You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
366 lines
13 KiB
366 lines
13 KiB
/*
|
|
* sec_battery_ttf.c
|
|
* Samsung Mobile Battery Driver
|
|
*
|
|
* Copyright (C) 2019 Samsung Electronics
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include "include/sec_battery.h"
|
|
#include "include/sec_battery_ttf.h"
|
|
|
|
#if IS_ENABLED(CONFIG_CALC_TIME_TO_FULL)
|
|
int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr)
|
|
{
|
|
struct sec_cv_slope *cv_data = battery->ttf_d->cv_data;
|
|
int i, cc_time = 0, cv_time = 0;
|
|
int soc = battery->capacity;
|
|
int charge_current = ttf_curr;
|
|
int design_cap = battery->ttf_d->ttf_capacity;
|
|
union power_supply_propval value = {0, };
|
|
|
|
value.intval = SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE;
|
|
psy_do_property(battery->pdata->fuelgauge_name, get,
|
|
POWER_SUPPLY_PROP_CAPACITY, value);
|
|
soc = value.intval;
|
|
|
|
if (!cv_data || (ttf_curr <= 0)) {
|
|
pr_info("%s: no cv_data or val: %d\n", __func__, ttf_curr);
|
|
return -1;
|
|
}
|
|
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
|
|
if (charge_current >= cv_data[i].fg_current)
|
|
break;
|
|
}
|
|
i = i >= battery->ttf_d->cv_data_length ? battery->ttf_d->cv_data_length - 1 : i;
|
|
if (cv_data[i].soc < soc) {
|
|
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
|
|
if (soc <= cv_data[i].soc)
|
|
break;
|
|
}
|
|
cv_time =
|
|
((cv_data[i - 1].time - cv_data[i].time) * (cv_data[i].soc - soc)
|
|
/ (cv_data[i].soc - cv_data[i - 1].soc)) + cv_data[i].time;
|
|
} else { /* CC mode || NONE */
|
|
cv_time = cv_data[i].time;
|
|
cc_time =
|
|
design_cap * (cv_data[i].soc - soc) / ttf_curr * 3600 / 1000;
|
|
pr_debug("%s: cc_time: %d\n", __func__, cc_time);
|
|
if (cc_time < 0)
|
|
cc_time = 0;
|
|
}
|
|
|
|
pr_info("%s: cap: %d, soc: %4d, T: %6d, avg: %4d, cv soc: %4d, i: %4d, val: %d\n",
|
|
__func__, design_cap, soc, cv_time + cc_time,
|
|
battery->current_avg, cv_data[i].soc, i, ttf_curr);
|
|
|
|
if (cv_time + cc_time >= 0)
|
|
return cv_time + cc_time + 60;
|
|
else
|
|
return 60; /* minimum 1minutes */
|
|
}
|
|
|
|
#define FULL_CAPACITY 850
|
|
int sec_calc_ttf_to_full_capacity(struct sec_battery_info *battery, unsigned int ttf_curr)
|
|
{
|
|
struct sec_cv_slope *cv_data = battery->ttf_d->cv_data;
|
|
int i, cc_time = 0, cv_time = 0;
|
|
int soc = FULL_CAPACITY;
|
|
int charge_current = ttf_curr;
|
|
int design_cap = battery->ttf_d->ttf_capacity;
|
|
|
|
if (!cv_data || (ttf_curr <= 0)) {
|
|
pr_info("%s: no cv_data or val: %d\n", __func__, ttf_curr);
|
|
return -1;
|
|
}
|
|
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
|
|
if (charge_current >= cv_data[i].fg_current)
|
|
break;
|
|
}
|
|
i = i >= battery->ttf_d->cv_data_length ? battery->ttf_d->cv_data_length - 1 : i;
|
|
if (cv_data[i].soc < soc) {
|
|
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
|
|
if (soc <= cv_data[i].soc)
|
|
break;
|
|
}
|
|
cv_time =
|
|
((cv_data[i - 1].time - cv_data[i].time) * (cv_data[i].soc - soc)
|
|
/ (cv_data[i].soc - cv_data[i - 1].soc)) + cv_data[i].time;
