You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/fingerprint/et5xx-spi_data_transfer.c

1201 lines
27 KiB

/*
* Copyright (C) 2016 Samsung Electronics. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include "et5xx.h"
int etspi_io_burst_write_register(struct etspi_data *etspi,
struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status = 0;
struct spi_message m;
struct spi_transfer xfer = {
.tx_buf = etspi->buf,
.len = ioc->len + 1,
};
if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) {
status = -ENOMEM;
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
memset(etspi->buf, 0, ioc->len + 1);
*etspi->buf = OP_REG_W_C;
if (copy_from_user(etspi->buf + 1,
(const u8 __user *) (uintptr_t) ioc->tx_buf,
ioc->len)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
goto end;
}
pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__,
ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
end:
return status;
#endif
}
int etspi_io_burst_write_register_backward(struct etspi_data *etspi,
struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status = 0;
struct spi_message m;
struct spi_transfer xfer = {
.tx_buf = etspi->buf,
.len = ioc->len + 1,
};
if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) {
status = -ENOMEM;
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
memset(etspi->buf, 0, ioc->len + 1);
*etspi->buf = OP_REG_W_C_BW;
if (copy_from_user(etspi->buf + 1,
(const u8 __user *) (uintptr_t)ioc->tx_buf, ioc->len)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
goto end;
}
pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__,
ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
end:
return status;
#endif
}
int etspi_io_burst_read_register(struct etspi_data *etspi,
struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status = 0;
struct spi_message m;
struct spi_transfer xfer = {
.tx_buf = etspi->buf,
.rx_buf = etspi->buf,
.len = ioc->len + 2,
};
if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) {
status = -ENOMEM;
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
memset(etspi->buf, 0, xfer.len);
*etspi->buf = OP_REG_R_C;
if (copy_from_user(etspi->buf + 1,
(const u8 __user *) (uintptr_t) ioc->tx_buf, 1)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
goto end;
}
pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__,
ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
status = -ENOMEM;
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
if (copy_to_user((u8 __user *) (uintptr_t)ioc->rx_buf, etspi->buf + 2,
ioc->len)) {
status = -EFAULT;
pr_err("%s buffer copy_to_user fail status\n", __func__);
goto end;
}
end:
return status;
#endif
}
int etspi_io_burst_read_register_backward(struct etspi_data *etspi,
struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status = 0;
struct spi_message m;
struct spi_transfer xfer = {
.tx_buf = etspi->buf,
.rx_buf = etspi->buf,
.len = ioc->len + 2,
};
if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) {
status = -ENOMEM;
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
memset(etspi->buf, 0, xfer.len);
*etspi->buf = OP_REG_R_C_BW;
if (copy_from_user(etspi->buf + 1,
(const u8 __user *) (uintptr_t)ioc->tx_buf, 1)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
goto end;
}
pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__,
ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
status = -ENOMEM;
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
if (copy_to_user((u8 __user *) (uintptr_t)ioc->rx_buf, etspi->buf + 2,
ioc->len)) {
status = -EFAULT;
pr_err("%s buffer copy_to_user fail status\n", __func__);
goto end;
}
end:
return status;
#endif
}
int etspi_io_read_registerex(struct etspi_data *etspi, u8 *addr, u8 *buf,
u32 len)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status = 0;
