You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/battery_v2/s2mu107_fuelgauge.c

2629 lines
78 KiB

/*
* s2mu107_fuelgauge.c - S2MU107 Fuel Gauge Driver
*
* Copyright (C) 2019 Samsung Electronics, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#define DEBUG 1
#define SINGLE_BYTE 1
#define TABLE_SIZE 22
#include "include/fuelgauge/s2mu107_fuelgauge.h"
#include <linux/of_gpio.h>
static enum power_supply_property s2mu107_fuelgauge_props[] = {
};
static void s2mu107_init_regs(struct s2mu107_fuelgauge_data *fuelgauge);
static void s2mu107_init_temp_compen(struct s2mu107_fuelgauge_data *fuelgauge);
static void s2mu107_init_batcap_learn(struct s2mu107_fuelgauge_data *fuelgauge);
#if defined(CONFIG_CHARGER_S2MU107_DIRECT)
static void s2mu107_set_tperiod(struct s2mu107_fuelgauge_data *fuelgauge,
bool is_dc_charging);
static void s2mu107_init_for_direct_charge(struct s2mu107_fuelgauge_data *fuelgauge);
#endif
#if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM)
static void s2mu107_set_trim_10mohm(struct s2mu107_fuelgauge_data *fuelgauge);
#endif
static int s2mu107_get_vbat(struct s2mu107_fuelgauge_data *fuelgauge);
static int s2mu107_get_ocv(struct s2mu107_fuelgauge_data *fuelgauge);
static int s2mu107_get_current(struct s2mu107_fuelgauge_data *fuelgauge);
static int s2mu107_get_avgcurrent(struct s2mu107_fuelgauge_data *fuelgauge);
static int s2mu107_get_avgvbat(struct s2mu107_fuelgauge_data *fuelgauge);
static int s2mu107_read_reg_byte(struct i2c_client *client, int reg, void *data)
{
int ret = 0;
int cnt = 0;
ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0) {
while (ret < 0 && cnt < 5) {
ret = i2c_smbus_read_byte_data(client, reg);
cnt++;
dev_err(&client->dev,
"%s: I2C read Incorrect! reg:0x%x, data:0x%x, cnt:%d\n",
__func__, reg, *(u8 *)data, cnt);
}
if (cnt == 5)
dev_err(&client->dev,
"%s: I2C read Failed reg:0x%x, data:0x%x\n",
__func__, reg, *(u8 *)data);
}
*(u8 *)data = (u8)ret;
return ret;
}
/* I2C write enable for bulk write */
static int s2mu107_write_enable(struct i2c_client *client)
{
u8 data = 0;
int ret = 0;
int i;
ret = s2mu107_read_reg_byte(client, 0x03, &data);
data = data | IF_EN_MASK;
ret = i2c_smbus_write_byte_data(client, 0x03, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, 0x03, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
return ret;
}
/* I2C write disable for bulk write */
static int s2mu107_write_disable(struct i2c_client *client)
{
u8 data = 0;
int ret = 0;
int i;
ret = s2mu107_read_reg_byte(client, 0x03, &data);
data = data & ~IF_EN_MASK;
ret = i2c_smbus_write_byte_data(client, 0x03, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, 0x03, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
return ret;
}
static int s2mu107_write_and_verify_reg_byte(struct i2c_client *client, int reg, u8 data)
{
int ret, i = 0;
int i2c_corrupted_cnt = 0;
u8 temp = 0;
ret = s2mu107_write_enable(client);
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
/* TODO: Update non-writable registers */
if ((reg == 0xee) || (reg == 0xef) || (reg == 0xf2) || (reg == 0xf3) ||
(reg == 0x0C) || (reg == 0x1e) || (reg == 0x1f) || (reg == 0x27) ||
(reg == 0x8E) || (reg == 0x90)) {
ret = s2mu107_write_disable(client);
return ret;
}
s2mu107_read_reg_byte(client, reg, &temp);
while ((temp != data) && (i2c_corrupted_cnt < 5)) {
dev_err(&client->dev,
"%s: I2C write Incorrect! REG: 0x%x Expected: 0x%x Real-Value: 0x%x\n",
__func__, reg, data, temp);
ret = i2c_smbus_write_byte_data(client, reg, data);
s2mu107_read_reg_byte(client, reg, &temp);
i2c_corrupted_cnt++;
}
if (i2c_corrupted_cnt == 5)
dev_err(&client->dev,
"%s: I2C write failed REG: 0x%x Expected: 0x%x\n",
__func__, reg, data);
ret = s2mu107_write_disable(client);
return ret;
}
/* I2C Write & Verify for bulk write */
static int s2mu107_write_and_verify_reg_byte_no_en(struct i2c_client *client, int reg, u8 data)
{
int ret, i = 0;
int i2c_corrupted_cnt = 0;
u8 temp = 0;
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
/* TODO: Update non-writable registers */
if ((reg == 0xee) || (reg == 0xef) || (reg == 0xf2) || (reg == 0xf3) ||
(reg == 0x0C) || (reg == 0x1e) || (reg == 0x1f) || (reg == 0x27)) {
return ret;
}
s2mu107_read_reg_byte(client, reg, &temp);
while ((temp != data) && (i2c_corrupted_cnt < 5)) {
dev_err(&client->dev,
"%s: I2C write Incorrect! REG: 0x%x Expected: 0x%x Real-Value: 0x%x\n",
__func__, reg, data, temp);
ret = i2c_smbus_write_byte_data(client, reg, data);
s2mu107_read_reg_byte(client, reg, &temp);
i2c_corrupted_cnt++;
}
if (i2c_corrupted_cnt == 5)
dev_err(&client->dev,
"%s: I2C write failed REG: 0x%x Expected: 0x%x\n",
__func__, reg, data);
return ret;
}
static int s2mu107_update_reg_byte(struct i2c_client *client, int reg, u8 val, u8 mask)
{
int ret;
u8 old_val = 0, new_val = 0;
ret = s2mu107_read_reg_byte(client, reg, &old_val);
if (ret >= 0) {
new_val = (val & mask) | (old_val & (~mask));
ret = s2mu107_write_and_verify_reg_byte(client, reg, new_val);
}
return ret;
}
static int s2mu107_update_reg_byte_no_en(struct i2c_client *client, int reg, u8 val, u8 mask)
{
int ret;
u8 old_val = 0, new_val = 0;
ret = s2mu107_read_reg_byte(client, reg, &old_val);
if (ret >= 0) {
new_val = (val & mask) | (old_val & (~mask));
ret = s2mu107_write_and_verify_reg_byte_no_en(client, reg, new_val);
}
return ret;
}
#if 0
static int s2mu107_write_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret = 0;
s2mu107_write_enable(client);
s2mu107_write_and_verify_reg_byte_no_en(client, reg, buf[0]);
s2mu107_write_and_verify_reg_byte_no_en(client, reg+1, buf[1]);
s2mu107_write_disable(client);
#else
int ret, i = 0;
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
#endif
static int s2mu107_read_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret = 0;
u8 data1 = 0, data2 = 0;
s2mu107_read_reg_byte(client, reg, &data1);
s2mu107_read_reg_byte(client, reg+1, &data2);
buf[0] = data1;
buf[1] = data2;
#else
int ret = 0, i = 0;
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
static void s2mu107_fg_test_read(struct i2c_client *client)
{
static int reg_list[] = {
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0D,
0x0E, 0x0F, 0x10, 0x11, 0x14, 0x1A, 0x1B, 0x1E, 0x1F, 0x24,
0x25, 0x26, 0x27, 0x28, 0x29, 0x40, 0x41, 0x43, 0x44, 0x45,
0x46, 0x48, 0x4A, 0x4B, 0x50, 0x51, 0x52, 0x53, 0x58, 0x59,
0x5A, 0x5B, 0x5C, 0x67, 0x6B, 0x6D, 0x70, 0x71, 0x72, 0x73,
0x7A, 0x7B, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8E, 0x8F, 0x90, 0x91
};
u8 data = 0;
char str[1016] = {0,};
int i = 0, reg_list_size = 0;
reg_list_size = ARRAY_SIZE(reg_list);
for (i = 0; i < reg_list_size; i++) {
s2mu107_read_reg_byte(client, reg_list[i], &data);
sprintf(str+strlen(str), "0x%02x:0x%02x, ", reg_list[i], data);
}
/* print buffer */
pr_info("%s: %s\n", __func__, str);
}
static int check_current_level(struct s2mu107_fuelgauge_data *fuelgauge)
{
int ret_val = 500;
int temp = 0;
if (fuelgauge->cable_type == SEC_BATTERY_CABLE_USB) {
return ret_val;
}
/* topoff current * 1.6 except USB */
temp = fuelgauge->topoff_current * 16;
ret_val = temp / 10;
return ret_val;
}
static void s2mu107_restart_gauging(struct s2mu107_fuelgauge_data *fuelgauge)
{
/* TODO: Update reset sequence */
pr_info("%s: Re-calculate SOC and voltage\n", __func__);
mutex_lock(&fuelgauge->fg_lock);
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_START, 0x0F);
msleep(300);
mutex_unlock(&fuelgauge->fg_lock);
}
/* Need to lock/unlock start&end of reset */
static void s2mu107_reset_fg(struct s2mu107_fuelgauge_data *fuelgauge)
{
int i;
/* Enable I2C write for battery parameter write */
s2mu107_write_enable(fuelgauge->i2c);
#if defined(CONFIG_BATTERY_AGE_FORECAST)
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV + 1,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP_OCV_NEW_IN,
(fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0] | 0x01));
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP_OCV_NEW_IN + 1,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RDESIGN_CAP,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RDESIGN_CAP + 1,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP + 1,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x13,
fuelgauge->age_data_info[fuelgauge->fg_age_step].volt_mode_tunning);
#else
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP_OCV, fuelgauge->info.batcap[0]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP_OCV + 1, fuelgauge->info.batcap[1]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP_OCV_NEW_IN, (fuelgauge->info.batcap[0] | 0x01));
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP_OCV_NEW_IN + 1, fuelgauge->info.batcap[1]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RDESIGN_CAP, fuelgauge->info.batcap[0]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RDESIGN_CAP + 1, fuelgauge->info.batcap[1]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP, fuelgauge->info.batcap[2]);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_RBATCAP + 1, fuelgauge->info.batcap[3]);