|
|
} else { /* CC mode || NONE */
|
|
cv_time = cv_data[i].time;
|
|
cc_time =
|
|
design_cap * (cv_data[i].soc - soc) / ttf_curr * 3600 / 1000;
|
|
pr_debug("%s: cc_time: %d\n", __func__, cc_time);
|
|
if (cc_time < 0)
|
|
cc_time = 0;
|
|
}
|
|
|
|
pr_info("%s: cap: %d, soc: %4d, T: %6d, avg: %4d, cv soc: %4d, i: %4d, val: %d\n",
|
|
__func__, design_cap, soc, cv_time + cc_time,
|
|
battery->current_avg, cv_data[i].soc, i, ttf_curr);
|
|
|
|
if (cv_time + cc_time >= 0)
|
|
return cv_time + cc_time;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void sec_bat_calc_time_to_full(struct sec_battery_info *battery)
|
|
{
|
|
if (!battery->ttf_d)
|
|
return;
|
|
if (delayed_work_pending(&battery->ttf_d->timetofull_work)) {
|
|
pr_info("%s: keep time_to_full(%5d sec)\n", __func__, battery->ttf_d->timetofull);
|
|
} else if ((battery->status == POWER_SUPPLY_STATUS_CHARGING ||
|
|
(battery->status == POWER_SUPPLY_STATUS_FULL && battery->capacity != 100)) && !battery->wc_tx_enable) {
|
|
int charge = 0;
|
|
|
|
if (is_hv_wire_12v_type(battery->cable_type)) {
|
|
charge = battery->ttf_d->ttf_hv_12v_charge_current;
|
|
} else if (is_hv_wireless_type(battery->cable_type) ||
|
|
battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_HV ||
|
|
battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_20) {
|
|
if (sec_bat_hv_wc_normal_mode_check(battery))
|
|
charge = battery->ttf_d->ttf_wireless_charge_current;
|
|
else if ((battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_20 && !lpcharge) ||
|
|
battery->cable_type == SEC_BATTERY_CABLE_HV_WIRELESS_20)
|
|
charge = battery->ttf_d->ttf_predict_wc20_charge_current;
|
|
else
|
|
charge = battery->ttf_d->ttf_hv_wireless_charge_current;
|
|
} else if (is_hv_wire_type(battery->cable_type)) {
|
|
charge = battery->ttf_d->ttf_hv_charge_current;
|
|
} else if (is_nv_wireless_type(battery->cable_type)) {
|
|
charge = battery->ttf_d->ttf_wireless_charge_current;
|
|
} else if (is_pd_apdo_wire_type(battery->cable_type) ||
|
|
(is_pd_fpdo_wire_type(battery->cable_type) && battery->hv_pdo)) {
|
|
if (battery->pd_max_charge_power > HV_CHARGER_STATUS_STANDARD4) {
|
|
charge = battery->ttf_d->ttf_dc45_charge_current;
|
|
} else if (battery->pd_max_charge_power > HV_CHARGER_STATUS_STANDARD3) {
|
|
charge = battery->ttf_d->ttf_dc25_charge_current;
|
|
} else if (battery->pd_max_charge_power <= battery->pdata->pd_charging_charge_power &&
|
|
battery->pdata->charging_current[battery->cable_type].fast_charging_current >= \
|
|
battery->pdata->max_charging_current) { /* same PD power with AFC */
|
|
charge = battery->ttf_d->ttf_hv_charge_current;
|
|
} else { /* other PD charging */
|
|
charge = (battery->pd_max_charge_power / 5) > battery->pdata->charging_current[battery->cable_type].fast_charging_current ?
|
|
battery->pdata->charging_current[battery->cable_type].fast_charging_current : (battery->pd_max_charge_power / 5);
|
|
}
|
|
} else {
|
|
charge = (battery->max_charge_power / 5) > battery->pdata->charging_current[battery->cable_type].fast_charging_current ?
