{20, AWE_FX_LFO1_VOLUME, fx_lfo1_volume},
{21, AWE_FX_CUTOFF, fx_cutoff},
{22, AWE_FX_FILTERQ, fx_filterQ},
{23, AWE_FX_LFO1_CUTOFF, fx_lfo1_cutoff},
{24, AWE_FX_ENV1_CUTOFF, fx_env1_cutoff},
{25, AWE_FX_CHORUS, fx_chorus},
{26, AWE_FX_REVERB, fx_reverb},
};
static int num_awe_effects = numberof(awe_effects);
/*
* GS(SC88) NRPN effects; still experimental
*/
/* cutoff: quarter semitone step, max=255 */
static unsigned short gs_cutoff(int val)
{
return (val - 64) * gs_sense[FX_CUTOFF] / 50;
}
/* resonance: 0 to 15(max) */
static unsigned short gs_filterQ(int val)
{
return (val - 64) * gs_sense[FX_RESONANCE] / 50;
}
/* attack: */
static unsigned short gs_attack(int val)
{
return -(val - 64) * gs_sense[FX_ATTACK] / 50;
}
/* decay: */
static unsigned short gs_decay(int val)
{
return -(val - 64) * gs_sense[FX_RELEASE] / 50;
}
/* release: */
static unsigned short gs_release(int val)
{
return -(val - 64) * gs_sense[FX_RELEASE] / 50;
}
/* vibrato freq: 0.042Hz step, max=255 */
static unsigned short gs_vib_rate(int val)
{
return (val - 64) * gs_sense[FX_VIBRATE] / 50;
}
/* vibrato depth: max=127, 1 octave */
static unsigned short gs_vib_depth(int val)
{
return (val - 64) * gs_sense[FX_VIBDEPTH] / 50;
}
/* vibrato delay: -0.725msec step */
static unsigned short gs_vib_delay(int val)
{
return -(val - 64) * gs_sense[FX_VIBDELAY] / 50;
}
static ConvTable gs_effects[] =
{
{32, AWE_FX_CUTOFF, gs_cutoff},
{33, AWE_FX_FILTERQ, gs_filterQ},
{99, AWE_FX_ENV2_ATTACK, gs_attack},
{100, AWE_FX_ENV2_DECAY, gs_decay},
{102, AWE_FX_ENV2_RELEASE, gs_release},
{8, AWE_FX_LFO1_FREQ, gs_vib_rate},
{9, AWE_FX_LFO1_VOLUME, gs_vib_depth},
{10, AWE_FX_LFO1_DELAY, gs_vib_delay},
};
static int num_gs_effects = numberof(gs_effects);
/*
* NRPN events: accept as AWE32/SC88 specific controls
*/
static void midi_nrpn_event(MidiStatus *st)
{
if (rpn_msb[st->chan] == 127 && rpn_lsb[st->chan] <= 26) {
if (! msb_bit) /* both MSB/LSB necessary */
send_converted_effect(awe_effects, num_awe_effects,
st, rpn_lsb[st->chan],
rpn_val[st->chan] - 8192);
} else if (rpn_msb[st->chan] == 1) {
if (msb_bit) /* only MSB is valid */
add_converted_effect(gs_effects, num_gs_effects,
st, rpn_lsb[st->chan],
rpn_val[st->chan] / 128);
}
}
/*
* XG control effects; still experimental
*/
/* cutoff: quarter semitone step, max=255 */
static unsigned short xg_cutoff(int val)
{
return (val - 64) * xg_sense[FX_CUTOFF] / 64;
}
/* resonance: 0(open) to 15(most nasal) */
static unsigned short xg_filterQ(int val)
{
return (val - 64) * xg_sense[FX_RESONANCE] / 64;
}
/* attack: */
static unsigned short xg_attack(int val)
{
return -(val - 64) * xg_sense[FX_ATTACK] / 64;
}
/* release: */
static unsigned short xg_release(int val)
{
return -(val - 64) * xg_sense[FX_RELEASE] / 64;
}
static ConvTable xg_effects[] =
{
{71, AWE_FX_CUTOFF, xg_cutoff},
{74, AWE_FX_FILTERQ, xg_filterQ},
{72, AWE_FX_ENV2_RELEASE, xg_release},
{73, AWE_FX_ENV2_ATTACK, xg_attack},
};
static int num_xg_effects = numberof(xg_effects);