#endif
/* After battery capacity update, set BATCAP_OCV_EN(0x0C[6]=1) */
s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x0C, 0x40, 0x40);
#if defined(CONFIG_BATTERY_AGE_FORECAST)
for(i = 0x92; i <= 0xe9; i++) {
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i,
fuelgauge->age_data_info[fuelgauge->fg_age_step].battery_table3[i - 0x92]);
}
for(i = 0xea; i <= 0xff; i++) {
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i,
fuelgauge->age_data_info[fuelgauge->fg_age_step].battery_table4[i - 0xea]);
}
#else
for (i = 0x92; i <= 0xe9; i++)
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i, fuelgauge->info.battery_table3[i - 0x92]);
for (i = 0xea; i <= 0xff; i++)
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i, fuelgauge->info.battery_table4[i - 0xea]);
#endif
#if defined(CONFIG_BATTERY_AGE_FORECAST)
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x44,
fuelgauge->age_data_info[fuelgauge->fg_age_step].accum[0]);
s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x45,
fuelgauge->age_data_info[fuelgauge->fg_age_step].accum[1], 0x0F);
#else
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x44, fuelgauge->info.accum[0]);
s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x45, fuelgauge->info.accum[1], 0x0F);
#endif
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x14, 0x67);
s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x4B, 0x00, 0x70);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x4A, 0x10);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x40, 0x08);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x41, 0x04);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x5C, 0x1A);
/* Dumpdone. Re-calculate SOC */
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START, 0x0F);
msleep(300);
/* If it was voltage mode, recover it */
if (fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) {
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x4A, 0xFF);
s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x4B, 0x70, 0x70);
}
s2mu107_write_disable(fuelgauge->i2c);
pr_info("%s: Reset FG completed\n", __func__);
}
static int s2mu107_fix_rawsoc_reset_fg(struct s2mu107_fuelgauge_data *fuelgauge)
{
int ret = 0, ui_soc = 0, f_soc = 0;
u8 data;
struct power_supply *psy;
union power_supply_propval value;
psy = power_supply_get_by_name("battery");
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
dev_info(&fuelgauge->i2c->dev, "%s: UI SOC = %d\n", __func__, value.intval);
ui_soc = value.intval;
f_soc = (ui_soc << 8) / 100;
if (f_soc > 0xFF)
f_soc = 0xFF;
f_soc |= 0x1;
data = (u8)f_soc;
/* Set rawsoc fix & enable */
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x29, data);
/* Parameter write */
s2mu107_reset_fg(fuelgauge);
/* Disable rawsoc fix */
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x29, 0x00);
dev_info(&fuelgauge->i2c->dev, "%s: Finish\n", __func__);
return ret;
}
/* Set model data version for next boot up initializing fuelgauge */
static void s2mu107_fg_reset_capacity_by_jig_connection(struct s2mu107_fuelgauge_data *fuelgauge)
{
/* TODO : model data version check */
u8 data = 0;
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_FG_ID, &data);
data &= 0xF0;
data |= 0x0F; //set model data version 0xF for next boot up initializing fuelgague
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_FG_ID, data);
}
static int s2mu107_set_temperature(struct s2mu107_fuelgauge_data *fuelgauge,
int temperature)
{
/* TODO: Add temperature setting code */
return temperature;
}
static int s2mu107_get_temperature(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int temperature = 0;
mutex_lock(&fuelgauge->fg_lock);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_AVGTEMP);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
temperature = -1 * ((~compliment & 0xFFFF) + 1);
} else {
temperature = compliment & 0x7FFF;
}
temperature = ((temperature * 100) >> 8)/10;
pr_info("%s: temperature (%d)\n", __func__, temperature);
return temperature;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -ERANGE;
}
static int s2mu107_fg_check_surge(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 por_state = 0;
u8 reg_1E = 0;
u8 reg_OTP_52 = 0, reg_OTP_53 = 0;
#if defined(CONFIG_CHARGER_S2MU107)
bool charging_enabled = false;
struct power_supply *psy;
union power_supply_propval value;
int ret;
#endif
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START, &reg_1E);
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, &por_state);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x52, &reg_OTP_52);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x53, &reg_OTP_53);
dev_err(&fuelgauge->i2c->dev, "%s: OTP 52(%02x) 53(%02x), current 52(%02x) 53(%02x), "
"0x1F(%02x), 0x1E(%02x)\n", __func__, fuelgauge->reg_OTP_52, fuelgauge->reg_OTP_53,
reg_OTP_52, reg_OTP_53, por_state, reg_1E);
#if defined(CONFIG_BATTERY_AGE_FORECAST)
if((((por_state != 0x00) || (reg_1E != 0x03)) && (fuelgauge->age_reset_status == 0)) ||
#else
if(((por_state != 0x00) || (reg_1E != 0x03)) ||
#endif
(fuelgauge->probe_done == true &&
(fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53))) {
#if defined(CONFIG_CHARGER_S2MU107)
/* check charging enable */
psy = power_supply_get_by_name(fuelgauge->pdata->charger_name);
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
charging_enabled = value.intval;
value.intval = SEC_BAT_CHG_MODE_CHARGING_OFF;
psy = power_supply_get_by_name(fuelgauge->pdata->charger_name);
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
#endif
mutex_lock(&fuelgauge->fg_lock);
if (fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53) {
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_START + 1, 0x40);
usleep_range(10000, 11000);
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_START + 1, 0x01);
msleep(50);
s2mu107_write_disable(fuelgauge->i2c);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x53, &reg_OTP_53);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x52, &reg_OTP_52);
dev_err(&fuelgauge->i2c->dev, "1st reset after %s: OTP 52(%02x) 53(%02x) "
"current 52(%02x) 53(%02x)\n", __func__,
fuelgauge->reg_OTP_52, fuelgauge->reg_OTP_53, reg_OTP_52, reg_OTP_53);
if (fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53) {
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_START + 1, 0x40);
usleep_range(10000, 11000);
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_START + 1, 0x01);
msleep(50);
s2mu107_write_disable(fuelgauge->i2c);
dev_err(&fuelgauge->i2c->dev, "%s : 2nd reset\n", __func__);
}
}
dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__);
/* If UI SOC is 0%, do not use raw SOC fix reset */
if(fuelgauge->ui_soc == 0)
s2mu107_reset_fg(fuelgauge);
else
s2mu107_fix_rawsoc_reset_fg(fuelgauge);
por_state = 0x00;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c,
S2MU107_REG_START + 1, por_state);
/* Need to do initial setting again, after IC reset */
s2mu107_init_regs(fuelgauge);
#if defined(CONFIG_FUELGAUGE_S2MU107_TEMP_COMPEN)
s2mu107_init_temp_compen(fuelgauge);
#endif
s2mu107_init_batcap_learn(fuelgauge);
#if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM)
s2mu107_set_trim_10mohm(fuelgauge);
#endif
#if defined(CONFIG_CHARGER_S2MU107_DIRECT)
s2mu107_init_for_direct_charge(fuelgauge);
#endif
mutex_unlock(&fuelgauge->fg_lock);
#if defined(CONFIG_CHARGER_S2MU107)
/* Recover charger status after f.g reset */
if (charging_enabled) {
value.intval = SEC_BAT_CHG_MODE_CHARGING;
psy = power_supply_get_by_name(fuelgauge->pdata->charger_name);
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
}
#endif
}
return 0;
}
static void s2mu107_fg_update_mode(struct s2mu107_fuelgauge_data *fuelgauge)
{
int float_voltage = 0;
#if defined(CONFIG_CHARGER_S2MU107)
struct power_supply *psy;
union power_supply_propval value;
int ret;
#endif
u8 reg_0x67;
#if defined(CONFIG_CHARGER_S2MU107)
psy = power_supply_get_by_name(fuelgauge->pdata->charger_name);
if (!psy)
float_voltage = 4350;
else {
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_VOLTAGE_MAX, &value);
if (ret < 0) {
pr_err("%s: Fail to execute property\n", __func__);
float_voltage = 4350;
} else
float_voltage = value.intval;
}
#else
float_voltage = 4350;
#endif
float_voltage = (float_voltage * 996) / 1000;
mutex_lock(&fuelgauge->fg_lock);
if ((fuelgauge->is_charging == true) &&
((fuelgauge->ui_soc >= 98) ||
((fuelgauge->avg_vbat > float_voltage) &&
(fuelgauge->avg_curr < check_current_level(fuelgauge))))) {
if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = HIGH_SOC_VOLTAGE_MODE;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x4B, 0x70, 0x70);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in high soc voltage mode\n", __func__);
}
} else if (fuelgauge->avg_curr < -50 || fuelgauge->avg_curr >= check_current_level(fuelgauge)) {
if (fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x4B, 0x00, 0x70);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &reg_0x67);
