You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/net/phy/micrel.c

1221 lines
32 KiB

/*
* drivers/net/phy/micrel.c
*
* Driver for Micrel PHYs
*
* Author: David J. Choi
*
* Copyright (c) 2010-2013 Micrel, Inc.
* Copyright (c) 2014 Johan Hovold <johan@kernel.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Support : Micrel Phys:
* Giga phys: ksz9021, ksz9031
* 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
* ksz8021, ksz8031, ksz8051,
* ksz8081, ksz8091,
* ksz8061,
* Switch : ksz8873, ksz886x
* ksz9477
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/micrel_phy.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
/* Operation Mode Strap Override */
#define MII_KSZPHY_OMSO 0x16
#define KSZPHY_OMSO_B_CAST_OFF BIT(9)
#define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
#define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
#define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
/* general Interrupt control/status reg in vendor specific block. */
#define MII_KSZPHY_INTCS 0x1B
#define KSZPHY_INTCS_JABBER BIT(15)
#define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
#define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
#define KSZPHY_INTCS_PARELLEL BIT(12)
#define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
#define KSZPHY_INTCS_LINK_DOWN BIT(10)
#define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
#define KSZPHY_INTCS_LINK_UP BIT(8)
#define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
KSZPHY_INTCS_LINK_DOWN)
/* PHY Control 1 */
#define MII_KSZPHY_CTRL_1 0x1e
/* PHY Control 2 / PHY Control (if no PHY Control 1) */
#define MII_KSZPHY_CTRL_2 0x1f
#define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
/* bitmap of PHY register to set interrupt mode */
#define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
#define KSZPHY_RMII_REF_CLK_SEL BIT(7)
/* Write/read to/from extended registers */
#define MII_KSZPHY_EXTREG 0x0b
#define KSZPHY_EXTREG_WRITE 0x8000
#define MII_KSZPHY_EXTREG_WRITE 0x0c
#define MII_KSZPHY_EXTREG_READ 0x0d
/* Extended registers */
#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
#define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
#define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
#define PS_TO_REG 200
/*Register 2.10. 15:14 PME Output Select*/
#define MII_KSZPHY_OMSO_PME_N2 BIT(10)
/*Register 2.10. BITS 6, 1 and 0 to detect the type of WOL */
#define MII_KSZPHY_WOL_MAGIC_PKT BIT(6)
#define MII_KSZPHY_WOL_LINK_DOWN BIT(1)
#define MII_KSZPHY_WOL_LINK_UP BIT(0)
/* Register 2.10.15:14 PME Output Select */
#define MII_KSZPHY_WOL_CTRL_PME_N2 BIT(15)
#define MII_KSZPHY_WOL_CTRL_INT_N BIT(14)
/* MMD Address 2h, Register 2h Operation Mode Strap Override*/
#define MII_KSZPHY_OMSO_REG 0x2
/* MMD Address 2h, Register 10h Wake-On-LAN Control */
#define MII_KSZPHY_WOL_CTRL_REG 0x10
struct kszphy_hw_stat {
const char *string;
u8 reg;
u8 bits;
};
static struct kszphy_hw_stat kszphy_hw_stats[] = {
{ "phy_receive_errors", 21, 16},
{ "phy_idle_errors", 10, 8 },
};
struct kszphy_type {
u32 led_mode_reg;
u16 interrupt_level_mask;
bool has_broadcast_disable;
bool has_nand_tree_disable;
bool has_rmii_ref_clk_sel;
};
struct kszphy_priv {
const struct kszphy_type *type;
int led_mode;
bool rmii_ref_clk_sel;
bool rmii_ref_clk_sel_val;
u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
};
static const struct kszphy_type ksz8021_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_broadcast_disable = true,
.has_nand_tree_disable = true,
.has_rmii_ref_clk_sel = true,
};
static const struct kszphy_type ksz8041_type = {
.led_mode_reg = MII_KSZPHY_CTRL_1,
};