struct spi_message m;
struct spi_transfer xfer = {
.tx_buf = etspi->buf,
.rx_buf = etspi->buf,
.len = len + 2,
};
if (len <= 0 || len + 2 > etspi->bufsiz) {
status = -ENOMEM;
pr_err("%s error status = %d", __func__, status);
goto end;
}
memset(etspi->buf, 0, xfer.len);
*etspi->buf = OP_REG_R;
if (copy_from_user(etspi->buf + 1, (const u8 __user *) (uintptr_t) addr
, 1)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
goto end;
}
pr_debug("%s addr = %p op = %x reg = %x len = %d tx = %p, rx = %p",
__func__, addr, etspi->buf[0], etspi->buf[1], len,
xfer.tx_buf, xfer.rx_buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s read data error status = %d\n", __func__, status);
goto end;
}
if (copy_to_user((u8 __user *) (uintptr_t) buf, etspi->buf + 2, len)) {
pr_err("%s buffer copy_to_user fail status\n", __func__);
status = -EFAULT;
goto end;
}
end:
return status;
#endif
}
/* Read io register */
int etspi_io_read_register(struct etspi_data *etspi, u8 *addr, u8 *buf)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status = 0;
struct spi_message m;
int read_len = 1;
u8 val, addrval;
struct spi_transfer xfer = {
.tx_buf = etspi->buf,
.rx_buf = etspi->buf,
.len = 3,
};
memset(etspi->buf, 0, xfer.len);
*etspi->buf = OP_REG_R;
if (copy_from_user(&addrval, (const u8 __user *) (uintptr_t) addr
, read_len)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
return status;
}
*(etspi->buf + 1) = addrval;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s read data error status = %d\n", __func__, status);
return status;
}
val = *(etspi->buf + 2);
pr_debug("%s len = %d addr = %x val = %x\n", __func__,
read_len, addrval, val);
if (copy_to_user((u8 __user *) (uintptr_t) buf, &val, read_len)) {
pr_err("%s buffer copy_to_user fail status\n", __func__);
status = -EFAULT;
return status;
}
return status;
#endif
}
/* Write data to register */
int etspi_io_write_register(struct etspi_data *etspi, u8 *buf)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status = 0;
int write_len = 2;
struct spi_message m;
u8 val[3];
struct spi_transfer xfer = {
.tx_buf = etspi->buf,
.len = 3,
};
memset(etspi->buf, 0, xfer.len);
*etspi->buf = OP_REG_W;
if (copy_from_user(val, (const u8 __user *) (uintptr_t) buf,
write_len)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
return status;
}
pr_debug("%s write_len = %d addr = %x data = %x\n", __func__,
write_len, val[0], val[1]);
*(etspi->buf + 1) = val[0];
*(etspi->buf + 2) = val[1];
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s read data error status = %d\n", __func__, status);
return status;
}
return status;
#endif
}
int etspi_write_register(struct etspi_data *etspi, u8 addr, u8 buf)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
int i, buf_size;
struct spi_message m;
u8 tx[] = {OP_REG_W, addr, buf};
u8 *tx_buffer = NULL;
struct spi_transfer xfer = {
.rx_buf = NULL,
.len = 3,
};
buf_size = 3;
tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (tx_buffer == NULL)
return -ENOMEM;
for (i = 0; i < buf_size; i++)
tx_buffer[i] = tx[i];
xfer.tx_buf = tx_buffer;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status == 0) {
DEBUG_PRINT("%s address = %x\n",__func__, addr);
} else {
pr_err("%s read data error status = %d\n", __func__, status);
}
kfree(tx_buffer);
return status;
#endif
}
int etspi_read_register(struct etspi_data *etspi, u8 addr, u8 *buf)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
int i, buf_size;
struct spi_message m;
u8 read_value[] = {OP_REG_R, addr, 0x00};
u8 result[] = {0xFF, 0xFF, 0xFF};
u8 *tx_buffer = NULL;
u8 *rx_buffer = NULL;
struct spi_transfer xfer = {
.len = 3,
};
buf_size = 3;
tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (tx_buffer == NULL)
return -ENOMEM;
rx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (rx_buffer == NULL) {