static int xg_control_change(MidiStatus *st, int cmd, int val)
{
return add_converted_effect(xg_effects, num_xg_effects, st, cmd, val);
}
#endif /* CONFIG_AWE32_MIDIEMU */
/*----------------------------------------------------------------*/
/*
* initialization of AWE driver
*/
static void
awe_initialize(void)
{
DEBUG(0,printk("AWE32: initializing..\n"));
/* initialize hardware configuration */
awe_poke(AWE_HWCF1, 0x0059);
awe_poke(AWE_HWCF2, 0x0020);
/* disable audio; this seems to reduce a clicking noise a bit.. */
awe_poke(AWE_HWCF3, 0);
/* initialize audio channels */
awe_init_audio();
/* initialize DMA */
awe_init_dma();
/* initialize init array */
awe_init_array();
/* check DRAM memory size */
awe_check_dram();
/* initialize the FM section of the AWE32 */
awe_init_fm();
/* set up voice envelopes */
awe_tweak();
/* enable audio */
awe_poke(AWE_HWCF3, 0x0004);
/* set default values */
awe_init_ctrl_parms(TRUE);
/* set equalizer */
awe_update_equalizer();
/* set reverb & chorus modes */
awe_update_reverb_mode();
awe_update_chorus_mode();
}
/*
* Core Device Management Functions
*/
/* store values to i/o port array */
static void setup_ports(int port1, int port2, int port3)
{
awe_ports[0] = port1;
if (port2 == 0)
port2 = port1 + 0x400;
awe_ports[1] = port2;
awe_ports[2] = port2 + 2;
if (port3 == 0)
port3 = port1 + 0x800;
awe_ports[3] = port3;
awe_ports[4] = port3 + 2;
port_setuped = TRUE;
}
/*
* port request
* 0x620-623, 0xA20-A23, 0xE20-E23
*/
static int
awe_request_region(void)
{
if (! port_setuped)
return 0;
if (! request_region(awe_ports[0], 4, "sound driver (AWE32)"))
return 0;
if (! request_region(awe_ports[1], 4, "sound driver (AWE32)"))
goto err_out;
if (! request_region(awe_ports[3], 4, "sound driver (AWE32)"))
goto err_out1;
return 1;
err_out1:
release_region(awe_ports[1], 4);
err_out:
release_region(awe_ports[0], 4);
return 0;
}
static void
awe_release_region(void)
{
if (! port_setuped) return;
release_region(awe_ports[0], 4);
release_region(awe_ports[1], 4);
release_region(awe_ports[3], 4);
}
static int awe_attach_device(void)
{
if (awe_present) return 0; /* for OSS38.. called twice? */
/* reserve I/O ports for awedrv */
if (! awe_request_region()) {
printk(KERN_ERR "AWE32: I/O area already used.\n");
return 0;
}
/* set buffers to NULL */
sfhead = sftail = NULL;
my_dev = sound_alloc_synthdev();
if (my_dev == -1) {
printk(KERN_ERR "AWE32 Error: too many synthesizers\n");
awe_release_region();
return 0;
}
voice_alloc = &awe_operations.alloc;
voice_alloc->max_voice = awe_max_voices;
synth_devs[my_dev] = &awe_operations;
#ifdef CONFIG_AWE32_MIXER
attach_mixer();
#endif
#ifdef CONFIG_AWE32_MIDIEMU
attach_midiemu();
#endif
/* clear all samples */
awe_reset_samples();
/* initialize AWE32 hardware */
awe_initialize();
sprintf(awe_info.name, "AWE32-%s (RAM%dk)",
AWEDRV_VERSION, memsize/1024);
printk(KERN_INFO "<SoundBlaster EMU8000 (RAM%dk)>\n", memsize/1024);
awe_present = TRUE;
return 1;
}
static void awe_dettach_device(void)
{
