You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1131 lines
38 KiB
1131 lines
38 KiB
#ifndef _LINUX_MM_H
|
|
#define _LINUX_MM_H
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/capability.h>
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/prio_tree.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/backing-dev.h>
|
|
|
|
struct mempolicy;
|
|
struct anon_vma;
|
|
|
|
#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
|
|
extern unsigned long max_mapnr;
|
|
#endif
|
|
|
|
extern unsigned long num_physpages;
|
|
extern void * high_memory;
|
|
extern unsigned long vmalloc_earlyreserve;
|
|
extern int page_cluster;
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
extern int sysctl_legacy_va_layout;
|
|
#else
|
|
#define sysctl_legacy_va_layout 0
|
|
#endif
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
|
|
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
|
|
|
|
/*
|
|
* Linux kernel virtual memory manager primitives.
|
|
* The idea being to have a "virtual" mm in the same way
|
|
* we have a virtual fs - giving a cleaner interface to the
|
|
* mm details, and allowing different kinds of memory mappings
|
|
* (from shared memory to executable loading to arbitrary
|
|
* mmap() functions).
|
|
*/
|
|
|
|
/*
|
|
* This struct defines a memory VMM memory area. There is one of these
|
|
* per VM-area/task. A VM area is any part of the process virtual memory
|
|
* space that has a special rule for the page-fault handlers (ie a shared
|
|
* library, the executable area etc).
|
|
*/
|
|
struct vm_area_struct {
|
|
struct mm_struct * vm_mm; /* The address space we belong to. */
|
|
unsigned long vm_start; /* Our start address within vm_mm. */
|
|
unsigned long vm_end; /* The first byte after our end address
|
|
within vm_mm. */
|
|
|
|
/* linked list of VM areas per task, sorted by address */
|
|
struct vm_area_struct *vm_next;
|
|
|
|
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
|
|
unsigned long vm_flags; /* Flags, listed below. */
|
|
|
|
struct rb_node vm_rb;
|
|
|
|
/*
|
|
* For areas with an address space and backing store,
|
|
* linkage into the address_space->i_mmap prio tree, or
|
|
* linkage to the list of like vmas hanging off its node, or
|
|
* linkage of vma in the address_space->i_mmap_nonlinear list.
|
|
*/
|
|
union {
|
|
struct {
|
|
struct list_head list;
|
|
void *parent; /* aligns with prio_tree_node parent */
|
|
struct vm_area_struct *head;
|
|
} vm_set;
|
|
|
|
struct raw_prio_tree_node prio_tree_node;
|
|
} shared;
|
|
|
|
/*
|
|
* A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
|
|
* list, after a COW of one of the file pages. A MAP_SHARED vma
|
|
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
|
|
* or brk vma (with NULL file) can only be in an anon_vma list.
|
|
*/
|
|
struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
|
|
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
|
|
|
|
/* Function pointers to deal with this struct. */
|
|
struct vm_operations_struct * vm_ops;
|
|
|
|
/* Information about our backing store: */
|
|
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
|
|
units, *not* PAGE_CACHE_SIZE */
|
|
struct file * vm_file; /* File we map to (can be NULL). */
|
|
void * vm_private_data; /* was vm_pte (shared mem) */
|
|
unsigned long vm_truncate_count;/* truncate_count or restart_addr */
|
|
|
|
#ifndef CONFIG_MMU
|
|
atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
|
|
#endif
|
|
#ifdef CONFIG_NUMA
|
|
struct mempolicy *vm_policy; /* NUMA policy for the VMA */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
|
|
* disabled, then there's a single shared list of VMAs maintained by the
|
|
* system, and mm's subscribe to these individually
|
|
*/
|
|
struct vm_list_struct {
|
|
struct vm_list_struct *next;
|
|
struct vm_area_struct *vma;
|
|
};
|
|
|
|
#ifndef CONFIG_MMU
|
|
extern struct rb_root nommu_vma_tree;
|
|
extern struct rw_semaphore nommu_vma_sem;
|
|
|
|
extern unsigned int kobjsize(const void *objp);
|
|
#endif
|
|
|
|
/*
|
|
* vm_flags..