kfree(tx_buffer);
return -ENOMEM;
}
for (i = 0; i < buf_size; i++) {
tx_buffer[i] = read_value[i];
rx_buffer[i] = result[i];
}
xfer.tx_buf = tx_buffer;
xfer.rx_buf = rx_buffer;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status == 0) {
*buf = rx_buffer[2];
DEBUG_PRINT("%s address = %x result = %x %x\n"
__func__, addr, rx_buffer[1], rx_buffer[2]);
} else {
pr_err("%s read data error status = %d\n", __func__, status);
}
kfree(tx_buffer);
kfree(rx_buffer);
return status;
#endif
}
int etspi_io_nvm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
int i, buf_size;
struct spi_message m;
u8 addr; /* nvm logical address */
u8 buf[] = {OP_NVM_RE, 0x00};
u8 *tx_buffer = NULL;
struct spi_transfer xfer = {
.rx_buf = NULL,
.len = 2,
};
buf_size = 2;
tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (tx_buffer == NULL)
return -ENOMEM;
for (i = 0; i < buf_size; i++)
tx_buffer[i] = buf[i];
xfer.tx_buf = tx_buffer;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status == 0)
DEBUG_PRINT("%s nvm enabled\n", __func__);
else
pr_err("%s nvm enable error status = %d\n", __func__, status);
kfree(tx_buffer);
usleep_range(10, 50);
if (copy_from_user(&addr, (const u8 __user *) (uintptr_t) ioc->tx_buf
, 1)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
return status;
}
etspi->buf[0] = OP_NVM_ON_R;
pr_debug("%s logical addr(%x) len(%d)\n", __func__, addr, ioc->len);
if ((addr + ioc->len) > MAX_NVM_LEN)
return -EINVAL;
/* transfer to nvm physical address*/
etspi->buf[1] = ((addr % 2) ? (addr - 1) : addr) / 2;
/* thansfer to nvm physical length */
xfer.len = ((ioc->len % 2) ? ioc->len + 1 :
(addr % 2 ? ioc->len + 2 : ioc->len)) + 3;
if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE -
(xfer.len % DIVISION_OF_IMAGE));
}
xfer.tx_buf = xfer.rx_buf = etspi->buf;
pr_debug("%s nvm read addr(%d) len(%d) xfer.rx_buf(%p), etspi->buf(%p)\n",
__func__, etspi->buf[1],
xfer.len, xfer.rx_buf, etspi->buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s error status = %d\n", __func__, status);
return status;
}
if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, xfer.rx_buf + 3
, ioc->len)) {
pr_err("%s buffer copy_to_user fail status\n", __func__);
status = -EFAULT;
return status;
}
return status;
#endif
}
int etspi_io_nvm_write(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status, i, j, len/* physical nvm length */;
int buf_size;
struct spi_message m;
u8 *bufw = NULL;
u8 buf[MAX_NVM_LEN + 1] = {OP_NVM_WE, 0x00};
u8 addr/* nvm physical addr */;
u8 *tx_buffer = NULL;
struct spi_transfer xfer = {
.rx_buf = NULL,
.len = 2,
};
if (ioc->len > (MAX_NVM_LEN + 1))
return -EINVAL;
buf_size = MAX_NVM_LEN+1;
tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (tx_buffer == NULL)
return -ENOMEM;
for (i = 0; i < buf_size; i++)
tx_buffer[i] = buf[i];
xfer.tx_buf = tx_buffer;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status == 0)
DEBUG_PRINT("%s nvm enabled\n", __func__);
else
pr_err("%s nvm enable error status = %d\n", __func__, status);
kfree(tx_buffer);
usleep_range(10, 50);
pr_debug("%s buf(%p) tx_buf(%p) len(%d)\n", __func__, buf,
ioc->tx_buf, ioc->len);
if (copy_from_user(buf, (const u8 __user *) (uintptr_t) ioc->tx_buf,
ioc->len)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
return status;
}
if ((buf[0] + (ioc->len - 1)) > MAX_NVM_LEN)
return -EINVAL;
if ((buf[0] % 2) || ((ioc->len - 1) % 2)) {
/* TODO: add non alignment handling */
pr_err("%s can't handle address alignment issue. %d %d\n",
__func__, buf[0], ioc->len);
return -EINVAL;
}
bufw = kzalloc(NVM_WRITE_LENGTH, GFP_KERNEL | GFP_DMA);
/*TODO: need to dynamic assign nvm length*/
if (bufw == NULL) {
status = -ENOMEM;
pr_err("%s bufw kmalloc error\n", __func__);
return status;
}
xfer.tx_buf = xfer.rx_buf = bufw;