if ((fuelgauge->avg_vbat > 3400) && (fuelgauge->is_charging == true) &&
(fuelgauge->soc_m < 400) && ((reg_0x67 & 0x02) == 0x02)) {
s2mu107_update_reg_byte(fuelgauge->i2c, 0x67, 0x00, 0x02);
pr_info("%s: 0x67[1] = 0", __func__);
} else if ((fuelgauge->soc_m > 450) && ((reg_0x67 & 0x02) == 0x00)) {
s2mu107_update_reg_byte(fuelgauge->i2c, 0x67, 0x02, 0x02);
pr_info("%s: 0x67[1] = 1", __func__);
}
mutex_unlock(&fuelgauge->fg_lock);
}
static void s2mu107_fg_low_vbat_WA(struct s2mu107_fuelgauge_data *fuelgauge)
{
/* Low voltage W/A, make 0% */
if (fuelgauge->temperature > fuelgauge->low_temp_limit) {
if ((fuelgauge->avg_vbat < fuelgauge->low_vbat_threshold) &&
(fuelgauge->avg_curr < -50) && (fuelgauge->soc_m > 300)) {
dev_info(&fuelgauge->i2c->dev, "%s: Low voltage WA.\n", __func__);
mutex_lock(&fuelgauge->fg_lock);
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x29, 0x07);
/* Dumpdone. Re-calculate SOC */
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START, 0x0F);
msleep(300);
s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x29, 0x00, 0x01);
s2mu107_write_disable(fuelgauge->i2c);
mutex_unlock(&fuelgauge->fg_lock);
}
} else {
if ((fuelgauge->avg_vbat < fuelgauge->low_vbat_threshold_lowtemp) &&
(fuelgauge->avg_curr < -50) && (fuelgauge->info.soc > 100)) {
dev_info(&fuelgauge->i2c->dev, "%s: Low voltage WA. Make UI SOC 0\n", __func__);
/* Make report SOC 0% */
fuelgauge->info.soc = 0;
}
}
}
static int s2mu107_get_raw_soc(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2], check_data[2];
u16 compliment;
int rsoc = 0;
int i;
mutex_lock(&fuelgauge->fg_lock);
for (i = 0; i < 50; i++) {
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC, data) < 0)
goto err;
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC, check_data) < 0)
goto err;
if ((data[0] == check_data[0]) && (data[1] == check_data[1])) {
dev_dbg(&fuelgauge->i2c->dev,
"%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
break;
}
}
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
if (compliment & (0x1 << 15)) {
/* Negative */
rsoc = ((~compliment) & 0xFFFF) + 1;
rsoc = (rsoc * (-10000)) / (0x1 << 14);
} else {
rsoc = compliment & 0x7FFF;
rsoc = ((rsoc * 10000) / (0x1 << 14));
}
return rsoc;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu107_get_compen_soc(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2], check_data[2], temp = 0;
u16 compliment;
int soc_r = 0;
int i, ui_soc = 0;
int update_soc;
mutex_lock(&fuelgauge->fg_lock);
if (fuelgauge->init_start) {
s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data);
if (data[1] == 0) {
ui_soc = (data[1] << 8) | (data[0]);
if ((fuelgauge->temperature < fuelgauge->low_temp_limit) || ui_soc == 100) {
pr_info("%s: temperature is low or UI soc 100! use saved UI SOC(%d)"
" for mapping, data[1] = 0x%02x, data[0] = 0x%02x\n",
__func__, ui_soc, data[1], data[0]);
fuelgauge->ui_soc = ui_soc;
fuelgauge->capacity_old = ui_soc;
if (fuelgauge->temperature < fuelgauge->low_temp_limit)
fuelgauge->initial_update_of_soc = false;
s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp);
temp = temp | TEMP_COMPEN_INC_OK_EN;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp);
if (ui_soc == 100)
update_soc = 0xFFFF;
else
update_soc = (ui_soc * (0x1 << 16)) / 100;
/* WRITE_EN */
data[0] = (update_soc & 0x00FF) | 0x0001;
data[1] = (update_soc & 0xFF00) >> 8;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_I2C + 1, data[1]);
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_I2C, data[0]);
msleep(300);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp);
temp = temp & ~TEMP_COMPEN_INC_OK_EN;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp);
s2mu107_fg_test_read(fuelgauge->i2c);
}
}
}
for (i = 0; i < 50; i++) {
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R, data) < 0)
goto err;
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R, check_data) < 0)
goto err;
if ((data[0] == check_data[0]) && (data[1] == check_data[1])) {
dev_dbg(&fuelgauge->i2c->dev,
"%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
break;
}
}
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
if (compliment & (0x1 << 15)) {
/* Negative */
soc_r = ((~compliment) & 0xFFFF) + 1;
soc_r = (soc_r * (-10000)) / (0x1 << 14);
} else {
soc_r = compliment & 0x7FFF;
soc_r = ((soc_r * 10000) / (0x1 << 14));
}
if (fuelgauge->init_start) {
if (fuelgauge->temperature < fuelgauge->low_temp_limit) {
s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data);
if (data[1] != 0) {
fuelgauge->ui_soc = soc_r / 100;
fuelgauge->capacity_old = soc_r / 100;
fuelgauge->initial_update_of_soc = false;
}
}
}
fuelgauge->init_start = 0;
/* Save UI SOC for maintain SOC, after low temperature reset */
data[0] = fuelgauge->ui_soc;
data[1] = 0;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data[0]);
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE + 1, data[1]);
/* Print UI SOC & saved value for debugging */
s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data);
ui_soc = (data[1] << 8) | (data[0]);
pr_info("%s: saved UI SOC = %d, data[1] = 0x%02x, data[0] = 0x%02x\n",
__func__, ui_soc, data[1], data[0]);
return soc_r;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
#if DEBUG
#define S2MU107_REG_RSOCR 0x82
#define S2MU107_REG_RSOH 0x84
#define S2MU107_REG_RRM 0x8A
#define S2MU107_REG_RFCC 0x8C
static int s2mu107_get_socr(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int socr;
mutex_lock(&fuelgauge->fg_lock);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOCR, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
if (compliment & (0x1 << 15)) {
/* Negative */
socr = ((~compliment) & 0xFFFF) + 1;
socr = (socr * (-10000)) / (0x1 << 14);
} else {
socr = compliment & 0x7FFF;
socr = ((socr * 10000) / (0x1 << 14));
}
return socr;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu107_get_soh(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int soh;
mutex_lock(&fuelgauge->fg_lock);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOH, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
if (compliment & (0x1 << 15)) {
/* Negative */
soh = ((~compliment) & 0xFFFF) + 1;
soh = (soh * (-10000)) / (0x1 << 14);
} else {
soh = compliment & 0x7FFF;
soh = ((soh * 10000) / (0x1 << 14));
}
return soh;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu107_get_rm(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int rm;
mutex_lock(&fuelgauge->fg_lock);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RRM, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
rm = (compliment * 100) / (0x1 << 2);
return rm;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu107_get_fcc(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int fcc;
mutex_lock(&fuelgauge->fg_lock);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RFCC, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
fcc = (compliment * 100) / (0x1 << 2);
return fcc;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu107_get_cycle(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment, cycle;
mutex_lock(&fuelgauge->fg_lock);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_CYCLE);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0)
goto err;
compliment = (data[1] << 8) | (data[0]);
cycle = compliment;
mutex_unlock(&fuelgauge->fg_lock);
return cycle;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
#endif
static int s2mu107_get_soc(struct s2mu107_fuelgauge_data *fuelgauge)
{
int ret = 0;
struct power_supply *psy;
union power_supply_propval value;
s2mu107_fg_check_surge(fuelgauge);
/* Get UI SOC from battery driver */
psy = power_supply_get_by_name("battery");
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
fuelgauge->ui_soc = value.intval;
/* TODO: Need to add avoiding first 0 degree */
/* Get temperature from battery driver */
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
fuelgauge->temperature = value.intval;
/* Get raw SOC */
fuelgauge->soc_m = s2mu107_get_raw_soc(fuelgauge);
/* Get compensated SOC */
fuelgauge->soc_r = s2mu107_get_compen_soc(fuelgauge);
dev_info(&fuelgauge->i2c->dev, "%s: current_raw_soc (%d), current_compen_soc (%d), "
"previous_soc (%d), FG_mode(%s)\n",
__func__, fuelgauge->soc_m, fuelgauge->soc_r,
fuelgauge->info.soc, mode_to_str[fuelgauge->mode]);
#if defined(CONFIG_FUELGAUGE_S2MU107_TEMP_COMPEN)
fuelgauge->info.soc = fuelgauge->soc_r;
#else
fuelgauge->info.soc = fuelgauge->soc_m;
#endif
/* Collect other informations */
fuelgauge->avg_curr = s2mu107_get_avgcurrent(fuelgauge);
fuelgauge->avg_vbat = s2mu107_get_avgvbat(fuelgauge);
fuelgauge->vbat = s2mu107_get_vbat(fuelgauge);
fuelgauge->curr = s2mu107_get_current(fuelgauge);
/* Fuel guage mode control */
s2mu107_fg_update_mode(fuelgauge);
#if DEBUG
/* TODO: Print information */
fuelgauge->socr = s2mu107_get_socr(fuelgauge);
fuelgauge->soh = s2mu107_get_soh(fuelgauge);
fuelgauge->rm = s2mu107_get_rm(fuelgauge);
fuelgauge->fcc = s2mu107_get_fcc(fuelgauge);
fuelgauge->cycle = s2mu107_get_cycle(fuelgauge);