|
|
*/
|
|
#define VM_READ 0x00000001 /* currently active flags */
|
|
#define VM_WRITE 0x00000002
|
|
#define VM_EXEC 0x00000004
|
|
#define VM_SHARED 0x00000008
|
|
|
|
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
|
|
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
|
|
#define VM_MAYWRITE 0x00000020
|
|
#define VM_MAYEXEC 0x00000040
|
|
#define VM_MAYSHARE 0x00000080
|
|
|
|
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
|
|
#define VM_GROWSUP 0x00000200
|
|
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
|
|
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
|
|
|
|
#define VM_EXECUTABLE 0x00001000
|
|
#define VM_LOCKED 0x00002000
|
|
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
|
|
|
|
/* Used by sys_madvise() */
|
|
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
|
|
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
|
|
|
|
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
|
|
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
|
|
#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
|
|
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
|
|
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
|
|
#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
|
|
#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
|
|
#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
|
|
|
|
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
|
|
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
|
|
#endif
|
|
|
|
#ifdef CONFIG_STACK_GROWSUP
|
|
#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
|
|
#else
|
|
#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
|
|
#endif
|
|
|
|
#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
|
|
#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
|
|
#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
|
|
#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
|
|
#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
|
|
|
|
/*
|
|
* mapping from the currently active vm_flags protection bits (the
|
|
* low four bits) to a page protection mask..
|
|
*/
|
|
extern pgprot_t protection_map[16];
|
|
|
|
|
|
/*
|
|
* These are the virtual MM functions - opening of an area, closing and
|
|
* unmapping it (needed to keep files on disk up-to-date etc), pointer
|
|
* to the functions called when a no-page or a wp-page exception occurs.
|
|
*/
|
|
struct vm_operations_struct {
|
|
void (*open)(struct vm_area_struct * area);
|
|
void (*close)(struct vm_area_struct * area);
|
|
struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
|
|
int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
|
|
|
|
/* notification that a previously read-only page is about to become
|
|
* writable, if an error is returned it will cause a SIGBUS */
|
|
int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
|
|
#ifdef CONFIG_NUMA
|
|
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
|
|
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
|
|
const nodemask_t *to, unsigned long flags);
|
|
#endif
|
|
};
|
|
|
|
struct mmu_gather;
|
|
struct inode;
|
|
|
|
/*
|
|
* Each physical page in the system has a struct page associated with
|
|
* it to keep track of whatever it is we are using the page for at the
|
|
* moment. Note that we have no way to track which tasks are using
|
|
* a page, though if it is a pagecache page, rmap structures can tell us
|
|
* who is mapping it.
|
|
*/
|
|
struct page {
|
|
unsigned long flags; /* Atomic flags, some possibly
|
|
* updated asynchronously */
|
|
atomic_t _count; /* Usage count, see below. */
|
|
atomic_t _mapcount; /* Count of ptes mapped in mms,
|
|
* to show when page is mapped
|
|
* & limit reverse map searches.
|
|
*/
|
|
union {
|
|
struct {
|
|
unsigned long private; /* Mapping-private opaque data:
|
|
* usually used for buffer_heads
|
|
* if PagePrivate set; used for
|
|
* swp_entry_t if PageSwapCache;
|
|
* indicates order in the buddy
|
|
* system if PG_buddy is set.
|
|
*/
|
|
struct address_space *mapping; /* If low bit clear, points to
|
|
* inode address_space, or NULL.
|
|
* If page mapped as anonymous
|
|
* memory, low bit is set, and
|
|
* it points to anon_vma object:
|
|
* see PAGE_MAPPING_ANON below.
|
|
*/
|
|
};
|
|
#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
|
|
spinlock_t ptl;
|
|
#endif
|
|
};
|
|
pgoff_t index; /* Our offset within mapping. */
|
|
struct list_head lru; /* Pageout list, eg. active_list
|
|
* protected by zone->lru_lock !
|
|
*/
|
|
/*
|
|
* On machines where all RAM is mapped into kernel address space,
|
|
* we can simply calculate the virtual address. On machines with
|
|
* highmem some memory is mapped into kernel virtual memory
|
|
* dynamically, so we need a place to store that address.
|
|
* Note that this field could be 16 bits on x86 ... ;)
|
|
*
|
|
* Architectures with slow multiplication can define
|
|
* WANT_PAGE_VIRTUAL in asm/page.h
|
|
*/
|
|
#if defined(WANT_PAGE_VIRTUAL)
|
|
void *virtual; /* Kernel virtual address (NULL if
|
|
not kmapped, ie. highmem) */
|
|
#endif /* WANT_PAGE_VIRTUAL */
|
|
};
|
|
|
|
#define page_private(page) ((page)->private)
|
|
#define set_page_private(page, v) ((page)->private = (v))
|
|
|
|
/*
|
|
* FIXME: take this include out, include page-flags.h in
|
|
* files which need it (119 of them)
|
|
*/
|
|
#include <linux/page-flags.h>
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
#define VM_BUG_ON(cond) BUG_ON(cond)
|
|
#else
|
|
#define VM_BUG_ON(condition) do { } while(0)
|
|
#endif
|
|
|
|
/*
|
|
* Methods to modify the page usage count.