if (awe_present) {
awe_reset_samples();
awe_release_region();
free_tables();
#ifdef CONFIG_AWE32_MIXER
unload_mixer();
#endif
#ifdef CONFIG_AWE32_MIDIEMU
unload_midiemu();
#endif
sound_unload_synthdev(my_dev);
awe_present = FALSE;
}
}
/*
* Legacy device Probing
*/
/* detect emu8000 chip on the specified address; from VV's guide */
static int __init
awe_detect_base(int addr)
{
setup_ports(addr, 0, 0);
if ((awe_peek(AWE_U1) & 0x000F) != 0x000C)
return 0;
if ((awe_peek(AWE_HWCF1) & 0x007E) != 0x0058)
return 0;
if ((awe_peek(AWE_HWCF2) & 0x0003) != 0x0003)
return 0;
DEBUG(0,printk("AWE32 found at %x\n", addr));
return 1;
}
static int __init awe_detect_legacy_devices(void)
{
int base;
for (base = 0x620; base <= 0x680; base += 0x20)
if (awe_detect_base(base)) {
awe_attach_device();
return 1;
}
DEBUG(0,printk("AWE32 Legacy detection failed\n"));
return 0;
}
/*
* PnP device Probing
*/
static struct pnp_device_id awe_pnp_ids[] = {
{.id = "CTL0021", .driver_data = 0}, /* AWE32 WaveTable */
{.id = "CTL0022", .driver_data = 0}, /* AWE64 WaveTable */
{.id = "CTL0023", .driver_data = 0}, /* AWE64 Gold WaveTable */
{ } /* terminator */
};
MODULE_DEVICE_TABLE(pnp, awe_pnp_ids);
static int awe_pnp_probe(struct pnp_dev *dev, const struct pnp_device_id *dev_id)
{
int io1, io2, io3;
if (awe_present) {
printk(KERN_ERR "AWE32: This driver only supports one AWE32 device, skipping.\n");
}
if (!pnp_port_valid(dev,0) ||
!pnp_port_valid(dev,1) ||
!pnp_port_valid(dev,2)) {
printk(KERN_ERR "AWE32: The PnP device does not have the required resources.\n");
return -EINVAL;
}
io1 = pnp_port_start(dev,0);
io2 = pnp_port_start(dev,1);
io3 = pnp_port_start(dev,2);
printk(KERN_INFO "AWE32: A PnP Wave Table was detected at IO's %#x,%#x,%#x.\n",
io1, io2, io3);
setup_ports(io1, io2, io3);
awe_attach_device();
return 0;
}
static void awe_pnp_remove(struct pnp_dev *dev)
{
awe_dettach_device();
}
static struct pnp_driver awe_pnp_driver = {
.name = "AWE32",
.id_table = awe_pnp_ids,
.probe = awe_pnp_probe,
.remove = awe_pnp_remove,
};
static int __init awe_detect_pnp_devices(void)
{
int ret;
ret = pnp_register_driver(&awe_pnp_driver);
if (ret<0)
printk(KERN_ERR "AWE32: PnP support is unavailable.\n");
return ret;
}
/*
* device / lowlevel (module) interface
*/
static int __init
awe_detect(void)
{
printk(KERN_INFO "AWE32: Probing for WaveTable...\n");
if (isapnp) {
if (awe_detect_pnp_devices()>=0)
return 1;
} else
printk(KERN_INFO "AWE32: Skipping PnP detection.\n");
if (awe_detect_legacy_devices())
return 1;
return 0;
}
static int __init attach_awe(void)
{
return awe_detect() ? 0 : -ENODEV;
}
static void __exit unload_awe(void)
{
pnp_unregister_driver(&awe_pnp_driver);
awe_dettach_device();
}
module_init(attach_awe);
module_exit(unload_awe);
#ifndef MODULE
static int __init setup_awe(char *str)
{
/* io, memsize, isapnp */
int ints[4];
str = get_options(str, ARRAY_SIZE(ints), ints);
io = ints[1];
memsize = ints[2];
isapnp = ints[3];
return 1;
}
__setup("awe=", setup_awe);
#endif