static const struct kszphy_type ksz8051_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_nand_tree_disable = true,
};
static const struct kszphy_type ksz8081_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_broadcast_disable = true,
.has_nand_tree_disable = true,
.has_rmii_ref_clk_sel = true,
};
static const struct kszphy_type ks8737_type = {
.interrupt_level_mask = BIT(14),
};
static const struct kszphy_type ksz9021_type = {
.interrupt_level_mask = BIT(14),
};
static int kszphy_extended_write(struct phy_device *phydev,
u32 regnum, u16 val)
{
phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
}
static int kszphy_extended_read(struct phy_device *phydev,
u32 regnum)
{
phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
}
static int kszphy_ack_interrupt(struct phy_device *phydev)
{
/* bit[7..0] int status, which is a read and clear register. */
int rc;
rc = phy_read(phydev, MII_KSZPHY_INTCS);
return (rc < 0) ? rc : 0;
}
static int kszphy_config_intr(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
int temp;
u16 mask;
if (type && type->interrupt_level_mask)
mask = type->interrupt_level_mask;
else
mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
/* set the interrupt pin active low */
temp = phy_read(phydev, MII_KSZPHY_CTRL);
if (temp < 0)
return temp;
temp &= ~mask;
phy_write(phydev, MII_KSZPHY_CTRL, temp);
/* enable / disable interrupts */
if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
temp = KSZPHY_INTCS_ALL;
else
temp = 0;
return phy_write(phydev, MII_KSZPHY_INTCS, temp);
}
static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
{
int ctrl;
ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
if (ctrl < 0)
return ctrl;
if (val)
ctrl |= KSZPHY_RMII_REF_CLK_SEL;
else
ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
}
static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
{
int rc, temp, shift;
switch (reg) {
case MII_KSZPHY_CTRL_1:
shift = 14;
break;
case MII_KSZPHY_CTRL_2:
shift = 4;
break;
default:
return -EINVAL;
}
temp = phy_read(phydev, reg);
if (temp < 0) {
rc = temp;
goto out;
}
temp &= ~(3 << shift);
temp |= val << shift;
rc = phy_write(phydev, reg, temp);
out:
if (rc < 0)
phydev_err(phydev, "failed to set led mode\n");
return rc;
}
/* Disable PHY address 0 as the broadcast address, so that it can be used as a
* unique (non-broadcast) address on a shared bus.
*/
static int kszphy_broadcast_disable(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_OMSO);
if (ret < 0)
goto out;
ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
out:
if (ret)
phydev_err(phydev, "failed to disable broadcast address\n");
return ret;
}
static int kszphy_nand_tree_disable(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_OMSO);
if (ret < 0)
goto out;
if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
return 0;
ret = phy_write(phydev, MII_KSZPHY_OMSO,
ret & ~KSZPHY_OMSO_NAND_TREE_ON);
out:
if (ret)
phydev_err(phydev, "failed to disable NAND tree mode\n");
return ret;
}
/* Some config bits need to be set again on resume, handle them here. */
static int kszphy_config_reset(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
int ret;
if (priv->rmii_ref_clk_sel) {
ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
if (ret) {
phydev_err(phydev,
"failed to set rmii reference clock\n");
return ret;
}
}
if (priv->led_mode >= 0)
kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
return 0;
}
static int kszphy_config_init(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
const struct kszphy_type *type;
if (!priv)
return 0;
type = priv->type;
if (type->has_broadcast_disable)
kszphy_broadcast_disable(phydev);
if (type->has_nand_tree_disable)
kszphy_nand_tree_disable(phydev);