xfer.len = NVM_WRITE_LENGTH;
len = (ioc->len - 1) / 2;
pr_debug("%s nvm write addr(%d) len(%d) xfer.tx_buf(%p), etspi->buf(%p)\n",
__func__, buf[0], len, xfer.tx_buf, etspi->buf);
for (i = 0, addr = buf[0] / 2/* thansfer to nvm physical length */;
i < len; i++) {
bufw[0] = OP_NVM_ON_W;
bufw[1] = addr++;
bufw[2] = buf[i * 2 + 1];
bufw[3] = buf[i * 2 + 2];
memset(bufw + 4, 1, NVM_WRITE_LENGTH - 4);
pr_debug("%s write transaction (%d): %x %x %x %x\n",
__func__, i,
bufw[0], bufw[1], bufw[2], bufw[3]);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
for (j = 0; j < NVM_WRITE_LENGTH - 4; j++) {
if (bufw[4 + j] == 0) {
pr_debug("%s nvm write ready(%d)\n",
__func__, j);
break;
}
if (j == NVM_WRITE_LENGTH - 5) {
pr_err("%s nvm write fail(timeout)\n",
__func__);
status = -EIO;
goto end;
}
}
}
end:
kfree(bufw);
return status;
#endif
}
int etspi_nvm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
int i, buf_size;
struct spi_message m;
u8 addr; /* nvm logical address */
u8 buf[] = {OP_NVM_RE, 0x00};
u8 *tx_buffer = NULL;
struct spi_transfer xfer = {
.rx_buf = NULL,
.len = 2,
};
buf_size = 2;
tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (tx_buffer == NULL)
return -ENOMEM;
for (i = 0; i < buf_size; i++)
tx_buffer[i] = buf[i];
xfer.tx_buf = tx_buffer;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status == 0)
DEBUG_PRINT("%s nvm enabled\n", __func__);
else
pr_err("%s nvm enable error status = %d\n", __func__, status);
kfree(tx_buffer);
usleep_range(10, 50);
addr = ioc->tx_buf[0];
etspi->buf[0] = OP_NVM_ON_R;
pr_debug("%s logical addr(%x) len(%d)\n", __func__, addr, ioc->len);
if ((addr + ioc->len) > MAX_NVM_LEN)
return -EINVAL;
/* transfer to nvm physical address*/
etspi->buf[1] = ((addr % 2) ? (addr - 1) : addr) / 2;
/* thansfer to nvm physical length */
xfer.len = ((ioc->len % 2) ? ioc->len + 1 :
(addr % 2 ? ioc->len + 2 : ioc->len)) + 3;
if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE -
(xfer.len % DIVISION_OF_IMAGE));
}
xfer.tx_buf = xfer.rx_buf = etspi->buf;
pr_debug("%s nvm read addr(%d) len(%d) xfer.rx_buf(%p), etspi->buf(%p)\n",
__func__, etspi->buf[1],
xfer.len, xfer.rx_buf, etspi->buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s error status = %d\n", __func__, status);
return status;
}
if (memcpy((u8 __user *) (uintptr_t) ioc->rx_buf, xfer.rx_buf + 3,
ioc->len)) {
pr_err("%s buffer copy_to_user fail status\n", __func__);
status = -EFAULT;
return status;
}
return status;
#endif
}
int etspi_io_nvm_writeex(struct etspi_data *etspi,
struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status, i, j, len/* physical nvm length */, wlen;
int buf_size;
struct spi_message m;
u8 *bufw = NULL;
u8 bufr[MAX_NVM_LEN + 3];
u8 buf[MAX_NVM_LEN + 3] = {OP_NVM_WE, 0x00};
u8 addr/* nvm physical addr */, *tmp = NULL;
u8 *tx_buffer = NULL;
struct egis_ioc_transfer r;
struct spi_transfer xfer = {
.rx_buf = NULL,
.len = 2,
};
pr_debug("%s buf(%p) tx_buf(%p) len(%d)\n", __func__,
buf, ioc->tx_buf, ioc->len);
if (copy_from_user(buf, (const u8 __user *) (uintptr_t) ioc->tx_buf
, ioc->len)) {
pr_err("%s buffer copy_from_user fail\n", __func__);
status = -EFAULT;
return status;
}
if ((buf[0] + (ioc->len - 3)) > MAX_NVM_LEN)
return -EINVAL;
if ((buf[0] % 2) || ((ioc->len - 3) % 2)) {
/* address non-alignment handling */
pr_debug("%s handle address alignment issue. %d %d\n",
__func__, buf[0], ioc->len);
r.tx_buf = r.rx_buf = bufr;
r.len = ioc->len;
if (buf[0] % 2) {
r.tx_buf[0] = buf[0] - 1;
r.len = ioc->len % 2 ? r.len + 1 : r.len + 2;
} else {
if (ioc->len % 2)
r.len++;
}
pr_debug("%s fixed address alignment issue. %d %d\n",
__func__, r.tx_buf[0], r.len);
etspi_nvm_read(etspi, &r);
tmp = bufr;
if (buf[0] % 2)
tmp++;
memcpy(tmp, buf, ioc->len);
}
buf[0] = OP_NVM_WE;
