You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/arch/sparc64/mm/init.c

1780 lines
49 KiB

/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
* arch/sparc64/mm/init.c
*
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <asm/head.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/iommu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/spitfire.h>
#include <asm/sections.h>
extern void device_scan(void);
struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
unsigned long *sparc64_valid_addr_bitmap;
/* Ugly, but necessary... -DaveM */
unsigned long phys_base;
unsigned long kern_base;
unsigned long kern_size;
unsigned long pfn_base;
/* This is even uglier. We have a problem where the kernel may not be
* located at phys_base. However, initial __alloc_bootmem() calls need to
* be adjusted to be within the 4-8Megs that the kernel is mapped to, else
* those page mappings wont work. Things are ok after inherit_prom_mappings
* is called though. Dave says he'll clean this up some other time.
* -- BenC
*/
static unsigned long bootmap_base;
/* get_new_mmu_context() uses "cache + 1". */
DEFINE_SPINLOCK(ctx_alloc_lock);
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
#define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
/* References to special section boundaries */
extern char _start[], _end[];
/* Initial ramdisk setup */
extern unsigned long sparc_ramdisk_image64;
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
struct page *mem_map_zero;
int bigkernel = 0;
/* XXX Tune this... */
#define PGT_CACHE_LOW 25
#define PGT_CACHE_HIGH 50
void check_pgt_cache(void)
{
preempt_disable();
if (pgtable_cache_size > PGT_CACHE_HIGH) {
do {
if (pgd_quicklist)
free_pgd_slow(get_pgd_fast());
if (pte_quicklist[0])
free_pte_slow(pte_alloc_one_fast(NULL, 0));
if (pte_quicklist[1])
free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10)));
} while (pgtable_cache_size > PGT_CACHE_LOW);
}
preempt_enable();
}
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_t dcpage_flushes = ATOMIC_INIT(0);
#ifdef CONFIG_SMP
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
#endif
#endif
__inline__ void flush_dcache_page_impl(struct page *page)
{
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_inc(&dcpage_flushes);
#endif
#ifdef DCACHE_ALIASING_POSSIBLE
__flush_dcache_page(page_address(page),
((tlb_type == spitfire) &&
page_mapping(page) != NULL));
#else
if (page_mapping(page) != NULL &&
tlb_type == spitfire)
__flush_icache_page(__pa(page_address(page)));
#endif
}
#define PG_dcache_dirty PG_arch_1
#define dcache_dirty_cpu(page) \
(((page)->flags >> 24) & (NR_CPUS - 1UL))
static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
{
unsigned long mask = this_cpu;
unsigned long non_cpu_bits = ~((NR_CPUS - 1UL) << 24UL);
mask = (mask << 24) | (1UL << PG_dcache_dirty);
__asm__ __volatile__("1:\n\t"
"ldx [%2], %%g7\n\t"
"and %%g7, %1, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"bne,pn %%xcc, 1b\n\t"
" membar #StoreLoad | #StoreStore"
: /* no outputs */
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
: "g1", "g7");
}
static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
{
unsigned long mask = (1UL << PG_dcache_dirty);
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
"1:\n\t"
"ldx [%2], %%g7\n\t"
"srlx %%g7, 24, %%g1\n\t"
"and %%g1, %3, %%g1\n\t"
"cmp %%g1, %0\n\t"
"bne,pn %%icc, 2f\n\t"
" andn %%g7, %1, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"bne,pn %%xcc, 1b\n\t"
" membar #StoreLoad | #StoreStore\n"
"2:"
: /* no outputs */
: "r" (cpu), "r" (mask), "r" (&page->flags),
"i" (NR_CPUS - 1UL)
: "g1", "g7");
}
extern void __update_mmu_cache(unsigned long mmu_context_hw, unsigned long address, pte_t pte, int code);
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
struct page *page;
unsigned long pfn;
unsigned long pg_flags;
pfn = pte_pfn(pte);
if (pfn_valid(pfn) &&
(page = pfn_to_page(pfn), page_mapping(page)) &&
((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
int cpu = ((pg_flags >> 24) & (NR_CPUS - 1UL));
int this_cpu = get_cpu();
/* This is just to optimize away some function calls
* in the SMP case.
*/
if (cpu == this_cpu)
flush_dcache_page_impl(page);
else
smp_flush_dcache_page_impl(page, cpu);
clear_dcache_dirty_cpu(page, cpu);
put_cpu();
}
if (get_thread_fault_code())
__update_mmu_cache(CTX_NRBITS(vma->vm_mm->context),
address, pte, get_thread_fault_code());
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
int this_cpu;
/* Do not bother with the expensive D-cache flush if it
* is merely the zero page. The 'bigcore' testcase in GDB
* causes this case to run millions of times.