|
|
*
|
|
* What counts for a page usage:
|
|
* - cache mapping (page->mapping)
|
|
* - private data (page->private)
|
|
* - page mapped in a task's page tables, each mapping
|
|
* is counted separately
|
|
*
|
|
* Also, many kernel routines increase the page count before a critical
|
|
* routine so they can be sure the page doesn't go away from under them.
|
|
*/
|
|
|
|
/*
|
|
* Drop a ref, return true if the refcount fell to zero (the page has no users)
|
|
*/
|
|
static inline int put_page_testzero(struct page *page)
|
|
{
|
|
VM_BUG_ON(atomic_read(&page->_count) == 0);
|
|
return atomic_dec_and_test(&page->_count);
|
|
}
|
|
|
|
/*
|
|
* Try to grab a ref unless the page has a refcount of zero, return false if
|
|
* that is the case.
|
|
*/
|
|
static inline int get_page_unless_zero(struct page *page)
|
|
{
|
|
VM_BUG_ON(PageCompound(page));
|
|
return atomic_inc_not_zero(&page->_count);
|
|
}
|
|
|
|
static inline int page_count(struct page *page)
|
|
{
|
|
if (unlikely(PageCompound(page)))
|
|
page = (struct page *)page_private(page);
|
|
return atomic_read(&page->_count);
|
|
}
|
|
|
|
static inline void get_page(struct page *page)
|
|
{
|
|
if (unlikely(PageCompound(page)))
|
|
page = (struct page *)page_private(page);
|
|
VM_BUG_ON(atomic_read(&page->_count) == 0);
|
|
atomic_inc(&page->_count);
|
|
}
|
|
|
|
/*
|
|
* Setup the page count before being freed into the page allocator for
|
|
* the first time (boot or memory hotplug)
|
|
*/
|
|
static inline void init_page_count(struct page *page)
|
|
{
|
|
atomic_set(&page->_count, 1);
|
|
}
|
|
|
|
void put_page(struct page *page);
|
|
void put_pages_list(struct list_head *pages);
|
|
|
|
void split_page(struct page *page, unsigned int order);
|
|
|
|
/*
|
|
* Multiple processes may "see" the same page. E.g. for untouched
|
|
* mappings of /dev/null, all processes see the same page full of
|
|
* zeroes, and text pages of executables and shared libraries have
|
|
* only one copy in memory, at most, normally.
|
|
*
|
|
* For the non-reserved pages, page_count(page) denotes a reference count.
|
|
* page_count() == 0 means the page is free. page->lru is then used for
|
|
* freelist management in the buddy allocator.
|
|
* page_count() > 0 means the page has been allocated.
|
|
*
|
|
* Pages are allocated by the slab allocator in order to provide memory
|
|
* to kmalloc and kmem_cache_alloc. In this case, the management of the
|
|
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
|
|
* unless a particular usage is carefully commented. (the responsibility of
|
|
* freeing the kmalloc memory is the caller's, of course).
|
|
*
|
|
* A page may be used by anyone else who does a __get_free_page().
|
|
* In this case, page_count still tracks the references, and should only
|
|
* be used through the normal accessor functions. The top bits of page->flags
|
|
* and page->virtual store page management information, but all other fields
|
|
* are unused and could be used privately, carefully. The management of this
|
|
* page is the responsibility of the one who allocated it, and those who have
|
|
* subsequently been given references to it.
|
|
*
|
|
* The other pages (we may call them "pagecache pages") are completely
|
|
* managed by the Linux memory manager: I/O, buffers, swapping etc.
|
|
* The following discussion applies only to them.
|
|
*
|
|
* A pagecache page contains an opaque `private' member, which belongs to the
|
|
* page's address_space. Usually, this is the address of a circular list of
|
|
* the page's disk buffers. PG_private must be set to tell the VM to call
|
|
* into the filesystem to release these pages.
|
|
*
|
|
* A page may belong to an inode's memory mapping. In this case, page->mapping
|
|
* is the pointer to the inode, and page->index is the file offset of the page,
|
|
* in units of PAGE_CACHE_SIZE.
|
|
*
|
|
* If pagecache pages are not associated with an inode, they are said to be
|
|
* anonymous pages. These may become associated with the swapcache, and in that
|
|
* case PG_swapcache is set, and page->private is an offset into the swapcache.
|
|
*
|
|
* In either case (swapcache or inode backed), the pagecache itself holds one
|
|
* reference to the page. Setting PG_private should also increment the
|
|
* refcount. The each user mapping also has a reference to the page.
|
|
*
|
|
* The pagecache pages are stored in a per-mapping radix tree, which is
|
|
* rooted at mapping->page_tree, and indexed by offset.
|
|
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
|
|
* lists, we instead now tag pages as dirty/writeback in the radix tree.