pr_info("%s: avg_curr = %d, curr = %d, avg_vbat = %d, vbat = %d, "
"socr = %d, soh = %d, rm = %d, fcc = %d, cycle = %d, IC temp = %d, batt temp = %d\n",
__func__, fuelgauge->avg_curr, fuelgauge->curr, fuelgauge->avg_vbat, fuelgauge->vbat,
fuelgauge->socr, fuelgauge->soh, fuelgauge->rm, fuelgauge->fcc, fuelgauge->cycle,
s2mu107_get_temperature(fuelgauge), fuelgauge->temperature);
#endif
s2mu107_fg_low_vbat_WA(fuelgauge);
s2mu107_fg_test_read(fuelgauge->i2c);
return min(fuelgauge->info.soc, 10000);
}
static int s2mu107_get_current(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RCUR_CC, data) < 0)
return -EINVAL;
compliment = (data[1] << 8) | (data[0]);
dev_dbg(&fuelgauge->i2c->dev, "%s: rCUR_CC(0x%4x)\n", __func__, compliment);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 11;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 11;
}
dev_info(&fuelgauge->i2c->dev, "%s: current (%d)mA\n", __func__, curr);
return curr;
}
static int s2mu107_get_ocv(struct s2mu107_fuelgauge_data *fuelgauge)
{
int *soc_arr;
int *ocv_arr;
int soc = fuelgauge->info.soc;
int ocv = 0;
int high_index = TABLE_SIZE - 1;
int low_index = 0;
int mid_index = 0;
#if defined(CONFIG_BATTERY_AGE_FORECAST)
soc_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].soc_arr_val;
ocv_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].ocv_arr_val;
#else
soc_arr = fuelgauge->info.soc_arr_val;
ocv_arr = fuelgauge->info.ocv_arr_val;
#endif
dev_err(&fuelgauge->i2c->dev,
"%s: soc (%d) soc_arr[TABLE_SIZE-1] (%d) ocv_arr[TABLE_SIZE-1) (%d)\n",
__func__, soc, soc_arr[TABLE_SIZE-1], ocv_arr[TABLE_SIZE-1]);
if (soc <= soc_arr[TABLE_SIZE - 1]) {
ocv = ocv_arr[TABLE_SIZE - 1];
goto ocv_soc_mapping;
} else if (soc >= soc_arr[0]) {
ocv = ocv_arr[0];
goto ocv_soc_mapping;
}
while (low_index <= high_index) {
mid_index = (low_index + high_index) >> 1;
if (soc_arr[mid_index] > soc)
low_index = mid_index + 1;
else if (soc_arr[mid_index] < soc)
high_index = mid_index - 1;
else {
ocv = ocv_arr[mid_index];
goto ocv_soc_mapping;
}
}
if ((high_index >= 0 && high_index < TABLE_SIZE) &&
(low_index >= 0 && low_index < TABLE_SIZE)) {
ocv = ocv_arr[high_index];
ocv += ((ocv_arr[low_index] - ocv_arr[high_index]) *
(soc - soc_arr[high_index])) /
(soc_arr[low_index] - soc_arr[high_index]);
}
ocv_soc_mapping:
dev_info(&fuelgauge->i2c->dev, "%s: soc (%d), ocv (%d)\n", __func__, soc, ocv);
return ocv;
}
static int s2mu107_get_avgcurrent(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
mutex_lock(&fuelgauge->fg_lock);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_AVGCURR);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
dev_dbg(&fuelgauge->i2c->dev, "%s: MONOUT(0x%4x)\n", __func__, compliment);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 11;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 11;
}
dev_info(&fuelgauge->i2c->dev, "%s: avg current (%d)mA\n", __func__, curr);
return curr;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu107_maintain_avgcurrent(
struct s2mu107_fuelgauge_data *fuelgauge)
{
static int cnt;
int vcell = 0;
int curr = 0;
curr = s2mu107_get_avgcurrent(fuelgauge);
vcell = s2mu107_get_vbat(fuelgauge);
if ((cnt < 10) && (curr < 0) && (fuelgauge->is_charging) &&
(vcell < 3500)) {
curr = 1;
cnt++;
dev_info(&fuelgauge->i2c->dev, "%s: vcell (%d)mV, modified avg current (%d)mA\n",
__func__, vcell, curr);
}
return curr;
}
static int s2mu107_get_vbat(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 vbat = 0;
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RVBAT, data) < 0)
return -EINVAL;
dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d)\n",
__func__, data[0], data[1]);
vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13;
dev_info(&fuelgauge->i2c->dev, "%s: vbat (%d)\n", __func__, vbat);
return vbat;
}
static int s2mu107_get_avgvbat(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment, avg_vbat;
mutex_lock(&fuelgauge->fg_lock);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_AVGVBAT);
if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
avg_vbat = (compliment * 1000) >> 12;
dev_info(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, avg_vbat);
return avg_vbat;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static void s2mu107_fuelalert_init(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 data;
fuelgauge->is_fuel_alerted = false;
mutex_lock(&fuelgauge->fg_lock);
/* VBAT Threshold setting: 3.55V */
data = (fuelgauge->pdata->fuel_alert_soc << 4) | 0x0F;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_ALERT_LVL, data);
/* VBAT, SOC IRQ enable */
s2mu107_update_reg_byte(fuelgauge->i2c, S2MU107_REG_IRQ_M, 0x00, 0x03);
mutex_unlock(&fuelgauge->fg_lock);
pr_info("%s: irq_reg(%02x) irq(%d)\n",
__func__, data, fuelgauge->pdata->fg_irq);
}
static void s2mu107_fg_isr_work(struct work_struct *work)
{
struct s2mu107_fuelgauge_data *fuelgauge =
container_of(work, struct s2mu107_fuelgauge_data, isr_work.work);
u8 fg_alert_status = 0;
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_STATUS, &fg_alert_status);
dev_info(&fuelgauge->i2c->dev, "%s : fg_alert_status(0x%x)\n",
__func__, fg_alert_status);
fg_alert_status &= 0x03;
if (fg_alert_status & 0x01)
pr_info("%s : Battery Level(SOC) is very Low!\n", __func__);
if (fg_alert_status & 0x02) {
int voltage = s2mu107_get_vbat(fuelgauge);
pr_info("%s : Battery Votage is very Low! (%dmV)\n",
__func__, voltage);
}
if (!fg_alert_status) {
fuelgauge->is_fuel_alerted = false;
pr_info("%s : SOC or Voltage is Good!\n", __func__);
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
}
}
static irqreturn_t s2mu107_fg_irq_thread(int irq, void *irq_data)
{
struct s2mu107_fuelgauge_data *fuelgauge = irq_data;
u8 fg_irq = 0;
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_IRQ, &fg_irq);
dev_info(&fuelgauge->i2c->dev, "%s: fg_irq(0x%x)\n",
__func__, fg_irq);
if (fuelgauge->is_fuel_alerted) {
return IRQ_HANDLED;
} else {
wake_lock(&fuelgauge->fuel_alert_wake_lock);
fuelgauge->is_fuel_alerted = true;
schedule_delayed_work(&fuelgauge->isr_work, 0);
}
return IRQ_HANDLED;
}
#if defined(CONFIG_BATTERY_AGE_FORECAST)
static int s2mu107_fg_aging_check(
struct s2mu107_fuelgauge_data *fuelgauge, int step)
{
u8 batcap0 = 0, batcap1 = 0, batcap2 = 0, batcap3 = 0;
u8 por_state = 0;
union power_supply_propval value;
int charging_enabled = false;
fuelgauge->fg_age_step = step;
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV, &batcap0);
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV + 1, &batcap1);
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP, &batcap2);
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP + 1, &batcap3);
pr_info("%s: [Long life] orig. batcap : %02x, %02x, %02x, %02x , fg_age_step data : %02x, %02x, %02x, %02x \n",
__func__, batcap0, batcap1, batcap2, batcap3,
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0],
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1],
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2],
fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3]);
if ((batcap0 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]) ||
(batcap1 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]) ||
(batcap2 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2]) ||
(batcap3 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3])) {
pr_info("%s: [Long life] reset gauge for age forecast , step[%d] \n", __func__, fuelgauge->fg_age_step);
mutex_lock(&fuelgauge->fg_lock);
fuelgauge->age_reset_status = 1;
por_state |= 0x10;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c,
S2MU107_REG_START + 1, por_state);
/* check charging enable */
psy_do_property(fuelgauge->pdata->charger_name, get,
POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
charging_enabled = value.intval;
if (charging_enabled == true) {
pr_info("%s: [Long life] disable charger for reset gauge age forecast \n",
__func__);
value.intval = SEC_BAT_CHG_MODE_CHARGING_OFF;
psy_do_property(fuelgauge->pdata->charger_name, set,
POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
}
s2mu107_reset_fg(fuelgauge);
if (charging_enabled == true) {
psy_do_property("battery", get, POWER_SUPPLY_PROP_STATUS, value);
charging_enabled = value.intval;
if (charging_enabled == 1) { /* POWER_SUPPLY_STATUS_CHARGING 1 */
pr_info("%s: [Long life] enable charger for reset gauge age forecast \n",
__func__);
value.intval = SEC_BAT_CHG_MODE_CHARGING;
psy_do_property(fuelgauge->pdata->charger_name,
set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
}
}
por_state &= ~0x10;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c,
S2MU107_REG_START + 1, por_state);
fuelgauge->age_reset_status = 0;
mutex_unlock(&fuelgauge->fg_lock);
return 1;
}
return 0;
}
#endif
/* capacity is 0.1% unit */
static void s2mu107_fg_get_scaled_capacity(
struct s2mu107_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
int rawsoc = val->intval;
val->intval = (val->intval < fuelgauge->pdata->capacity_min) ?