*/
if (page == ZERO_PAGE(0))
return;
this_cpu = get_cpu();
mapping = page_mapping(page);
if (mapping && !mapping_mapped(mapping)) {
int dirty = test_bit(PG_dcache_dirty, &page->flags);
if (dirty) {
int dirty_cpu = dcache_dirty_cpu(page);
if (dirty_cpu == this_cpu)
goto out;
smp_flush_dcache_page_impl(page, dirty_cpu);
}
set_dcache_dirty(page, this_cpu);
} else {
/* We could delay the flush for the !page_mapping
* case too. But that case is for exec env/arg
* pages and those are %99 certainly going to get
* faulted into the tlb (and thus flushed) anyways.
*/
flush_dcache_page_impl(page);
}
out:
put_cpu();
}
void flush_icache_range(unsigned long start, unsigned long end)
{
/* Cheetah has coherent I-cache. */
if (tlb_type == spitfire) {
unsigned long kaddr;
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
__flush_icache_page(__get_phys(kaddr));
}
}
unsigned long page_to_pfn(struct page *page)
{
return (unsigned long) ((page - mem_map) + pfn_base);
}
struct page *pfn_to_page(unsigned long pfn)
{
return (mem_map + (pfn - pfn_base));
}
void show_mem(void)
{
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
printk("%ld pages of RAM\n", num_physpages);
printk("%d free pages\n", nr_free_pages());
printk("%d pages in page table cache\n",pgtable_cache_size);
}
void mmu_info(struct seq_file *m)
{
if (tlb_type == cheetah)
seq_printf(m, "MMU Type\t: Cheetah\n");
else if (tlb_type == cheetah_plus)
seq_printf(m, "MMU Type\t: Cheetah+\n");
else if (tlb_type == spitfire)
seq_printf(m, "MMU Type\t: Spitfire\n");
else
seq_printf(m, "MMU Type\t: ???\n");
#ifdef CONFIG_DEBUG_DCFLUSH
seq_printf(m, "DCPageFlushes\t: %d\n",
atomic_read(&dcpage_flushes));
#ifdef CONFIG_SMP
seq_printf(m, "DCPageFlushesXC\t: %d\n",
atomic_read(&dcpage_flushes_xcall));
#endif /* CONFIG_SMP */
#endif /* CONFIG_DEBUG_DCFLUSH */
}
struct linux_prom_translation {
unsigned long virt;
unsigned long size;
unsigned long data;
};
extern unsigned long prom_boot_page;
extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
extern int prom_get_mmu_ihandle(void);
extern void register_prom_callbacks(void);
/* Exported for SMP bootup purposes. */
unsigned long kern_locked_tte_data;
void __init early_pgtable_allocfail(char *type)
{
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
prom_halt();
}
#define BASE_PAGE_SIZE 8192
static pmd_t *prompmd;
/*
* Translate PROM's mapping we capture at boot time into physical address.
* The second parameter is only set from prom_callback() invocations.
*/
unsigned long prom_virt_to_phys(unsigned long promva, int *error)
{
pmd_t *pmdp = prompmd + ((promva >> 23) & 0x7ff);
pte_t *ptep;
unsigned long base;
if (pmd_none(*pmdp)) {
if (error)
*error = 1;
return(0);
}
ptep = (pte_t *)__pmd_page(*pmdp) + ((promva >> 13) & 0x3ff);
if (!pte_present(*ptep)) {
if (error)
*error = 1;
return(0);
}
if (error) {
*error = 0;
return(pte_val(*ptep));
}
base = pte_val(*ptep) & _PAGE_PADDR;
return(base + (promva & (BASE_PAGE_SIZE - 1)));
}
static void inherit_prom_mappings(void)
{
struct linux_prom_translation *trans;
unsigned long phys_page, tte_vaddr, tte_data;
void (*remap_func)(unsigned long, unsigned long, int);
pmd_t *pmdp;
pte_t *ptep;
int node, n, i, tsz;
extern unsigned int obp_iaddr_patch[2], obp_daddr_patch[2];
node = prom_finddevice("/virtual-memory");
n = prom_getproplen(node, "translations");
if (n == 0 || n == -1) {
prom_printf("Couldn't get translation property\n");
prom_halt();
}
n += 5 * sizeof(struct linux_prom_translation);
for (tsz = 1; tsz < n; tsz <<= 1)
/* empty */;
trans = __alloc_bootmem(tsz, SMP_CACHE_BYTES, bootmap_base);
if (trans == NULL) {
prom_printf("inherit_prom_mappings: Cannot alloc translations.\n");
prom_halt();
}
memset(trans, 0, tsz);
if ((n = prom_getproperty(node, "translations", (char *)trans, tsz)) == -1) {
prom_printf("Couldn't get translation property\n");
prom_halt();
}
n = n / sizeof(*trans);
/*
* The obp translations are saved based on 8k pagesize, since obp can
* use a mixture of pagesizes. Misses to the 0xf0000000 - 0x100000000,
* ie obp range, are handled in entry.S and do not use the vpte scheme
* (see rant in inherit_locked_prom_mappings()).