|
|
*
|
|
* All pagecache pages may be subject to I/O:
|
|
* - inode pages may need to be read from disk,
|
|
* - inode pages which have been modified and are MAP_SHARED may need
|
|
* to be written back to the inode on disk,
|
|
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
|
|
* modified may need to be swapped out to swap space and (later) to be read
|
|
* back into memory.
|
|
*/
|
|
|
|
/*
|
|
* The zone field is never updated after free_area_init_core()
|
|
* sets it, so none of the operations on it need to be atomic.
|
|
*/
|
|
|
|
|
|
/*
|
|
* page->flags layout:
|
|
*
|
|
* There are three possibilities for how page->flags get
|
|
* laid out. The first is for the normal case, without
|
|
* sparsemem. The second is for sparsemem when there is
|
|
* plenty of space for node and section. The last is when
|
|
* we have run out of space and have to fall back to an
|
|
* alternate (slower) way of determining the node.
|
|
*
|
|
* No sparsemem: | NODE | ZONE | ... | FLAGS |
|
|
* with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
|
|
* no space for node: | SECTION | ZONE | ... | FLAGS |
|
|
*/
|
|
#ifdef CONFIG_SPARSEMEM
|
|
#define SECTIONS_WIDTH SECTIONS_SHIFT
|
|
#else
|
|
#define SECTIONS_WIDTH 0
|
|
#endif
|
|
|
|
#define ZONES_WIDTH ZONES_SHIFT
|
|
|
|
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
|
|
#define NODES_WIDTH NODES_SHIFT
|
|
#else
|
|
#define NODES_WIDTH 0
|
|
#endif
|
|
|
|
/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
|
|
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
|
|
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
|
|
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
|
|
|
|
/*
|
|
* We are going to use the flags for the page to node mapping if its in
|
|
* there. This includes the case where there is no node, so it is implicit.
|
|
*/
|
|
#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
|
|
|
|
#ifndef PFN_SECTION_SHIFT
|
|
#define PFN_SECTION_SHIFT 0
|
|
#endif
|
|
|
|
/*
|
|
* Define the bit shifts to access each section. For non-existant
|
|
* sections we define the shift as 0; that plus a 0 mask ensures
|
|
* the compiler will optimise away reference to them.
|
|
*/
|
|
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
|
|
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
|
|
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
|
|
|
|
/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
|
|
#if FLAGS_HAS_NODE
|
|
#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
|
|
#else
|
|
#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
|
|
#endif
|
|
#define ZONETABLE_PGSHIFT ZONES_PGSHIFT
|
|
|
|
#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
|
|
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
|
|
#endif
|
|
|
|
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
|
|
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
|
|
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
|
|
#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
|
|
|
|
static inline enum zone_type page_zonenum(struct page *page)
|
|
{
|
|
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
|
|
}
|
|
|
|
struct zone;
|
|
extern struct zone *zone_table[];
|
|
|
|
static inline int page_zone_id(struct page *page)
|
|
{
|
|
return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK;
|
|
}
|
|
static inline struct zone *page_zone(struct page *page)
|
|
{
|
|
return zone_table[page_zone_id(page)];
|
|
}
|
|
|
|
static inline unsigned long page_to_nid(struct page *page)
|
|
{
|
|
if (FLAGS_HAS_NODE)
|
|
return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
|
|
else
|
|
return page_zone(page)->zone_pgdat->node_id;
|
|
}
|
|
static inline unsigned long page_to_section(struct page *page)
|
|
{
|
|
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
|
|
}
|
|
|
|
static inline void set_page_zone(struct page *page, enum zone_type zone)
|
|
{
|
|
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
|
|
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_node(struct page *page, unsigned long node)
|
|
{
|
|
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
|
|
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
|
|
}
|
|
static inline void set_page_section(struct page *page, unsigned long section)
|
|
{
|
|
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
|
|
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_links(struct page *page, enum zone_type zone,
|
|
unsigned long node, unsigned long pfn)
|
|
{
|
|
set_page_zone(page, zone);
|
|
set_page_node(page, node);
|
|
set_page_section(page, pfn_to_section_nr(pfn));
|
|
}
|
|
|
|
/*
|
|
* Some inline functions in vmstat.h depend on page_zone()
|
|
*/
|
|
#include <linux/vmstat.h>
|
|
|
|
#ifndef CONFIG_DISCONTIGMEM
|
|
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
|
|
extern struct page *mem_map;
|
|
#endif
|
|
|
|
static __always_inline void *lowmem_page_address(struct page *page)
|
|
{
|
|
return __va(page_to_pfn(page) << PAGE_SHIFT);
|
|
}
|
|
|
|
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define HASHED_PAGE_VIRTUAL
|
|
#endif
|
|
|
|
#if defined(WANT_PAGE_VIRTUAL)
|
|
#define page_address(page) ((page)->virtual)
|
|
#define set_page_address(page, address) \
|
|
do { \
|
|
(page)->virtual = (address); \
|
|
} while(0)
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
#if defined(HASHED_PAGE_VIRTUAL)
|
|
void *page_address(struct page *page);
|
|
void set_page_address(struct page *page, void *virtual);
|
|
void page_address_init(void);
|
|
#endif
|
|
|
|
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define page_address(page) lowmem_page_address(page)
|
|
#define set_page_address(page, address) do { } while(0)
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
/*
|
|
* On an anonymous page mapped into a user virtual memory area,
|
|
* page->mapping points to its anon_vma, not to a struct address_space;
|
|
* with the PAGE_MAPPING_ANON bit set to distinguish it.