buf_size = MAX_NVM_LEN+1;
tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (tx_buffer == NULL)
return -ENOMEM;
for (i = 0; i < buf_size; i++)
tx_buffer[i] = buf[i];
xfer.tx_buf = tx_buffer;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status == 0)
DEBUG_PRINT("%s nvm enabled\n", __func__);
else
pr_err("%s nvm enable error status = %d\n", __func__, status);
kfree(tx_buffer);
usleep_range(10, 50);
wlen = *(u16 *)(buf + 1);
pr_debug("%s wlen(%d)\n", __func__, wlen);
if (wlen > 8192)
wlen = 8196;
bufw = kzalloc(wlen, GFP_KERNEL | GFP_DMA);
if (bufw == NULL) {
status = -ENOMEM;
pr_err("%s bufw kmalloc error\n", __func__);
return status;
}
xfer.tx_buf = xfer.rx_buf = bufw;
xfer.len = wlen;
if ((buf[0] % 2) || ((ioc->len - 3) % 2)) {
memcpy(buf, bufr, r.len);
ioc->len = r.len;
}
len = (ioc->len - 3) / 2;
pr_debug("%s nvm write addr(%d) len(%d) xfer.tx_buf(%p), etspi->buf(%p), wlen(%d)\n",
__func__, buf[0], len, xfer.tx_buf, etspi->buf, wlen);
for (i = 0, addr = buf[0] / 2/* thansfer to nvm physical length */;
i < len; i++) {
bufw[0] = OP_NVM_ON_W;
bufw[1] = addr++;
bufw[2] = buf[i * 2 + 3];
bufw[3] = buf[i * 2 + 4];
memset(bufw + 4, 1, wlen - 4);
pr_debug("%s write transaction (%d): %x %x %x %x\n",
__func__, i,
bufw[0], bufw[1], bufw[2], bufw[3]);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s error status = %d\n", __func__, status);
goto end;
}
for (j = 0; j < wlen - 4; j++) {
if (bufw[4 + j] == 0) {
pr_debug("%s nvm write ready(%d)\n",
__func__, j);
break;
}
if (j == wlen - 5) {
pr_err("%s nvm write fail(timeout)\n",
__func__);
status = -EIO;
goto end;
}
}
}
end:
kfree(bufw);
return status;
#endif
}
int etspi_io_nvm_off(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
int i, buf_size;
struct spi_message m;
u8 buf[] = {OP_NVM_OFF, 0x00};
u8 *tx_buffer = NULL;
struct spi_transfer xfer = {
.rx_buf = NULL,
.len = 2,
};
buf_size = 2;
tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA);
if (tx_buffer == NULL)
return -ENOMEM;
for (i = 0; i < buf_size; i++)
tx_buffer[i] = buf[i];
xfer.tx_buf = tx_buffer;
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status == 0)
DEBUG_PRINT("%s nvm disabled\n", __func__);
else
pr_err("%s nvm disable error status = %d\n", __func__, status);
kfree(tx_buffer);
return status;
#endif
}
int etspi_io_vdm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
struct spi_message m;
u8 *buf = NULL;
struct spi_transfer xfer = {
.tx_buf = NULL,
.rx_buf = NULL,
.len = ioc->len + 1,
};
if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE -
(xfer.len % DIVISION_OF_IMAGE));
}
buf = kzalloc(xfer.len, GFP_KERNEL | GFP_DMA);
if (buf == NULL)
return -ENOMEM;
xfer.tx_buf = xfer.rx_buf = buf;
buf[0] = OP_VDM_R;
pr_debug("%s len = %d, xfer.len = %d, buf = %p, rx_buf = %p\n",
__func__, ioc->len, xfer.len, buf, ioc->rx_buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s read data error status = %d\n", __func__, status);
goto end;
}
if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, buf + 1,
ioc->len)) {
pr_err("%s buffer copy_to_user fail status\n", __func__);
status = -EFAULT;
}
end:
kfree(buf);
return status;
#endif
}
int etspi_io_vdm_write(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
struct spi_message m;
u8 *buf = NULL;
struct spi_transfer xfer = {
.tx_buf = NULL,
.rx_buf = NULL,
.len = ioc->len + 1,
};
if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE -
(xfer.len % DIVISION_OF_IMAGE));
}
buf = kzalloc(xfer.len, GFP_KERNEL | GFP_DMA);
if (buf == NULL)
return -ENOMEM;
if (copy_from_user((u8 __user *) (uintptr_t) buf + 1, ioc->tx_buf,
ioc->len)) {
pr_err("buffer copy_from_user fail status\n");
status = -EFAULT;
goto end;
}
xfer.tx_buf = xfer.rx_buf = buf;
buf[0] = OP_VDM_W;
pr_debug("%s len = %d, xfer.len = %d, buf = %p, tx_buf = %p\n",