return kszphy_config_reset(phydev);
}
static int ksz8041_config_init(struct phy_device *phydev)
{
struct device_node *of_node = phydev->mdio.dev.of_node;
/* Limit supported and advertised modes in fiber mode */
if (of_property_read_bool(of_node, "micrel,fiber-mode")) {
phydev->dev_flags |= MICREL_PHY_FXEN;
phydev->supported &= SUPPORTED_100baseT_Full |
SUPPORTED_100baseT_Half;
phydev->supported |= SUPPORTED_FIBRE;
phydev->advertising &= ADVERTISED_100baseT_Full |
ADVERTISED_100baseT_Half;
phydev->advertising |= ADVERTISED_FIBRE;
phydev->autoneg = AUTONEG_DISABLE;
}
return kszphy_config_init(phydev);
}
static int ksz8041_config_aneg(struct phy_device *phydev)
{
/* Skip auto-negotiation in fiber mode */
if (phydev->dev_flags & MICREL_PHY_FXEN) {
phydev->speed = SPEED_100;
return 0;
}
return genphy_config_aneg(phydev);
}
static int ksz8061_config_init(struct phy_device *phydev)
{
int ret;
ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
if (ret)
return ret;
return kszphy_config_init(phydev);
}
static int ksz9021_load_values_from_of(struct phy_device *phydev,
const struct device_node *of_node,
u16 reg,
const char *field1, const char *field2,
const char *field3, const char *field4)
{
int val1 = -1;
int val2 = -2;
int val3 = -3;
int val4 = -4;
int newval;
int matches = 0;
if (!of_property_read_u32(of_node, field1, &val1))
matches++;
if (!of_property_read_u32(of_node, field2, &val2))
matches++;
if (!of_property_read_u32(of_node, field3, &val3))
matches++;
if (!of_property_read_u32(of_node, field4, &val4))
matches++;
if (!matches)
return 0;
if (matches < 4)
newval = kszphy_extended_read(phydev, reg);
else
newval = 0;
if (val1 != -1)
newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
if (val2 != -2)
newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
if (val3 != -3)
newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
if (val4 != -4)
newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
return kszphy_extended_write(phydev, reg, newval);
}
static int ksz9021_config_init(struct phy_device *phydev)
{
const struct device *dev = &phydev->mdio.dev;
const struct device_node *of_node = dev->of_node;
const struct device *dev_walker;
/* The Micrel driver has a deprecated option to place phy OF
* properties in the MAC node. Walk up the tree of devices to
* find a device with an OF node.
*/
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (of_node) {
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
"txen-skew-ps", "txc-skew-ps",
"rxdv-skew-ps", "rxc-skew-ps");
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_RX_DATA_PAD_SKEW,
"rxd0-skew-ps", "rxd1-skew-ps",
"rxd2-skew-ps", "rxd3-skew-ps");
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_TX_DATA_PAD_SKEW,
"txd0-skew-ps", "txd1-skew-ps",
"txd2-skew-ps", "txd3-skew-ps");
}
return 0;
}
#define MII_KSZ9031RN_MMD_CTRL_REG 0x0d
#define MII_KSZ9031RN_MMD_REGDATA_REG 0x0e
#define OP_DATA 1
#define KSZ9031_PS_TO_REG 60
/* Extended registers */
/* MMD Address 0x0 */
#define MII_KSZ9031RN_FLP_BURST_TX_LO 3
#define MII_KSZ9031RN_FLP_BURST_TX_HI 4
/* MMD Address 0x2 */
#define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
#define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
#define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
#define MII_KSZ9031RN_CLK_PAD_SKEW 8
/* MMD Address 0x1C */
#define MII_KSZ9031RN_EDPD 0x23
#define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
static int ksz9031_extended_write(struct phy_device *phydev,
u8 mode, u32 dev_addr, u32 regnum, u16 val)
{
phy_write(phydev, MII_KSZ9031RN_MMD_CTRL_REG, dev_addr);
phy_write(phydev, MII_KSZ9031RN_MMD_REGDATA_REG, regnum);