|
|
*
|
|
* Please note that, confusingly, "page_mapping" refers to the inode
|
|
* address_space which maps the page from disk; whereas "page_mapped"
|
|
* refers to user virtual address space into which the page is mapped.
|
|
*/
|
|
#define PAGE_MAPPING_ANON 1
|
|
|
|
extern struct address_space swapper_space;
|
|
static inline struct address_space *page_mapping(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
if (unlikely(PageSwapCache(page)))
|
|
mapping = &swapper_space;
|
|
else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
|
|
mapping = NULL;
|
|
return mapping;
|
|
}
|
|
|
|
static inline int PageAnon(struct page *page)
|
|
{
|
|
return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
|
|
}
|
|
|
|
/*
|
|
* Return the pagecache index of the passed page. Regular pagecache pages
|
|
* use ->index whereas swapcache pages use ->private
|
|
*/
|
|
static inline pgoff_t page_index(struct page *page)
|
|
{
|
|
if (unlikely(PageSwapCache(page)))
|
|
return page_private(page);
|
|
return page->index;
|
|
}
|
|
|
|
/*
|
|
* The atomic page->_mapcount, like _count, starts from -1:
|
|
* so that transitions both from it and to it can be tracked,
|
|
* using atomic_inc_and_test and atomic_add_negative(-1).
|
|
*/
|
|
static inline void reset_page_mapcount(struct page *page)
|
|
{
|
|
atomic_set(&(page)->_mapcount, -1);
|
|
}
|
|
|
|
static inline int page_mapcount(struct page *page)
|
|
{
|
|
return atomic_read(&(page)->_mapcount) + 1;
|
|
}
|
|
|
|
/*
|
|
* Return true if this page is mapped into pagetables.
|
|
*/
|
|
static inline int page_mapped(struct page *page)
|
|
{
|
|
return atomic_read(&(page)->_mapcount) >= 0;
|
|
}
|
|
|
|
/*
|
|
* Error return values for the *_nopage functions
|
|
*/
|
|
#define NOPAGE_SIGBUS (NULL)
|
|
#define NOPAGE_OOM ((struct page *) (-1))
|
|
|
|
/*
|
|
* Different kinds of faults, as returned by handle_mm_fault().
|
|
* Used to decide whether a process gets delivered SIGBUS or
|
|
* just gets major/minor fault counters bumped up.
|
|
*/
|
|
#define VM_FAULT_OOM 0x00
|
|
#define VM_FAULT_SIGBUS 0x01
|
|
#define VM_FAULT_MINOR 0x02
|
|
#define VM_FAULT_MAJOR 0x03
|
|
|
|
/*
|
|
* Special case for get_user_pages.
|
|
* Must be in a distinct bit from the above VM_FAULT_ flags.
|
|
*/
|
|
#define VM_FAULT_WRITE 0x10
|
|
|
|
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
|
|
|
|
extern void show_free_areas(void);
|
|
|
|
#ifdef CONFIG_SHMEM
|
|
struct page *shmem_nopage(struct vm_area_struct *vma,
|
|
unsigned long address, int *type);
|
|
int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
|
|
struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
int shmem_lock(struct file *file, int lock, struct user_struct *user);
|
|
#else
|
|
#define shmem_nopage filemap_nopage
|
|
|
|
static inline int shmem_lock(struct file *file, int lock,
|
|
struct user_struct *user)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int shmem_set_policy(struct vm_area_struct *vma,
|
|
struct mempolicy *new)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
|
|
extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
|
|
|
|
int shmem_zero_setup(struct vm_area_struct *);
|
|
|
|
#ifndef CONFIG_MMU
|
|
extern unsigned long shmem_get_unmapped_area(struct file *file,
|
|
unsigned long addr,
|
|
unsigned long len,
|
|
unsigned long pgoff,
|
|
unsigned long flags);
|
|
#endif
|
|
|
|
static inline int can_do_mlock(void)
|
|
{
|
|
if (capable(CAP_IPC_LOCK))
|
|
return 1;
|
|
if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
extern int user_shm_lock(size_t, struct user_struct *);
|
|
extern void user_shm_unlock(size_t, struct user_struct *);
|
|
|
|
/*
|
|
* Parameter block passed down to zap_pte_range in exceptional cases.