0 : ((val->intval - fuelgauge->pdata->capacity_min) * 1000 /
(fuelgauge->capacity_max - fuelgauge->pdata->capacity_min));
dev_info(&fuelgauge->i2c->dev,
"%s: capacity_max(%d) scaled capacity(%d.%d), raw_soc(%d.%d)\n",
__func__, fuelgauge->capacity_max,
val->intval/10, val->intval%10, rawsoc/10, rawsoc%10);
}
/* capacity is integer */
static void s2mu107_fg_get_atomic_capacity(
struct s2mu107_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC) {
if (fuelgauge->capacity_old < val->intval)
val->intval = fuelgauge->ui_soc + 1;
else if (fuelgauge->capacity_old > val->intval)
val->intval = fuelgauge->ui_soc - 1;
}
/* keep SOC stable in abnormal status */
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL) {
if (!fuelgauge->is_charging &&
fuelgauge->capacity_old < val->intval) {
dev_err(&fuelgauge->i2c->dev,
"%s: capacity (old %d : new %d, ui_soc %d)\n",
__func__, fuelgauge->capacity_old, val->intval, fuelgauge->ui_soc);
val->intval = fuelgauge->ui_soc;
}
}
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
}
static int s2mu107_fg_check_capacity_max(
struct s2mu107_fuelgauge_data *fuelgauge, int capacity_max)
{
int new_capacity_max = capacity_max;
if (new_capacity_max < (fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin - 10)) {
new_capacity_max =
(fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin);
dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n",
__func__, capacity_max, new_capacity_max);
} else if (new_capacity_max > (fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin)) {
new_capacity_max =
(fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin);
dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n",
__func__, capacity_max, new_capacity_max);
}
return new_capacity_max;
}
static int s2mu107_fg_calculate_dynamic_scale(
struct s2mu107_fuelgauge_data *fuelgauge, int capacity, bool scale_by_full)
{
union power_supply_propval raw_soc_val;
raw_soc_val.intval = s2mu107_get_soc(fuelgauge) / 10;
if (raw_soc_val.intval <
fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin) {
pr_info("%s: raw soc(%d) is very low, skip routine\n",
__func__, raw_soc_val.intval);
} else if (fuelgauge->capacity_max_conv) {
pr_info("%s: skip dynamic scale routine\n", __func__);
} else {
fuelgauge->capacity_max =
(raw_soc_val.intval * 100 / (capacity + 1));
fuelgauge->capacity_old = capacity;
fuelgauge->capacity_max =
s2mu107_fg_check_capacity_max(fuelgauge,
fuelgauge->capacity_max);
pr_info("%s: %d is used for capacity_max, capacity(%d)\n",
__func__, fuelgauge->capacity_max, capacity);
if ((capacity == 100) && !fuelgauge->capacity_max_conv && scale_by_full) {
fuelgauge->capacity_max_conv = true;
fuelgauge->g_capacity_max = raw_soc_val.intval;
pr_info("%s: Goal capacity max %d\n", __func__, fuelgauge->g_capacity_max);
}
}
return fuelgauge->capacity_max;
}
static int s2mu107_fg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct s2mu107_fuelgauge_data *fuelgauge =
power_supply_get_drvdata(psy);
static struct timespec old_ts = {0, };
struct timespec c_ts = {0, };
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CHARGE_FULL:
return -ENODATA;
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
val->intval = fuelgauge->pdata->capacity_full * fuelgauge->raw_capacity;
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
switch (val->intval) {
case SEC_BATTERY_CAPACITY_DESIGNED:
val->intval = fuelgauge->pdata->capacity_full;
break;
case SEC_BATTERY_CAPACITY_ABSOLUTE:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_TEMPERARY:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_CURRENT:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_AGEDCELL:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_CYCLE:
val->intval = 0;
break;
case SEC_BATTERY_CAPACITY_FULL:
val->intval = fuelgauge->pdata->capacity_full;
break;
}
break;
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = s2mu107_get_vbat(fuelgauge);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case SEC_BATTERY_VOLTAGE_AVERAGE:
val->intval = s2mu107_get_avgvbat(fuelgauge);
break;
case SEC_BATTERY_VOLTAGE_OCV:
val->intval = s2mu107_get_ocv(fuelgauge);
break;
}
break;
/* Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_NOW:
if (val->intval == SEC_BATTERY_CURRENT_UA)
val->intval = s2mu107_get_current(fuelgauge) * 1000;
else
val->intval = s2mu107_get_current(fuelgauge);
break;
/* Average Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_AVG:
if (val->intval == SEC_BATTERY_CURRENT_UA)
val->intval = s2mu107_maintain_avgcurrent(fuelgauge) * 1000;
else
val->intval = s2mu107_maintain_avgcurrent(fuelgauge);
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) {
val->intval = s2mu107_get_soc(fuelgauge);
}
else {
val->intval = s2mu107_get_soc(fuelgauge) / 10;
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_SCALE |
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE)) {
if (fuelgauge->capacity_max_conv) {
c_ts = ktime_to_timespec(ktime_get_boottime());
pr_info("%s : capacit max conv time(%ld)\n", __func__, c_ts.tv_sec - old_ts.tv_sec);
if ((fuelgauge->capacity_max < fuelgauge->g_capacity_max) &&
((unsigned long)(c_ts.tv_sec - old_ts.tv_sec) >= 60)) {
fuelgauge->capacity_max++;
old_ts = c_ts;
} else if (fuelgauge->capacity_max >= fuelgauge->g_capacity_max) {
fuelgauge->g_capacity_max = 0;
fuelgauge->capacity_max_conv = false;
}
pr_info("%s : capacity_max_conv(%d) Capacity Max(%d | %d)\n",
__func__, fuelgauge->capacity_max_conv,
fuelgauge->capacity_max, fuelgauge->g_capacity_max);
}
s2mu107_fg_get_scaled_capacity(fuelgauge, val);
if (val->intval > 1010) {
pr_info("%s : scaled capacity (%d)\n", __func__, val->intval);
s2mu107_fg_calculate_dynamic_scale(fuelgauge, 100, false);
}
}
/* capacity should be between 0% and 100%
* (0.1% degree)
*/
if (val->intval > 1000)
val->intval = 1000;
if (val->intval < 0)
val->intval = 0;
fuelgauge->raw_capacity = val->intval;
/* get only integer part */
val->intval /= 10;
/* check whether doing the wake_unlock */
if ((val->intval > fuelgauge->pdata->fuel_alert_soc) &&
fuelgauge->is_fuel_alerted) {
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
s2mu107_fuelalert_init(fuelgauge);
}
/* (Only for atomic capacity)
* In initial time, capacity_old is 0.
* and in resume from sleep,
* capacity_old is too different from actual soc.
* should update capacity_old
* by val->intval in booting or resume.
*/
if (fuelgauge->initial_update_of_soc &&
(fuelgauge->temperature > fuelgauge->low_temp_limit)) {
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
fuelgauge->initial_update_of_soc = false;
break;
}
if (fuelgauge->sleep_initial_update_of_soc) {
/* updated old capacity in case of resume */
if (fuelgauge->is_charging) {
fuelgauge->capacity_old = val->intval;
fuelgauge->sleep_initial_update_of_soc = false;
break;
} else if ((!fuelgauge->is_charging) &&
(fuelgauge->capacity_old >= val->intval)) {
fuelgauge->capacity_old = val->intval;
fuelgauge->sleep_initial_update_of_soc = false;
break;
}
}
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC |
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL))
s2mu107_fg_get_atomic_capacity(fuelgauge, val);
}
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = s2mu107_get_temperature(fuelgauge);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL:
fuelgauge->soh = s2mu107_get_soh(fuelgauge);
val->intval = fuelgauge->soh / 100;
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
val->intval = fuelgauge->capacity_max;
break;
case POWER_SUPPLY_PROP_SCOPE:
val->intval = fuelgauge->mode;
break;
case POWER_SUPPLY_PROP_SOH:
fuelgauge->soh = s2mu107_get_soh(fuelgauge);
val->intval = fuelgauge->soh;
break;
default:
return -EINVAL;
}
return 0;
}
static int s2mu107_fg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct s2mu107_fuelgauge_data *fuelgauge =
power_supply_get_drvdata(psy);
enum power_supply_ext_property ext_psp = (enum power_supply_ext_property) psp;
u8 temp = 0;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
#if defined(CONFIG_BATTERY_AGE_FORECAST)
if (val->intval == POWER_SUPPLY_STATUS_FULL)
s2mu107_fg_aging_check(fuelgauge, fuelgauge->change_step);
#endif
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE) {
s2mu107_fg_calculate_dynamic_scale(fuelgauge, val->intval, true);
}
break;
case POWER_SUPPLY_PROP_ONLINE:
fuelgauge->cable_type = val->intval;
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
if (val->intval == SEC_BAT_CHG_MODE_CHARGING)
fuelgauge->is_charging = true;
else
fuelgauge->is_charging = false;
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) {
s2mu107_restart_gauging(fuelgauge);
fuelgauge->initial_update_of_soc = true;
}
break;
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
s2mu107_set_temperature(fuelgauge, val->intval);
fuelgauge->init_battery_temp = true;
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
s2mu107_fg_reset_capacity_by_jig_connection(fuelgauge);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
dev_info(&fuelgauge->i2c->dev,
"%s: capacity_max changed, %d -> %d\n",
__func__, fuelgauge->capacity_max, val->intval);
fuelgauge->capacity_max = s2mu107_fg_check_capacity_max(fuelgauge, val->intval);
fuelgauge->initial_update_of_soc = true;
break;
case POWER_SUPPLY_PROP_CHARGE_EMPTY:
break;
case POWER_SUPPLY_PROP_ENERGY_AVG:
break;
case POWER_SUPPLY_PROP_CURRENT_FULL:
fuelgauge->topoff_current = val->intval;
break;