phy_write(phydev, MII_KSZ9031RN_MMD_CTRL_REG, (mode << 14) | dev_addr);
return phy_write(phydev, MII_KSZ9031RN_MMD_REGDATA_REG, val);
}
static int ksz9031_extended_read(struct phy_device *phydev,
u8 mode, u32 dev_addr, u32 regnum)
{
phy_write(phydev, MII_KSZ9031RN_MMD_CTRL_REG, dev_addr);
phy_write(phydev, MII_KSZ9031RN_MMD_REGDATA_REG, regnum);
phy_write(phydev, MII_KSZ9031RN_MMD_CTRL_REG, (mode << 14) | dev_addr);
return phy_read(phydev, MII_KSZ9031RN_MMD_REGDATA_REG);
}
static int ksz9031_ack_interrupt(struct phy_device *phydev)
{
/* bit[7..0] int status, which is a read and clear register. */
int rc;
u32 reg_value;
rc = phy_read(phydev, MII_KSZPHY_INTCS);
reg_value = ksz9031_extended_read(
phydev, OP_DATA, 0x2, MII_KSZPHY_OMSO_REG);
if (reg_value & MII_KSZPHY_OMSO_PME_N2) {
/* PME output is cleared by disabling the PME trigger src */
reg_value = ksz9031_extended_read(
phydev, OP_DATA, 0x2, MII_KSZPHY_WOL_CTRL_REG);
reg_value &= ~MII_KSZPHY_WOL_MAGIC_PKT;
reg_value &= ~MII_KSZPHY_WOL_LINK_UP;
reg_value &= ~MII_KSZPHY_WOL_LINK_DOWN;
ksz9031_extended_write(
phydev, OP_DATA, 0x2, MII_KSZPHY_WOL_CTRL_REG, reg_value);
reg_value = ksz9031_extended_read(
phydev, OP_DATA, 0x2, MII_KSZPHY_WOL_CTRL_REG);
reg_value |= MII_KSZPHY_WOL_MAGIC_PKT;
reg_value |= MII_KSZPHY_WOL_LINK_UP;
reg_value |= MII_KSZPHY_WOL_LINK_DOWN;
ksz9031_extended_write(
phydev, OP_DATA, 0x2, MII_KSZPHY_WOL_CTRL_REG, reg_value);
}
return (rc < 0) ? rc : 0;
}
static int ksz9031_of_load_skew_values(struct phy_device *phydev,
const struct device_node *of_node,
u16 reg, size_t field_sz,
const char *field[], u8 numfields)
{
int val[4] = {-1, -2, -3, -4};
int matches = 0;
u16 mask;
u16 maxval;
u16 newval;
int i;
for (i = 0; i < numfields; i++)
if (!of_property_read_u32(of_node, field[i], val + i))
matches++;
if (!matches)
return 0;
if (matches < numfields)
newval = ksz9031_extended_read(phydev, OP_DATA, 2, reg);
else
newval = 0;
maxval = (field_sz == 4) ? 0xf : 0x1f;
for (i = 0; i < numfields; i++)
if (val[i] != -(i + 1)) {
mask = 0xffff;
mask ^= maxval << (field_sz * i);
newval = (newval & mask) |
(((val[i] / KSZ9031_PS_TO_REG) & maxval)
<< (field_sz * i));
}
return ksz9031_extended_write(phydev, OP_DATA, 2, reg, newval);
}
static int ksz9031_center_flp_timing(struct phy_device *phydev)
{
int result;
/* Center KSZ9031RNX FLP timing at 16ms. */
result = ksz9031_extended_write(phydev, OP_DATA, 0,
MII_KSZ9031RN_FLP_BURST_TX_HI, 0x0006);
result = ksz9031_extended_write(phydev, OP_DATA, 0,
MII_KSZ9031RN_FLP_BURST_TX_LO, 0x1A80);
if (result)
return result;
return genphy_restart_aneg(phydev);
}
/* Enable energy-detect power-down mode */
static int ksz9031_enable_edpd(struct phy_device *phydev)
{
int reg;
reg = ksz9031_extended_read(phydev, OP_DATA, 0x1C, MII_KSZ9031RN_EDPD);
if (reg < 0)
return reg;
return ksz9031_extended_write(phydev, OP_DATA, 0x1C, MII_KSZ9031RN_EDPD,
reg | MII_KSZ9031RN_EDPD_ENABLE);
}
static int ksz9031_config_init(struct phy_device *phydev)
{
const struct device *dev = &phydev->mdio.dev;
const struct device_node *of_node = dev->of_node;
static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
static const char *rx_data_skews[4] = {
"rxd0-skew-ps", "rxd1-skew-ps",
"rxd2-skew-ps", "rxd3-skew-ps"
};
static const char *tx_data_skews[4] = {
"txd0-skew-ps", "txd1-skew-ps",
"txd2-skew-ps", "txd3-skew-ps"
};
static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
const struct device *dev_walker;
int result;
result = ksz9031_enable_edpd(phydev);
if (result < 0)
return result;
/* The Micrel driver has a deprecated option to place phy OF
* properties in the MAC node. Walk up the tree of devices to
* find a device with an OF node.