|
|
*/
|
|
struct zap_details {
|
|
struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
|
|
struct address_space *check_mapping; /* Check page->mapping if set */
|
|
pgoff_t first_index; /* Lowest page->index to unmap */
|
|
pgoff_t last_index; /* Highest page->index to unmap */
|
|
spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
|
|
unsigned long truncate_count; /* Compare vm_truncate_count */
|
|
};
|
|
|
|
struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
|
|
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size, struct zap_details *);
|
|
unsigned long unmap_vmas(struct mmu_gather **tlb,
|
|
struct vm_area_struct *start_vma, unsigned long start_addr,
|
|
unsigned long end_addr, unsigned long *nr_accounted,
|
|
struct zap_details *);
|
|
void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
|
|
unsigned long end, unsigned long floor, unsigned long ceiling);
|
|
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
|
|
unsigned long floor, unsigned long ceiling);
|
|
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
struct vm_area_struct *vma);
|
|
int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
|
|
unsigned long size, pgprot_t prot);
|
|
void unmap_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen, int even_cows);
|
|
|
|
static inline void unmap_shared_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen)
|
|
{
|
|
unmap_mapping_range(mapping, holebegin, holelen, 0);
|
|
}
|
|
|
|
extern int vmtruncate(struct inode * inode, loff_t offset);
|
|
extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
|
|
extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
|
|
extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
|
|
unsigned long address, int write_access);
|
|
|
|
static inline int handle_mm_fault(struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
int write_access)
|
|
{
|
|
return __handle_mm_fault(mm, vma, address, write_access) &
|
|
(~VM_FAULT_WRITE);
|
|
}
|
|
#else
|
|
static inline int handle_mm_fault(struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
int write_access)
|
|
{
|
|
/* should never happen if there's no MMU */
|
|
BUG();
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
#endif
|
|
|
|
extern int make_pages_present(unsigned long addr, unsigned long end);
|
|
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
|
|
void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
|
|
|
|
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
|
|
int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
|
|
void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
|
|
|
|
int __set_page_dirty_buffers(struct page *page);
|
|
int __set_page_dirty_nobuffers(struct page *page);
|
|
int redirty_page_for_writepage(struct writeback_control *wbc,
|
|
struct page *page);
|
|
int FASTCALL(set_page_dirty(struct page *page));
|
|
int set_page_dirty_lock(struct page *page);
|
|
int clear_page_dirty_for_io(struct page *page);
|
|
|
|
extern unsigned long do_mremap(unsigned long addr,
|
|
unsigned long old_len, unsigned long new_len,
|
|
unsigned long flags, unsigned long new_addr);
|
|
|
|
/*
|
|
* Prototype to add a shrinker callback for ageable caches.
|
|
*
|
|
* These functions are passed a count `nr_to_scan' and a gfpmask. They should
|
|
* scan `nr_to_scan' objects, attempting to free them.
|
|
*
|
|
* The callback must return the number of objects which remain in the cache.
|
|
*
|
|
* The callback will be passed nr_to_scan == 0 when the VM is querying the
|
|
* cache size, so a fastpath for that case is appropriate.
|
|
*/
|
|
typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
|
|
|
|
/*
|
|
* Add an aging callback. The int is the number of 'seeks' it takes
|
|
* to recreate one of the objects that these functions age.
|
|
*/
|
|
|
|
#define DEFAULT_SEEKS 2
|
|
struct shrinker;
|
|
extern struct shrinker *set_shrinker(int, shrinker_t);
|
|
extern void remove_shrinker(struct shrinker *shrinker);
|
|
|
|
/*
|
|
* Some shared mappigns will want the pages marked read-only
|
|
* to track write events. If so, we'll downgrade vm_page_prot
|
|
* to the private version (using protection_map[] without the
|
|
* VM_SHARED bit).
|
|
*/
|
|
static inline int vma_wants_writenotify(struct vm_area_struct *vma)
|
|
{
|
|
unsigned int vm_flags = vma->vm_flags;
|
|
|
|
/* If it was private or non-writable, the write bit is already clear */
|
|
if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
|
|
return 0;
|
|
|
|
/* The backer wishes to know when pages are first written to? */
|
|
if (vma->vm_ops && vma->vm_ops->page_mkwrite)
|
|
return 1;
|
|
|
|
/* The open routine did something to the protections already? */
|
|
if (pgprot_val(vma->vm_page_prot) !=
|
|
pgprot_val(protection_map[vm_flags &
|
|
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
|
|
return 0;
|
|
|
|
/* Specialty mapping? */
|
|
if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
|
|
return 0;
|
|
|
|
/* Can the mapping track the dirty pages? */
|
|
return vma->vm_file && vma->vm_file->f_mapping &&
|
|
mapping_cap_account_dirty(vma->vm_file->f_mapping);
|
|
}
|
|
|
|
extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
|
|
|
|
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
|
|
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
|
|
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
|
|
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
|
|
|
|
/*
|
|
* The following ifdef needed to get the 4level-fixup.h header to work.