__func__, ioc->len, xfer.len, buf, ioc->tx_buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0)
pr_err("%s read data error status = %d\n", __func__, status);
end:
kfree(buf);
return status;
#endif
}
int etspi_io_get_frame(struct etspi_data *etspi, u8 *fr, u32 size)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
struct spi_message m;
u8 *buf = NULL;
struct spi_transfer xfer = {
.tx_buf = NULL,
.rx_buf = NULL,
.len = size + 1,
};
if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE -
(xfer.len % DIVISION_OF_IMAGE));
}
buf = kzalloc(xfer.len, GFP_KERNEL | GFP_DMA);
if (buf == NULL)
return -ENOMEM;
xfer.tx_buf = xfer.rx_buf = buf;
buf[0] = OP_IMG_R;
pr_debug("%s size = %d, xfer.len = %d, buf = %p, fr = %p\n", __func__,
size, xfer.len, buf, fr);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err("%s read data error status = %d\n", __func__, status);
goto end;
}
if (copy_to_user((u8 __user *) (uintptr_t) fr, buf + 1, size)) {
pr_err("%s buffer copy_to_user fail status\n", __func__);
status = -EFAULT;
}
end:
kfree(buf);
return status;
#endif
}
int etspi_io_nbm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
struct spi_message m;
u8 *buf = NULL;
struct spi_transfer xfer = {
.tx_buf = NULL,
.rx_buf = NULL,
.len = ioc->len + 1,
};
if ( xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE));
}
buf = kzalloc(xfer.len, GFP_KERNEL);
if (buf == NULL) return -ENOMEM;
xfer.tx_buf = xfer.rx_buf = buf;
buf[0] = OP_NBM_R;
pr_debug("%s len = %d, xfer.len = %d, buf = %p, rx_buf = %p\n", __func__,
ioc->len, xfer.len, buf, ioc->rx_buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err(KERN_ERR "%s read data error status = %d\n", __func__, status);
goto end;
}
if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, buf + 1, ioc->len)) {
pr_err(KERN_ERR "buffer copy_to_user fail status\n");
status = -EFAULT;
}
end:
if(buf) kfree(buf);
return status;
#endif
}
int etspi_io_clb_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
struct spi_message m;
u8 *buf = NULL;
struct spi_transfer xfer = {
.tx_buf = NULL,
.rx_buf = NULL,
.len = ioc->len + 1,
};
if ( xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE));
}
buf = kzalloc(xfer.len, GFP_KERNEL);
if (buf == NULL) return -ENOMEM;
xfer.tx_buf = xfer.rx_buf = buf;
buf[0] = OP_CLB_R;
pr_debug("%s len = %d, xfer.len = %d, buf = %p, rx_buf = %p\n", __func__,
ioc->len, xfer.len, buf, ioc->rx_buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err(KERN_ERR "%s read data error status = %d\n", __func__, status);
goto end;
}
if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, buf + 1, ioc->len)) {
pr_err(KERN_ERR "buffer copy_to_user fail status\n");
status = -EFAULT;
}
end:
if(buf) kfree(buf);
return status;
#endif
}
int etspi_io_clb_write(struct etspi_data *etspi, struct egis_ioc_transfer *ioc)
{
#ifdef ENABLE_SENSORS_FPRINT_SECURE
return 0;
#else
int status;
struct spi_message m;
u8 *buf = NULL;
struct spi_transfer xfer = {
.tx_buf = NULL,
.rx_buf = NULL,
.len = ioc->len + 1,
};
if ( xfer.len >= LARGE_SPI_TRANSFER_BUFFER) {
if ((xfer.len) % DIVISION_OF_IMAGE != 0)
xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE));
}
buf = kzalloc(xfer.len, GFP_KERNEL);
if (buf == NULL) return -ENOMEM;
if (copy_from_user((u8 __user *) (uintptr_t) buf + 1, ioc->tx_buf, ioc->len)) {
pr_err(KERN_ERR "buffer copy_from_user fail status\n");
status = -EFAULT;
goto end;
}
xfer.tx_buf = xfer.rx_buf = buf;
buf[0] = OP_CLB_W;
pr_debug("%s len = %d, xfer.len = %d, buf = %p, tx_buf = %p\n", __func__,
ioc->len, xfer.len, buf, ioc->tx_buf);
spi_message_init(&m);
spi_message_add_tail(&xfer, &m);
status = spi_sync(etspi->spi, &m);
if (status < 0) {
pr_err(KERN_ERR "%s read data error status = %d\n", __func__, status);
}
end:
if(buf) kfree(buf);
return status;
#endif
}