*/
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (of_node) {
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CLK_PAD_SKEW, 5,
clk_skews, 2);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
control_skews, 2);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
rx_data_skews, 4);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
tx_data_skews, 4);
}
return ksz9031_center_flp_timing(phydev);
}
#define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
#define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
#define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
static int ksz8873mll_read_status(struct phy_device *phydev)
{
int regval;
/* dummy read */
regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
phydev->duplex = DUPLEX_HALF;
else
phydev->duplex = DUPLEX_FULL;
if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
phydev->speed = SPEED_10;
else
phydev->speed = SPEED_100;
phydev->link = 1;
phydev->pause = phydev->asym_pause = 0;
return 0;
}
static int ksz9031_read_status(struct phy_device *phydev)
{
int err;
int regval;
err = genphy_read_status(phydev);
if (err)
return err;
/* Make sure the PHY is not broken. Read idle error count,
* and reset the PHY if it is maxed out.
*/
regval = phy_read(phydev, MII_STAT1000);
if ((regval & 0xFF) == 0xFF) {
phy_init_hw(phydev);
phydev->link = 0;
if (phydev->drv->config_intr &&
(phydev->irq == PHY_IGNORE_INTERRUPT ||
phy_interrupt_is_valid(phydev)))
phydev->drv->config_intr(phydev);
return genphy_config_aneg(phydev);
}
return 0;
}
static int ksz8873mll_config_aneg(struct phy_device *phydev)
{
return 0;
}
/* This routine returns -1 as an indication to the caller that the
* Micrel ksz9021 10/100/1000 PHY does not support standard IEEE
* MMD extended PHY registers.
*/
static int
ksz9021_rd_mmd_phyreg(struct phy_device *phydev, int devad, u16 regnum)
{
return -1;
}
/* This routine does nothing since the Micrel ksz9021 does not support
* standard IEEE MMD extended PHY registers.
*/
static int
ksz9021_wr_mmd_phyreg(struct phy_device *phydev, int devad, u16 regnum, u16 val)
{
return -1;
}
static int kszphy_get_sset_count(struct phy_device *phydev)
{
return ARRAY_SIZE(kszphy_hw_stats);
}
static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
strlcpy(data + i * ETH_GSTRING_LEN,
kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
}
}
#ifndef UINT64_MAX
#define UINT64_MAX (u64)(~((u64)0))
#endif
static u64 kszphy_get_stat(struct phy_device *phydev, int i)
{
struct kszphy_hw_stat stat = kszphy_hw_stats[i];
struct kszphy_priv *priv = phydev->priv;
int val;
u64 ret;
val = phy_read(phydev, stat.reg);
if (val < 0) {
ret = UINT64_MAX;
} else {
val = val & ((1 << stat.bits) - 1);
priv->stats[i] += val;
ret = priv->stats[i];
}
return ret;
}
static void kszphy_get_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
data[i] = kszphy_get_stat(phydev, i);
}
static int kszphy_suspend(struct phy_device *phydev)
{
/* Disable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_DISABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return genphy_suspend(phydev);
}
static int kszphy_resume(struct phy_device *phydev)
{
int ret;
genphy_resume(phydev);
/* After switching from power-down to normal mode, an internal global
* reset is automatically generated. Wait a minimum of 1 ms before
* read/write access to the PHY registers.