|
|
* Remove it when 4level-fixup.h has been removed.
|
|
*/
|
|
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
|
|
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
|
|
{
|
|
return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
|
|
NULL: pud_offset(pgd, address);
|
|
}
|
|
|
|
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
|
{
|
|
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
|
|
NULL: pmd_offset(pud, address);
|
|
}
|
|
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
|
|
|
|
#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
|
|
/*
|
|
* We tuck a spinlock to guard each pagetable page into its struct page,
|
|
* at page->private, with BUILD_BUG_ON to make sure that this will not
|
|
* overflow into the next struct page (as it might with DEBUG_SPINLOCK).
|
|
* When freeing, reset page->mapping so free_pages_check won't complain.
|
|
*/
|
|
#define __pte_lockptr(page) &((page)->ptl)
|
|
#define pte_lock_init(_page) do { \
|
|
spin_lock_init(__pte_lockptr(_page)); \
|
|
} while (0)
|
|
#define pte_lock_deinit(page) ((page)->mapping = NULL)
|
|
#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
|
|
#else
|
|
/*
|
|
* We use mm->page_table_lock to guard all pagetable pages of the mm.
|
|
*/
|
|
#define pte_lock_init(page) do {} while (0)
|
|
#define pte_lock_deinit(page) do {} while (0)
|
|
#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
|
|
#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
|
|
|
|
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
|
|
({ \
|
|
spinlock_t *__ptl = pte_lockptr(mm, pmd); \
|
|
pte_t *__pte = pte_offset_map(pmd, address); \
|
|
*(ptlp) = __ptl; \
|
|
spin_lock(__ptl); \
|
|
__pte; \
|
|
})
|
|
|
|
#define pte_unmap_unlock(pte, ptl) do { \
|
|
spin_unlock(ptl); \
|
|
pte_unmap(pte); \
|
|
} while (0)
|
|
|
|
#define pte_alloc_map(mm, pmd, address) \
|
|
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
|
|
NULL: pte_offset_map(pmd, address))
|
|
|
|
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
|
|
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
|
|
NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
|
|
|
|
#define pte_alloc_kernel(pmd, address) \
|
|
((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
|
|
NULL: pte_offset_kernel(pmd, address))
|
|
|
|
extern void free_area_init(unsigned long * zones_size);
|
|
extern void free_area_init_node(int nid, pg_data_t *pgdat,
|
|
unsigned long * zones_size, unsigned long zone_start_pfn,
|
|
unsigned long *zholes_size);
|
|
extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
|
|
extern void setup_per_zone_pages_min(void);
|
|
extern void mem_init(void);
|
|
extern void show_mem(void);
|
|
extern void si_meminfo(struct sysinfo * val);
|
|
extern void si_meminfo_node(struct sysinfo *val, int nid);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void setup_per_cpu_pageset(void);
|
|
#else
|
|
static inline void setup_per_cpu_pageset(void) {}
|
|
#endif
|
|
|
|
/* prio_tree.c */
|
|
void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
|
|
void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
|
|
void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
|
|
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
|
|
struct prio_tree_iter *iter);
|
|
|
|
#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
|
|
for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
|
|
(vma = vma_prio_tree_next(vma, iter)); )
|
|
|
|
static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
|
|
struct list_head *list)
|
|
{
|
|
vma->shared.vm_set.parent = NULL;
|
|
list_add_tail(&vma->shared.vm_set.list, list);
|
|
}
|
|
|
|
/* mmap.c */
|
|
extern int __vm_enough_memory(long pages, int cap_sys_admin);
|
|
extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
|
|
extern struct vm_area_struct *vma_merge(struct mm_struct *,
|
|
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
|
|
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
|
|
struct mempolicy *);
|
|
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
|
|
extern int split_vma(struct mm_struct *,
|
|
struct vm_area_struct *, unsigned long addr, int new_below);
|
|
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
|
|
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
|
|
struct rb_node **, struct rb_node *);
|
|
extern void unlink_file_vma(struct vm_area_struct *);
|
|
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
|
|
unsigned long addr, unsigned long len, pgoff_t pgoff);
|
|
extern void exit_mmap(struct mm_struct *);
|
|
extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
|
|
|
|
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
|
|
|
|
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot,