#if defined(CONFIG_CHARGER_S2MU107_DIRECT)
case POWER_SUPPLY_PROP_FAST_IAVG:
fuelgauge->is_dc_charging = val->intval;
s2mu107_set_tperiod(fuelgauge, fuelgauge->is_dc_charging);
break;
#endif
case POWER_SUPPLY_PROP_MAX ... POWER_SUPPLY_EXT_PROP_MAX:
switch (ext_psp) {
case POWER_SUPPLY_EXT_PROP_INBAT_VOLTAGE_FGSRC_SWITCHING:
if ((val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_ON) ||
(val->intval == SEC_BAT_FGSRC_SWITCHING_ON)) {
/* Get Battery voltage (by I2C control) */
s2mu107_update_reg_byte(fuelgauge->i2c, 0x25, 0x10, 0x30);
msleep(1000);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x25, &temp);
pr_info("%s: SW Vbat: fgsrc_switching_on: REG25:0x%02x, 0x25[5:4]=0x%x\n",
__func__, temp, (temp & 0x30) >> 4);
if (val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_ON)
s2mu107_restart_gauging(fuelgauge);
s2mu107_fg_reset_capacity_by_jig_connection(fuelgauge);
s2mu107_fg_test_read(fuelgauge->i2c);
} else if ((val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_OFF) ||
(val->intval == SEC_BAT_FGSRC_SWITCHING_OFF)) {
s2mu107_update_reg_byte(fuelgauge->i2c, 0x25, 0x30, 0x30);
msleep(1000);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x25, &temp);
pr_info("%s: SW Vsys: fgsrc_switching_off: REG25:0x%02x, 0x25[5:4]=0x%x\n",
__func__, temp, (temp & 0x30) >> 4);
if (val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_OFF)
s2mu107_restart_gauging(fuelgauge);
s2mu107_fg_test_read(fuelgauge->i2c);
}
break;
case POWER_SUPPLY_EXT_PROP_FUELGAUGE_FACTORY:
pr_info("%s:[DEBUG_FAC] fuelgauge\n", __func__);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x25, 0x30, 0x30);
s2mu107_fg_reset_capacity_by_jig_connection(fuelgauge);
break;
#if defined(CONFIG_BATTERY_AGE_FORECAST)
case POWER_SUPPLY_EXT_PROP_UPDATE_BATTERY_DATA:
fuelgauge->change_step = val->intval;
break;
#endif
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
static void s2mu107_init_regs(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 temp = 0;
pr_info("%s: s2mu107 fuelgauge initialize\n", __func__);
/* Save register values for surge check */
s2mu107_read_reg_byte(fuelgauge->i2c, 0x53, &temp);
fuelgauge->reg_OTP_53 = temp;
s2mu107_read_reg_byte(fuelgauge->i2c, 0x52, &temp);
fuelgauge->reg_OTP_52 = temp;
/* Disable VM3_flag_EN */
s2mu107_update_reg_byte(fuelgauge->i2c, S2MU107_REG_VM, 0x00, 0x04);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x0D, 0x00, ADC_AVCC_EN_MASK);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x29, 0x00, 0x01);
}
static void s2mu107_init_temp_compen(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 temp = 0;
pr_info("%s: s2mu107 temperature compensation init\n", __func__);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp);
if (fuelgauge->pdata->inc_ok_en)
temp = temp | TEMP_COMPEN_INC_OK_EN;
else
temp = temp & ~TEMP_COMPEN_INC_OK_EN;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp);
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RCOMPI,
(u8)fuelgauge->pdata->comp_i);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RA0,
(u8)fuelgauge->pdata->a0);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RB0,
(u8)fuelgauge->pdata->b0);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RA1,
(u8)fuelgauge->pdata->a1);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RB1,
(u8)fuelgauge->pdata->b1);
s2mu107_write_disable(fuelgauge->i2c);
}
static void s2mu107_init_batcap_learn(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 temp = 0;
#if defined(CONFIG_FUELGAUGE_S2MU107_BATCAP_LRN)
pr_info("%s: s2mu107 battery capacity learning init\n",
__func__);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp);
if (fuelgauge->pdata->fast_lrn_en)
temp = temp | BATCAP_LEARN_FAST_LRN_EN;
else
temp = temp & ~BATCAP_LEARN_FAST_LRN_EN;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x6B, &temp);
temp = temp |
((fuelgauge->pdata->no4learn << 4) & BATCAP_LEARN_NO4LEARN_MASK);
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x6B, temp);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x6D, &temp);
if (fuelgauge->pdata->auto_lrn_en)
temp = temp | BATCAP_LEARN_AUTO_LRN_EN;
else
temp = temp & ~BATCAP_LEARN_AUTO_LRN_EN;
if (fuelgauge->pdata->wide_lrn_en)
temp = temp | BATCAP_LEARN_WIDE_LRN_EN;
else
temp = temp & ~BATCAP_LEARN_WIDE_LRN_EN;
if (fuelgauge->pdata->low_en)
temp = temp | BATCAP_LEARN_LOW_EN;
else
temp = temp & ~BATCAP_LEARN_LOW_EN;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x6D, temp);
temp = (fuelgauge->pdata->c1_num & BATCAP_LEARN_C1_NUM_MASK) |
((fuelgauge->pdata->c2_num << 2) & BATCAP_LEARN_C2_NUM_MASK) |
((fuelgauge->pdata->c1_curr << 4) & BATCAP_LEARN_C1_CURR_MASK);
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x46, temp);
#else
pr_info("%s: battery capacity learning is not enabled. Disable.\n",
__func__);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x6D, &temp);
temp = temp & ~BATCAP_LEARN_AUTO_LRN_EN;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x6D, temp);
#endif
}
#if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM)
static void s2mu107_set_trim_10mohm(struct s2mu107_fuelgauge_data *fuelgauge)
{
u8 temp_58, temp_59, temp_5a, temp_5b;
u32 cslope = 0, coffset = 0;
s2mu107_read_reg_byte(fuelgauge->i2c, 0x58, &temp_58);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x59, &temp_59);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x5A, &temp_5a);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x5B, &temp_5b);
cslope = ((temp_5b & 0xF0) << 12) | (temp_59 << 8) | temp_58;
coffset = ((temp_5b & 0x0F) << 8) | temp_5a;
pr_info("%s: before cslope = 0x%x, coffset = 0x%x", __func__,
cslope, coffset);
cslope = (cslope ^ 0xFFFFF) + 1;
cslope = cslope / 2;
cslope = (cslope ^ 0xFFFFF) + 1;
if (coffset & (1 << 11)) {
coffset = (coffset ^ 0xFFF) + 1;
coffset = coffset / 2;
coffset = (coffset ^ 0xFFF) + 1;
} else {
coffset = coffset / 2;
}
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
0x58, (cslope & 0xFF));
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
0x59, (cslope & 0xFF00) >> 8);
s2mu107_update_reg_byte_no_en(fuelgauge->i2c,
0x5B, (cslope & 0xF0000) >> 12, 0xF0);
s2mu107_update_reg_byte_no_en(fuelgauge->i2c,
0x5B, (coffset & 0xF00) >> 8, 0x0F);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
0x5A, (coffset & 0xFF));
s2mu107_write_disable(fuelgauge->i2c);
/* Check written value */
s2mu107_read_reg_byte(fuelgauge->i2c, 0x58, &temp_58);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x59, &temp_59);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x5A, &temp_5a);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x5B, &temp_5b);
cslope = ((temp_5b & 0xF0) << 12) | (temp_59 << 8) | temp_58;
coffset = ((temp_5b & 0x0F) << 8) | temp_5a;
pr_info("%s: after cslope = 0x%x, coffset = 0x%x", __func__,
cslope, coffset);
}
#endif
#if defined(CONFIG_CHARGER_S2MU107_DIRECT)
static void s2mu107_set_tperiod(struct s2mu107_fuelgauge_data *fuelgauge, bool is_dc_charging)
{
if (is_dc_charging == true) {
/* Set refresh period, 250ms -> 63ms */
pr_info("%s: dc charging. Decrease Tperiod\n", __func__);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x45,
T_PERIOD_63MS << T_PEROID_SHIFT, T_PERIOD_MASK);
} else {
pr_info("%s: Recover Tperiod\n", __func__);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x45,
T_PERIOD_250MS << T_PEROID_SHIFT, T_PERIOD_MASK);
}
}
static void s2mu107_init_for_direct_charge(struct s2mu107_fuelgauge_data *fuelgauge)
{
pr_info("%s: s2mu107 fuelgauge init for direct charge\n",
__func__);
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c,
0x7A, 0xB3);
}
#endif
#ifdef CONFIG_OF
static int s2mu107_fuelgauge_parse_dt(struct s2mu107_fuelgauge_data *fuelgauge)
{
struct device_node *np = of_find_node_by_name(NULL, "s2mu107-fuelgauge");
int ret;
#if defined(CONFIG_BATTERY_AGE_FORECAST)
int len, i;
#endif
/* reset, irq gpio info */
if (np == NULL) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_string(np,
"fuelgauge,charger_name",
(char const **)&fuelgauge->pdata->charger_name);
if (ret < 0) {
fuelgauge->pdata->charger_name = "s2mu107-switching-charger";
pr_info("%s: Charger name is Empty. Use default charger name %s\n",
__func__, fuelgauge->pdata->charger_name);
}
fuelgauge->pdata->fg_irq = of_get_named_gpio(np, "fuelgauge,fuel_int", 0);
if (fuelgauge->pdata->fg_irq < 0)
pr_err("%s error reading fg_irq = %d\n",
__func__, fuelgauge->pdata->fg_irq);
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_vol",
&fuelgauge->pdata->fuel_alert_vol);
if (ret < 0) {
fuelgauge->pdata->fuel_alert_vol = 3300;
pr_err("%s Default value of fuel_alert_vol : %d\n",
__func__, fuelgauge->pdata->fuel_alert_vol);
}
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc",
&fuelgauge->pdata->fuel_alert_soc);
if (ret < 0)
pr_err("%s error reading pdata->fuel_alert_soc %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_max",
&fuelgauge->pdata->capacity_max);
if (ret < 0)
pr_err("%s error reading capacity_max %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin",
&fuelgauge->pdata->capacity_max_margin);
if (ret < 0)
pr_err("%s error reading capacity_max_margin %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_min",
&fuelgauge->pdata->capacity_min);
if (ret < 0)
pr_err("%s error reading capacity_min %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_calculation_type",
&fuelgauge->pdata->capacity_calculation_type);