*/
usleep_range(1000, 2000);
ret = kszphy_config_reset(phydev);
if (ret)
return ret;
/* Enable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_ENABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return 0;
}
static int kszphy_probe(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
const struct device_node *np = phydev->mdio.dev.of_node;
struct kszphy_priv *priv;
struct clk *clk;
int ret;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
priv->type = type;
if (type->led_mode_reg) {
ret = of_property_read_u32(np, "micrel,led-mode",
&priv->led_mode);
if (ret)
priv->led_mode = -1;
if (priv->led_mode > 3) {
phydev_err(phydev, "invalid led mode: 0x%02x\n",
priv->led_mode);
priv->led_mode = -1;
}
} else {
priv->led_mode = -1;
}
clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
if (!IS_ERR_OR_NULL(clk)) {
unsigned long rate = clk_get_rate(clk);
bool rmii_ref_clk_sel_25_mhz;
priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
"micrel,rmii-reference-clock-select-25-mhz");
if (rate > 24500000 && rate < 25500000) {
priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
} else if (rate > 49500000 && rate < 50500000) {
priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
} else {
phydev_err(phydev, "Clock rate out of range: %ld\n",
rate);
return -EINVAL;
}
}
/* Support legacy board-file configuration */
if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
priv->rmii_ref_clk_sel = true;
priv->rmii_ref_clk_sel_val = true;
}
return 0;
}
static void ksz9031_set_wol_settings(struct phy_device *phydev)
{
u32 reg_value;
/* Enable both PHY and PME_N2 interrupts */
reg_value = ksz9031_extended_read(
phydev, OP_DATA, 0x2, MII_KSZPHY_WOL_CTRL_REG);
reg_value |= MII_KSZPHY_WOL_CTRL_PME_N2;
reg_value &= ~MII_KSZPHY_WOL_CTRL_INT_N;
reg_value |= MII_KSZPHY_WOL_MAGIC_PKT;
reg_value |= MII_KSZPHY_WOL_LINK_UP;
reg_value |= MII_KSZPHY_WOL_LINK_DOWN;
ksz9031_extended_write(
phydev, OP_DATA, 0x2, MII_KSZPHY_WOL_CTRL_REG, reg_value);
}
static int ksz9031_set_wol(
struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
struct net_device *ndev = phydev->attached_dev;
const u8 *mac;
int ret = 0;
u32 reg_value;
if (!ndev)
return -ENODEV;
if (wol->wolopts & WAKE_MAGIC) {
mac = (const u8 *)ndev->dev_addr;
if (!is_valid_ether_addr(mac))
return -EINVAL;
ksz9031_extended_write(
phydev, OP_DATA, 0x2, 0x11, mac[5] | (mac[4] << 8));
ksz9031_extended_write(
phydev, OP_DATA, 0x2, 0x12, mac[3] | (mac[2] << 8));
ksz9031_extended_write(
phydev, OP_DATA, 0x2, 0x13, mac[1] | (mac[0] << 8));
/* Enable WOL interrupt for magic pkt, link up and down */
ksz9031_set_wol_settings(phydev);
/* Enable PME_N2 output */
reg_value = ksz9031_extended_read(
phydev, OP_DATA, 0x2, MII_KSZPHY_OMSO_REG);
reg_value |= MII_KSZPHY_OMSO_PME_N2;
ksz9031_extended_write(
phydev, OP_DATA, 0x2, MII_KSZPHY_OMSO_REG, reg_value);
}
return ret;
}
static void ksz9031_get_wol(
struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
u32 reg_value;
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
reg_value = ksz9031_extended_read(
phydev, OP_DATA, 0x2, MII_KSZPHY_OMSO_REG);
if (reg_value & MII_KSZPHY_OMSO_PME_N2)
wol->wolopts |= WAKE_MAGIC;
}
static int ksz9031_suspend(struct phy_device *phydev)
{
int value;
int wol_enabled;
u32 reg_value;
reg_value = ksz9031_extended_read(
phydev, OP_DATA, 0x2, MII_KSZPHY_OMSO_REG);
wol_enabled = reg_value & MII_KSZPHY_OMSO_PME_N2;
value = phy_read(phydev, MII_BMCR);
if (wol_enabled)
value |= BMCR_ISOLATE;
else
value |= BMCR_PDOWN;
phy_write(phydev, MII_BMCR, value);
return 0;
}
static int ksz9031_resume(struct phy_device *phydev)
{
int value;
value = phy_read(phydev, MII_BMCR);
value &= ~(BMCR_PDOWN | BMCR_ISOLATE);
phy_write(phydev, MII_BMCR, value);
return 0;
}
static struct phy_driver ksphy_driver[] = {
{