|
|
unsigned long flag, unsigned long pgoff);
|
|
|
|
static inline unsigned long do_mmap(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot,
|
|
unsigned long flag, unsigned long offset)
|
|
{
|
|
unsigned long ret = -EINVAL;
|
|
if ((offset + PAGE_ALIGN(len)) < offset)
|
|
goto out;
|
|
if (!(offset & ~PAGE_MASK))
|
|
ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
|
|
|
|
extern unsigned long do_brk(unsigned long, unsigned long);
|
|
|
|
/* filemap.c */
|
|
extern unsigned long page_unuse(struct page *);
|
|
extern void truncate_inode_pages(struct address_space *, loff_t);
|
|
extern void truncate_inode_pages_range(struct address_space *,
|
|
loff_t lstart, loff_t lend);
|
|
|
|
/* generic vm_area_ops exported for stackable file systems */
|
|
extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
|
|
extern int filemap_populate(struct vm_area_struct *, unsigned long,
|
|
unsigned long, pgprot_t, unsigned long, int);
|
|
|
|
/* mm/page-writeback.c */
|
|
int write_one_page(struct page *page, int wait);
|
|
|
|
/* readahead.c */
|
|
#define VM_MAX_READAHEAD 128 /* kbytes */
|
|
#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
|
|
#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
|
|
* turning readahead off */
|
|
|
|
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
|
|
pgoff_t offset, unsigned long nr_to_read);
|
|
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
|
|
pgoff_t offset, unsigned long nr_to_read);
|
|
unsigned long page_cache_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
struct file *filp,
|
|
pgoff_t offset,
|
|
unsigned long size);
|
|
void handle_ra_miss(struct address_space *mapping,
|
|
struct file_ra_state *ra, pgoff_t offset);
|
|
unsigned long max_sane_readahead(unsigned long nr);
|
|
|
|
/* Do stack extension */
|
|
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
|
|
#ifdef CONFIG_IA64
|
|
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
|
|
#endif
|
|
|
|
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
|
|
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
|
|
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
|
|
struct vm_area_struct **pprev);
|
|
|
|
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
|
|
NULL if none. Assume start_addr < end_addr. */
|
|
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
|
|
{
|
|
struct vm_area_struct * vma = find_vma(mm,start_addr);
|
|
|
|
if (vma && end_addr <= vma->vm_start)
|
|
vma = NULL;
|
|
return vma;
|
|
}
|
|
|
|
static inline unsigned long vma_pages(struct vm_area_struct *vma)
|
|
{
|
|
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
}
|
|
|
|
pgprot_t vm_get_page_prot(unsigned long vm_flags);
|
|
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
|
|
struct page *vmalloc_to_page(void *addr);
|
|
unsigned long vmalloc_to_pfn(void *addr);
|
|
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
|
|
unsigned long pfn, unsigned long size, pgprot_t);
|
|
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
|
|
|
|
struct page *follow_page(struct vm_area_struct *, unsigned long address,
|
|
unsigned int foll_flags);
|
|
#define FOLL_WRITE 0x01 /* check pte is writable */
|
|
#define FOLL_TOUCH 0x02 /* mark page accessed */
|
|
#define FOLL_GET 0x04 /* do get_page on page */
|
|
#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
|
|
#else
|
|
static inline void vm_stat_account(struct mm_struct *mm,
|
|
unsigned long flags, struct file *file, long pages)
|
|
{
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
static inline void
|
|
kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
if (!PageHighMem(page) && !enable)
|
|
debug_check_no_locks_freed(page_address(page),
|
|
numpages * PAGE_SIZE);
|
|
}
|
|
#endif
|
|
|
|
extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
|
|
#ifdef __HAVE_ARCH_GATE_AREA
|
|
int in_gate_area_no_task(unsigned long addr);
|
|
int in_gate_area(struct task_struct *task, unsigned long addr);
|
|
#else
|
|
int in_gate_area_no_task(unsigned long addr);
|
|
#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
|
|
#endif /* __HAVE_ARCH_GATE_AREA */
|
|
|
|
/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
|
|
#define OOM_DISABLE -17
|
|
|
|
int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
|
|
void __user *, size_t *, loff_t *);
|
|
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
|
|
unsigned long lru_pages);
|
|
void drop_pagecache(void);
|
|
void drop_slab(void);
|
|
|
|
#ifndef CONFIG_MMU
|
|
#define randomize_va_space 0
|
|
#else
|
|
extern int randomize_va_space;
|
|
#endif
|
|
|
|
const char *arch_vma_name(struct vm_area_struct *vma);
|
|
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _LINUX_MM_H */
|
|
|