|
|
battery->pdata->charging_current[battery->cable_type].fast_charging_current : (battery->max_charge_power / 5);
|
|
}
|
|
if (battery->batt_full_capacity > 0 && battery->batt_full_capacity < 100) {
|
|
pr_info("%s: time to 85 percent\n", __func__);
|
|
battery->ttf_d->timetofull =
|
|
sec_calc_ttf(battery, charge) - sec_calc_ttf_to_full_capacity(battery, charge);
|
|
} else {
|
|
battery->ttf_d->timetofull = sec_calc_ttf(battery, charge);
|
|
}
|
|
dev_info(battery->dev, "%s: T: %5d sec, passed time: %5ld, current: %d\n",
|
|
__func__, battery->ttf_d->timetofull, battery->charging_passed_time, charge);
|
|
} else {
|
|
battery->ttf_d->timetofull = -1;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
int sec_ttf_parse_dt(struct sec_battery_info *battery)
|
|
{
|
|
struct device_node *np;
|
|
struct sec_ttf_data *pdata = battery->ttf_d;
|
|
sec_battery_platform_data_t *bpdata = battery->pdata;
|
|
int ret = 0, len = 0;
|
|
const u32 *p;
|
|
|
|
if (!battery->ttf_d)
|
|
return -ENODEV;
|
|
|
|
pdata->pdev = battery;
|
|
np = of_find_node_by_name(NULL, "battery");
|
|
if (!np) {
|
|
pr_info("%s: np NULL\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "battery,ttf_hv_12v_charge_current",
|
|
&pdata->ttf_hv_12v_charge_current);
|
|
if (ret) {
|
|
pdata->ttf_hv_12v_charge_current =
|
|
bpdata->charging_current[SEC_BATTERY_CABLE_12V_TA].fast_charging_current;
|
|
pr_info("%s: ttf_hv_12v_charge_current is Empty, Default value %d\n",
|
|
__func__, pdata->ttf_hv_12v_charge_current);
|
|
}
|
|
ret = of_property_read_u32(np, "battery,ttf_hv_charge_current",
|
|
&pdata->ttf_hv_charge_current);
|
|
if (ret) {
|
|
pdata->ttf_hv_charge_current =
|
|
bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current;
|
|
pr_info("%s: ttf_hv_charge_current is Empty, Default value %d\n",
|
|
__func__, pdata->ttf_hv_charge_current);
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "battery,ttf_hv_wireless_charge_current",
|
|
&pdata->ttf_hv_wireless_charge_current);
|
|
if (ret) {
|
|
pr_info("%s: ttf_hv_wireless_charge_current is Empty, Default value 0\n", __func__);
|
|
pdata->ttf_hv_wireless_charge_current =
|
|
bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS].fast_charging_current - 300;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "battery,ttf_hv_12v_wireless_charge_current",
|
|
&pdata->ttf_hv_12v_wireless_charge_current);
|
|
if (ret) {
|
|
pr_info("%s: ttf_hv_12v_wireless_charge_current is Empty, Default value 0\n", __func__);
|
|
pdata->ttf_hv_12v_wireless_charge_current =
|
|
bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS_20].fast_charging_current - 300;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "battery,ttf_wireless_charge_current",
|
|
&pdata->ttf_wireless_charge_current);
|
|
if (ret) {
|
|
pr_info("%s: ttf_wireless_charge_current is Empty, Default value 0\n", __func__);
|
|
pdata->ttf_wireless_charge_current =
|
|
bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit;
|
|
}
|
|
|
|
/* temporary dt setting */
|
|
ret = of_property_read_u32(np, "battery,ttf_predict_wc20_charge_current",
|
|
&pdata->ttf_predict_wc20_charge_current);
|
|
if (ret) {
|
|
pr_info("%s: ttf_predict_wc20_charge_current is Empty, Default value 0\n", __func__);
|
|
pdata->ttf_predict_wc20_charge_current =
|
|
bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "battery,ttf_dc25_charge_current",
|
|
&pdata->ttf_dc25_charge_current);
|
|
if (ret) {
|
|
pr_info("%s: ttf_dc25_charge_current is Empty, Default value 0\n", __func__);
|
|
pdata->ttf_dc25_charge_current =
|
|
bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "battery,ttf_dc45_charge_current",
|
|
&pdata->ttf_dc45_charge_current);
|
|
if (ret) {
|
|
pr_info("%s: ttf_dc45_charge_current is Empty, Default value 0\n", __func__);
|
|
pdata->ttf_dc45_charge_current = pdata->ttf_dc25_charge_current;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "battery,ttf_capacity",