.phy_id = PHY_ID_KS8737,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KS8737",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ks8737_type,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8021,
.phy_id_mask = 0x00ffffff,
.name = "Micrel KSZ8021 or KSZ8031",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz8021_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8031,
.phy_id_mask = 0x00ffffff,
.name = "Micrel KSZ8031",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz8021_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8041,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8041",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = ksz8041_config_init,
.config_aneg = ksz8041_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8041RNLI,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8041RNLI",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8051,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8051",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz8051_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8001,
.name = "Micrel KSZ8001 or KS8721",
.phy_id_mask = 0x00fffffc,
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8081,
.name = "Micrel KSZ8081 or KSZ8091",
.phy_id_mask = MICREL_PHY_ID_MASK,
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz8081_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8061,
.name = "Micrel KSZ8061",
.phy_id_mask = MICREL_PHY_ID_MASK,
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.config_init = ksz8061_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ9021,
.phy_id_mask = 0x000ffffe,
.name = "Micrel KSZ9021 Gigabit PHY",
.features = PHY_GBIT_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.config_init = ksz9021_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = kszphy_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = genphy_resume,
.read_mmd = ksz9021_rd_mmd_phyreg,
.write_mmd = ksz9021_wr_mmd_phyreg,
}, {
.phy_id = PHY_ID_KSZ9031,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ9031 Gigabit PHY",
.features = (PHY_GBIT_FEATURES | SUPPORTED_Pause),
.flags = PHY_HAS_INTERRUPT,
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.config_init = ksz9031_config_init,
.config_aneg = genphy_config_aneg,
.read_status = ksz9031_read_status,
.ack_interrupt = ksz9031_ack_interrupt,
.config_intr = kszphy_config_intr,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.set_wol = ksz9031_set_wol,
.get_wol = ksz9031_get_wol,
.suspend = ksz9031_suspend,
.resume = ksz9031_resume,
}, {
.phy_id = PHY_ID_KSZ8873MLL,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8873MLL Switch",
.config_init = kszphy_config_init,
.config_aneg = ksz8873mll_config_aneg,
.read_status = ksz8873mll_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ886X,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ886X Switch",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ8795,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8795",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.config_init = kszphy_config_init,
.config_aneg = ksz8873mll_config_aneg,
.read_status = ksz8873mll_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ9477,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip KSZ9477",
.features = PHY_GBIT_FEATURES,
.config_init = kszphy_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
} };
module_phy_driver(ksphy_driver);
MODULE_DESCRIPTION("Micrel PHY driver");
MODULE_AUTHOR("David J. Choi");
MODULE_LICENSE("GPL");
static struct mdio_device_id __maybe_unused micrel_tbl[] = {
{ PHY_ID_KSZ9021, 0x000ffffe },
{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8001, 0x00fffffc },
{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8021, 0x00ffffff },
{ PHY_ID_KSZ8031, 0x00ffffff },
{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
{ }
};
MODULE_DEVICE_TABLE(mdio, micrel_tbl);