if (ret < 0)
pr_err("%s error reading capacity_calculation_type %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_full",
&fuelgauge->pdata->capacity_full);
if (ret < 0)
pr_err("%s error reading pdata->capacity_full %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,low_temp_limit",
&fuelgauge->low_temp_limit);
if (ret < 0) {
pr_err("%s There is no low temperature limit. Use default(100)\n",
__func__);
fuelgauge->low_temp_limit = 100;
}
ret = of_property_read_u32(np, "fuelgauge,low_vbat_threshold",
&fuelgauge->low_vbat_threshold);
if (ret < 0) {
pr_err("%s There is no low vbat threshold. Use default(3450)\n",
__func__);
fuelgauge->low_vbat_threshold = 3450;
}
ret = of_property_read_u32(np, "fuelgauge,low_vbat_threshold_lowtemp",
&fuelgauge->low_vbat_threshold_lowtemp);
if (ret < 0) {
pr_err("%s There is no low vbat threshold low temp. Use default(3450)\n",
__func__);
fuelgauge->low_vbat_threshold_lowtemp = 3450;
}
/* Get values for temperature compensation */
ret = of_property_read_u32(np, "fuelgauge,inc_ok_en",
&fuelgauge->pdata->inc_ok_en);
if (ret < 0) {
fuelgauge->pdata->inc_ok_en = 0;
pr_err("%s There is no inc_ok_en. Use default value, %d\n",
__func__, fuelgauge->pdata->inc_ok_en);
}
ret = of_property_read_u32(np, "fuelgauge,comp_i",
&fuelgauge->pdata->comp_i);
if (ret < 0) {
fuelgauge->pdata->comp_i = 0x11;
pr_err("%s There is no comp_i. Use default value, %d\n",
__func__, fuelgauge->pdata->comp_i);
}
ret = of_property_read_u32(np, "fuelgauge,a0",
&fuelgauge->pdata->a0);
if (ret < 0) {
fuelgauge->pdata->a0 = 0x40;
pr_err("%s There is no a0. Use default value, %d\n",
__func__, fuelgauge->pdata->a0);
}
ret = of_property_read_u32(np, "fuelgauge,b0",
&fuelgauge->pdata->b0);
if (ret < 0) {
fuelgauge->pdata->b0 = 0x00;
pr_err("%s There is no b0. Use default value, %d\n",
__func__, fuelgauge->pdata->b0);
}
ret = of_property_read_u32(np, "fuelgauge,a1",
&fuelgauge->pdata->a1);
if (ret < 0) {
fuelgauge->pdata->a1 = 0x7F;
pr_err("%s There is no a1. Use default value, %d\n",
__func__, fuelgauge->pdata->a1);
}
ret = of_property_read_u32(np, "fuelgauge,b1",
&fuelgauge->pdata->b1);
if (ret < 0) {
fuelgauge->pdata->b1 = 0x00;
pr_err("%s There is no b1. Use default value, %d\n",
__func__, fuelgauge->pdata->b1);
}
/* Get values for battery capacity learning */
ret = of_property_read_u32(np, "fuelgauge,fast_lrn_en",
&fuelgauge->pdata->fast_lrn_en);
if (ret < 0) {
fuelgauge->pdata->fast_lrn_en = 0;
pr_err("%s There is no fast_lrn_en. Use default value, %d\n",
__func__, fuelgauge->pdata->fast_lrn_en);
}
ret = of_property_read_u32(np, "fuelgauge,no4learn",
&fuelgauge->pdata->no4learn);
if (ret < 0) {
fuelgauge->pdata->no4learn = 0x01;
pr_err("%s There is no no4learn. Use default value, %d\n",
__func__, fuelgauge->pdata->no4learn);
}
ret = of_property_read_u32(np, "fuelgauge,auto_lrn_en",
&fuelgauge->pdata->auto_lrn_en);
if (ret < 0) {
fuelgauge->pdata->auto_lrn_en = 1;
pr_err("%s There is no auto_lrn_en. Use default value, %d\n",
__func__, fuelgauge->pdata->auto_lrn_en);
}
ret = of_property_read_u32(np, "fuelgauge,wide_lrn_en",
&fuelgauge->pdata->wide_lrn_en);
if (ret < 0) {
fuelgauge->pdata->wide_lrn_en = 0;
pr_err("%s There is no wide_lrn_en. Use default value, %d\n",
__func__, fuelgauge->pdata->wide_lrn_en);
}
ret = of_property_read_u32(np, "fuelgauge,low_en",
&fuelgauge->pdata->low_en);
if (ret < 0) {
fuelgauge->pdata->low_en = 0;
pr_err("%s There is no low_en. Use default value, %d\n",
__func__, fuelgauge->pdata->low_en);
}
ret = of_property_read_u32(np, "fuelgauge,c1_num",
&fuelgauge->pdata->c1_num);
if (ret < 0) {
fuelgauge->pdata->c1_num = 2;
pr_err("%s There is no c1_num. Use default value, %d\n",
__func__, fuelgauge->pdata->c1_num);
}
ret = of_property_read_u32(np, "fuelgauge,c2_num",
&fuelgauge->pdata->c2_num);
if (ret < 0) {
fuelgauge->pdata->c2_num = 2;
pr_err("%s There is no c2_num. Use default value, %d\n",
__func__, fuelgauge->pdata->c2_num);
}
ret = of_property_read_u32(np, "fuelgauge,c1_curr",
&fuelgauge->pdata->c1_curr);
if (ret < 0) {
fuelgauge->pdata->c1_curr = 0x0b;
pr_err("%s There is no c1_curr. Use default value, %d\n",
__func__, fuelgauge->pdata->c1_curr);
}
/* get topoff info */
np = of_find_node_by_name(NULL, "cable-info");
if (!np) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_u32(np, "full_check_current_1st",
&fuelgauge->topoff_current);
if (ret < 0) {
pr_err("%s fail to get topoff current %d\n", __func__, ret);
fuelgauge->topoff_current = 500;
}
}
np = of_find_node_by_name(NULL, "battery");
if (!np) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_string(np,
"battery,fuelgauge_name",
(char const **)&fuelgauge->pdata->fuelgauge_name);
}
/* get battery node */
np = of_find_node_by_name(NULL, "battery_params");
if (!np) {
pr_err("%s battery_params node NULL\n", __func__);
} else {
#if !defined(CONFIG_BATTERY_AGE_FORECAST)
/* get battery_table */
ret = of_property_read_u32_array(np, "battery,battery_table3", fuelgauge->info.battery_table3, 88);
if (ret < 0)
pr_err("%s error reading battery,battery_table3\n", __func__);
ret = of_property_read_u32_array(np, "battery,battery_table4", fuelgauge->info.battery_table4, 22);
if (ret < 0)
pr_err("%s error reading battery,battery_table4\n", __func__);
ret = of_property_read_u32_array(np, "battery,batcap", fuelgauge->info.batcap, 4);
if (ret < 0)
pr_err("%s error reading battery,batcap\n", __func__);
ret = of_property_read_u32_array(np, "battery,accum", fuelgauge->info.accum, 2);
if (ret < 0) {
fuelgauge->info.accum[0]=0x00; // REG 0x44
fuelgauge->info.accum[1]=0x08; // REG 0x45
pr_err("%s There is no accumulative rate value in DT. set to the default value(0x800)\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,soc_arr_val", fuelgauge->info.soc_arr_val, 22);
if (ret < 0)
pr_err("%s error reading battery,soc_arr_val\n", __func__);
ret = of_property_read_u32_array(np, "battery,ocv_arr_val", fuelgauge->info.ocv_arr_val, 22);
if (ret < 0)
pr_err("%s error reading battery,ocv_arr_val\n", __func__);
#else
of_get_property(np, "battery,battery_data", &len);
fuelgauge->fg_num_age_step = len / sizeof(fg_age_data_info_t);
fuelgauge->age_data_info = kzalloc(len, GFP_KERNEL);
ret = of_property_read_u32_array(np, "battery,battery_data",
(int *)fuelgauge->age_data_info, len/sizeof(int));
pr_err("%s: [Long life] fuelgauge->fg_num_age_step %d \n",
__func__,fuelgauge->fg_num_age_step);
for(i=0 ; i < fuelgauge->fg_num_age_step ; i++){
pr_err("%s: [Long life] age_step = %d, table3[0] %d, table4[0] %d, batcap[0] %02x, accum[0] %02x, soc_arr[0] %d, ocv_arr[0] %d, volt_tun : %02x\n",
__func__, i,
fuelgauge->age_data_info[i].battery_table3[0],
fuelgauge->age_data_info[i].battery_table4[0],
fuelgauge->age_data_info[i].batcap[0],
fuelgauge->age_data_info[i].accum[0],
fuelgauge->age_data_info[i].soc_arr_val[0],
fuelgauge->age_data_info[i].ocv_arr_val[0],
fuelgauge->age_data_info[i].volt_mode_tunning);
}
#endif
}
}
return 0;
}
static struct of_device_id s2mu107_fuelgauge_match_table[] = {
{ .compatible = "samsung,s2mu107-fuelgauge",},
{},
};
#else
static int s2mu107_fuelgauge_parse_dt(struct s2mu107_fuelgauge_data *fuelgauge)
{
return -ENOSYS;
}
#define s2mu107_fuelgauge_match_table NULL
#endif /* CONFIG_OF */
static const struct power_supply_desc s2mu107_fuelgauge_power_supply_desc = {
.name = "s2mu107-fuelgauge",
.type = POWER_SUPPLY_TYPE_UNKNOWN,
.properties = s2mu107_fuelgauge_props,
.num_properties = ARRAY_SIZE(s2mu107_fuelgauge_props),
.get_property = s2mu107_fg_get_property,
.set_property = s2mu107_fg_set_property,
};
static int s2mu107_fuelgauge_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct s2mu107_fuelgauge_data *fuelgauge;
union power_supply_propval raw_soc_val;
struct power_supply_config fuelgauge_cfg = {};
int ret = 0;
u8 temp = 0;
#if 1
u8 por_state = 0;
u8 reg_1E = 0;
#endif
#if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM)
u8 temp_59, temp_5b;
#endif
pr_info("%s: S2MU107 Fuelgauge Driver Loading\n", __func__);
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
return -EIO;
fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL);
if (!fuelgauge)
return -ENOMEM;
mutex_init(&fuelgauge->fg_lock);
fuelgauge->i2c = client;
if (client->dev.of_node) {
fuelgauge->pdata = devm_kzalloc(&client->dev, sizeof(*(fuelgauge->pdata)),
GFP_KERNEL);
if (!fuelgauge->pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
ret = -ENOMEM;
goto err_parse_dt_nomem;
}
ret = s2mu107_fuelgauge_parse_dt(fuelgauge);
if (ret < 0)
goto err_parse_dt;
} else {
fuelgauge->pdata = client->dev.platform_data;
}
i2c_set_clientdata(client, fuelgauge);
if (fuelgauge->pdata->fuelgauge_name == NULL)
fuelgauge->pdata->fuelgauge_name = "s2mu107-fuelgauge";
fuelgauge_cfg.drv_data = fuelgauge;
/* FG Revision Value Setting */
fuelgauge->revision = 0;
s2mu107_read_reg_byte(fuelgauge->i2c, 0x48, &temp);
fuelgauge->revision = (temp & 0xF0) >> 4;
pr_info("%s: S2MU107 Fuelgauge revision: 0x%x, reg 0x48 = 0x%x\n",
__func__, fuelgauge->revision, temp);
fuelgauge->info.soc = 0;
/* default CURRENT_MODE setting */
fuelgauge->mode = CURRENT_MODE;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
s2mu107_update_reg_byte(fuelgauge->i2c, 0x4B, 0x00, 0x70);
/* capacity Max */
fuelgauge->capacity_max = fuelgauge->pdata->capacity_max;
#if 1
/* TODO: Before bootloader bring-up,
* battery driver gets default SOC 56.12%.