|
|
&pdata->ttf_capacity);
|
|
if (ret < 0) {
|
|
pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret);
|
|
pdata->ttf_capacity = bpdata->battery_full_capacity;
|
|
}
|
|
|
|
p = of_get_property(np, "battery,cv_data", &len);
|
|
if (p) {
|
|
pdata->cv_data = kzalloc(len, GFP_KERNEL);
|
|
pdata->cv_data_length = len / sizeof(struct sec_cv_slope);
|
|
pr_err("%s: len= %ld, length= %d, %d\n", __func__,
|
|
sizeof(int) * len, len, pdata->cv_data_length);
|
|
ret = of_property_read_u32_array(np, "battery,cv_data",
|
|
(u32 *)pdata->cv_data, len / sizeof(u32));
|
|
if (ret) {
|
|
pr_err("%s: failed to read battery->cv_data: %d\n",
|
|
__func__, ret);
|
|
kfree(pdata->cv_data);
|
|
pdata->cv_data = NULL;
|
|
}
|
|
} else {
|
|
pr_err("%s: there is not cv_data\n", __func__);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void sec_bat_time_to_full_work(struct work_struct *work)
|
|
{
|
|
struct sec_ttf_data *dev = container_of(work,
|
|
struct sec_ttf_data, timetofull_work.work);
|
|
struct sec_battery_info *battery = dev->pdev;
|
|
union power_supply_propval value = {0, };
|
|
|
|
psy_do_property(battery->pdata->charger_name, get,
|
|
POWER_SUPPLY_PROP_CURRENT_MAX, value);
|
|
battery->current_max = value.intval;
|
|
|
|
value.intval = SEC_BATTERY_CURRENT_MA;
|
|
psy_do_property(battery->pdata->fuelgauge_name, get,
|
|
POWER_SUPPLY_PROP_CURRENT_NOW, value);
|
|
battery->current_now = value.intval;
|
|
|
|
value.intval = SEC_BATTERY_CURRENT_MA;
|
|
psy_do_property(battery->pdata->fuelgauge_name, get,
|
|
POWER_SUPPLY_PROP_CURRENT_AVG, value);
|
|
battery->current_avg = value.intval;
|
|
|
|
sec_bat_calc_time_to_full(battery);
|
|
dev_info(battery->dev, "%s:\n", __func__);
|
|
if (battery->voltage_now > 0)
|
|
battery->voltage_now--;
|
|
|
|
power_supply_changed(battery->psy_bat);
|
|
}
|
|
|
|
void ttf_work_start(struct sec_battery_info *battery)
|
|
{
|
|
if (!battery->ttf_d)
|
|
return;
|
|
|
|
if (lpcharge) {
|
|
cancel_delayed_work(&battery->ttf_d->timetofull_work);
|
|
if (battery->current_event & SEC_BAT_CURRENT_EVENT_AFC) {
|
|
int work_delay = 0;
|
|
|
|
if (!is_wireless_type(battery->cable_type))
|
|
work_delay = battery->pdata->pre_afc_work_delay;
|
|
else
|
|
work_delay = battery->pdata->pre_wc_afc_work_delay;
|
|
queue_delayed_work(battery->monitor_wqueue,
|
|
&battery->ttf_d->timetofull_work, msecs_to_jiffies(work_delay));
|
|
}
|
|
}
|
|
}
|
|
|
|
int ttf_display(struct sec_battery_info *battery)
|
|
{
|
|
if (battery->capacity == 100 || !battery->ttf_d)
|
|
return 0;
|
|
|
|
if (((battery->status == POWER_SUPPLY_STATUS_CHARGING) ||
|
|
(battery->status == POWER_SUPPLY_STATUS_FULL && battery->capacity != 100)) &&
|
|
!battery->swelling_mode && !(battery->current_event & SEC_BAT_CURRENT_EVENT_LOW_TEMP_SWELLING_2ND))
|
|
return battery->ttf_d->timetofull;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void ttf_init(struct sec_battery_info *battery)
|
|
{
|
|
battery->ttf_d = kzalloc(sizeof(struct sec_ttf_data),
|
|
GFP_KERNEL);
|
|
if (!battery->ttf_d) {
|
|
pr_err("Failed to allocate memory\n");
|
|
return;
|
|
}
|
|
sec_ttf_parse_dt(battery);
|
|
battery->ttf_d->timetofull = -1;
|
|
|
|
INIT_DELAYED_WORK(&battery->ttf_d->timetofull_work, sec_bat_time_to_full_work);
|
|
}
|
|
#else
|
|
int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr) { return -ENODEV; }
|
|
void sec_bat_calc_time_to_full(struct sec_battery_info *battery) { }
|
|
void sec_bat_time_to_full_work(struct work_struct *work) { }
|
|
void ttf_init(struct sec_battery_info *battery) { }
|
|
void ttf_work_start(struct sec_battery_info *battery) { }
|
|
int ttf_display(struct sec_battery_info *battery) { return 0; }
|
|
#ifdef CONFIG_OF
|
|
int sec_ttf_parse_dt(struct sec_battery_info *battery) { return -ENODEV; }
|
|
#endif
|
|
#endif
|
|
|