* To avoid that, check por_state for init.
* This code need to be deleted after BL bring-up.
*/
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START, &reg_1E);
s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, &por_state);
#if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM)
s2mu107_read_reg_byte(fuelgauge->i2c, 0x59, &temp_59);
s2mu107_read_reg_byte(fuelgauge->i2c, 0x5B, &temp_5b);
if((por_state != 0x00) || (reg_1E != 0x03) ||
((temp_59 == 0x20) && (temp_5b == 0xE0))) {
#else
if((por_state != 0x00) || (reg_1E != 0x03)) {
#endif
mutex_lock(&fuelgauge->fg_lock);
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_START + 1, 0x40);
usleep_range(10000, 11000);
s2mu107_write_enable(fuelgauge->i2c);
s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c,
S2MU107_REG_START + 1, 0x01);
msleep(50);
s2mu107_write_disable(fuelgauge->i2c);
dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__);
/* If UI SOC is 0%, do not use raw SOC fix reset */
if(fuelgauge->ui_soc == 0)
s2mu107_reset_fg(fuelgauge);
else
s2mu107_fix_rawsoc_reset_fg(fuelgauge);
por_state = 0x00;
s2mu107_write_and_verify_reg_byte(fuelgauge->i2c,
S2MU107_REG_START + 1, por_state);
#if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM)
/* TODO: s2mu107 uses 5mohm sensing resistor.
But 10mohm is used, need to adjust trim value */
s2mu107_set_trim_10mohm(fuelgauge);
#endif
mutex_unlock(&fuelgauge->fg_lock);
}
#endif
fuelgauge->g_capacity_max = 0;
fuelgauge->capacity_max_conv = false;
raw_soc_val.intval = s2mu107_get_soc(fuelgauge);
raw_soc_val.intval = raw_soc_val.intval / 10;
if (raw_soc_val.intval > fuelgauge->capacity_max)
s2mu107_fg_calculate_dynamic_scale(fuelgauge, 100, true);
s2mu107_init_regs(fuelgauge);
#if defined(CONFIG_FUELGAUGE_S2MU107_TEMP_COMPEN)
s2mu107_init_temp_compen(fuelgauge);
#endif
s2mu107_init_batcap_learn(fuelgauge);
#if defined(CONFIG_CHARGER_S2MU107_DIRECT)
s2mu107_init_for_direct_charge(fuelgauge);
#endif
fuelgauge->psy_fg = power_supply_register(
&client->dev, &s2mu107_fuelgauge_power_supply_desc, &fuelgauge_cfg);
if (!fuelgauge->psy_fg) {
pr_err("%s: Failed to Register psy_fg\n", __func__);
ret = PTR_ERR(fuelgauge->psy_fg);
goto err_data_free;
}
fuelgauge->is_fuel_alerted = false;
if (fuelgauge->pdata->fuel_alert_soc >= 0) {
s2mu107_fuelalert_init(fuelgauge);
wake_lock_init(&fuelgauge->fuel_alert_wake_lock,
WAKE_LOCK_SUSPEND, "fuel_alerted");
if (fuelgauge->pdata->fg_irq > 0) {
INIT_DELAYED_WORK(&fuelgauge->isr_work, s2mu107_fg_isr_work);
fuelgauge->fg_irq = gpio_to_irq(fuelgauge->pdata->fg_irq);
dev_info(&client->dev, "%s : fg_irq = %d\n", __func__, fuelgauge->fg_irq);
if (fuelgauge->fg_irq > 0) {
ret = request_threaded_irq(fuelgauge->fg_irq,
NULL, s2mu107_fg_irq_thread,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"fuelgauge-irq", fuelgauge);
if (ret) {
dev_err(&client->dev, "%s: Failed to Request IRQ\n", __func__);
goto err_supply_unreg;
}
ret = enable_irq_wake(fuelgauge->fg_irq);
if (ret < 0)
dev_err(&client->dev, "%s: Failed to Enable Wakeup Source(%d)\n",
__func__, ret);
} else {
dev_err(&client->dev, "%s: Failed gpio_to_irq(%d)\n", __func__, fuelgauge->fg_irq);
goto err_supply_unreg;
}
}
}
fuelgauge->cable_type = SEC_BATTERY_CABLE_NONE;
fuelgauge->sleep_initial_update_of_soc = false;
fuelgauge->initial_update_of_soc = true;
fuelgauge->probe_done = true;
fuelgauge->init_start = 1;
pr_info("%s: S2MU107 Fuelgauge Driver Loaded\n", __func__);
return 0;
err_supply_unreg:
power_supply_unregister(fuelgauge->psy_fg);
err_data_free:
if (client->dev.of_node)
kfree(fuelgauge->pdata);
err_parse_dt:
err_parse_dt_nomem:
mutex_destroy(&fuelgauge->fg_lock);
kfree(fuelgauge);
return ret;
}
static const struct i2c_device_id s2mu107_fuelgauge_id[] = {
{"s2mu107-fuelgauge", 0},
{}
};
static void s2mu107_fuelgauge_shutdown(struct i2c_client *client)
{
struct s2mu107_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
if (!fuelgauge->i2c) {
pr_err("%s: no i2c client\n", __func__);
return;
}
}
static int s2mu107_fuelgauge_remove(struct i2c_client *client)
{
struct s2mu107_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
if (fuelgauge->pdata->fuel_alert_soc >= 0)
wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock);
return 0;
}
#if defined CONFIG_PM
static int s2mu107_fuelgauge_suspend(struct device *dev)
{
return 0;
}
static int s2mu107_fuelgauge_resume(struct device *dev)
{
struct s2mu107_fuelgauge_data *fuelgauge = dev_get_drvdata(dev);
fuelgauge->sleep_initial_update_of_soc = true;
return 0;
}
#else
#define s2mu107_fuelgauge_suspend NULL
#define s2mu107_fuelgauge_resume NULL
#endif
static SIMPLE_DEV_PM_OPS(s2mu107_fuelgauge_pm_ops, s2mu107_fuelgauge_suspend,
s2mu107_fuelgauge_resume);
static struct i2c_driver s2mu107_fuelgauge_driver = {
.driver = {
.name = "s2mu107-fuelgauge",
.owner = THIS_MODULE,
.pm = &s2mu107_fuelgauge_pm_ops,
.of_match_table = s2mu107_fuelgauge_match_table,
},
.probe = s2mu107_fuelgauge_probe,
.remove = s2mu107_fuelgauge_remove,
.shutdown = s2mu107_fuelgauge_shutdown,
.id_table = s2mu107_fuelgauge_id,
};
static int __init s2mu107_fuelgauge_init(void)
{
pr_info("%s: S2MU107 Fuelgauge Init\n", __func__);
return i2c_add_driver(&s2mu107_fuelgauge_driver);
}
static void __exit s2mu107_fuelgauge_exit(void)
{
i2c_del_driver(&s2mu107_fuelgauge_driver);
}
module_init(s2mu107_fuelgauge_init);
module_exit(s2mu107_fuelgauge_exit);
MODULE_DESCRIPTION("Samsung S2MU107 Fuel Gauge Driver");
MODULE_AUTHOR("Samsung Electronics");
MODULE_LICENSE("GPL");