*/
#define OBP_PMD_SIZE 2048
prompmd = __alloc_bootmem(OBP_PMD_SIZE, OBP_PMD_SIZE, bootmap_base);
if (prompmd == NULL)
early_pgtable_allocfail("pmd");
memset(prompmd, 0, OBP_PMD_SIZE);
for (i = 0; i < n; i++) {
unsigned long vaddr;
if (trans[i].virt >= LOW_OBP_ADDRESS && trans[i].virt < HI_OBP_ADDRESS) {
for (vaddr = trans[i].virt;
((vaddr < trans[i].virt + trans[i].size) &&
(vaddr < HI_OBP_ADDRESS));
vaddr += BASE_PAGE_SIZE) {
unsigned long val;
pmdp = prompmd + ((vaddr >> 23) & 0x7ff);
if (pmd_none(*pmdp)) {
ptep = __alloc_bootmem(BASE_PAGE_SIZE,
BASE_PAGE_SIZE,
bootmap_base);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(ptep, 0, BASE_PAGE_SIZE);
pmd_set(pmdp, ptep);
}
ptep = (pte_t *)__pmd_page(*pmdp) +
((vaddr >> 13) & 0x3ff);
val = trans[i].data;
/* Clear diag TTE bits. */
if (tlb_type == spitfire)
val &= ~0x0003fe0000000000UL;
set_pte_at(&init_mm, vaddr,
ptep, __pte(val | _PAGE_MODIFIED));
trans[i].data += BASE_PAGE_SIZE;
}
}
}
phys_page = __pa(prompmd);
obp_iaddr_patch[0] |= (phys_page >> 10);
obp_iaddr_patch[1] |= (phys_page & 0x3ff);
flushi((long)&obp_iaddr_patch[0]);
obp_daddr_patch[0] |= (phys_page >> 10);
obp_daddr_patch[1] |= (phys_page & 0x3ff);
flushi((long)&obp_daddr_patch[0]);
/* Now fixup OBP's idea about where we really are mapped. */
prom_printf("Remapping the kernel... ");
/* Spitfire Errata #32 workaround */
/* NOTE: Using plain zero for the context value is
* correct here, we are not using the Linux trap
* tables yet so we should not use the special
* UltraSPARC-III+ page size encodings yet.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
switch (tlb_type) {
default:
case spitfire:
phys_page = spitfire_get_dtlb_data(sparc64_highest_locked_tlbent());
break;
case cheetah:
case cheetah_plus:
phys_page = cheetah_get_litlb_data(sparc64_highest_locked_tlbent());
break;
};
phys_page &= _PAGE_PADDR;
phys_page += ((unsigned long)&prom_boot_page -
(unsigned long)KERNBASE);
if (tlb_type == spitfire) {
/* Lock this into i/d tlb entry 59 */
__asm__ __volatile__(
"stxa %%g0, [%2] %3\n\t"
"stxa %0, [%1] %4\n\t"
"membar #Sync\n\t"
"flush %%g6\n\t"
"stxa %%g0, [%2] %5\n\t"
"stxa %0, [%1] %6\n\t"
"membar #Sync\n\t"
"flush %%g6"
: : "r" (phys_page | _PAGE_VALID | _PAGE_SZ8K | _PAGE_CP |
_PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W),
"r" (59 << 3), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS),
"i" (ASI_IMMU), "i" (ASI_ITLB_DATA_ACCESS)
: "memory");
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
/* Lock this into i/d tlb-0 entry 11 */
__asm__ __volatile__(
"stxa %%g0, [%2] %3\n\t"
"stxa %0, [%1] %4\n\t"
"membar #Sync\n\t"
"flush %%g6\n\t"
"stxa %%g0, [%2] %5\n\t"
"stxa %0, [%1] %6\n\t"
"membar #Sync\n\t"
"flush %%g6"
: : "r" (phys_page | _PAGE_VALID | _PAGE_SZ8K | _PAGE_CP |
_PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W),
"r" ((0 << 16) | (11 << 3)), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS),
"i" (ASI_IMMU), "i" (ASI_ITLB_DATA_ACCESS)
: "memory");
} else {
/* Implement me :-) */
BUG();
}
tte_vaddr = (unsigned long) KERNBASE;
/* Spitfire Errata #32 workaround */
/* NOTE: Using plain zero for the context value is
* correct here, we are not using the Linux trap
* tables yet so we should not use the special
* UltraSPARC-III+ page size encodings yet.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (tlb_type == spitfire)
tte_data = spitfire_get_dtlb_data(sparc64_highest_locked_tlbent());
else
tte_data = cheetah_get_ldtlb_data(sparc64_highest_locked_tlbent());
kern_locked_tte_data = tte_data;
remap_func = (void *) ((unsigned long) &prom_remap -
(unsigned long) &prom_boot_page);
/* Spitfire Errata #32 workaround */
/* NOTE: Using plain zero for the context value is
* correct here, we are not using the Linux trap
* tables yet so we should not use the special
* UltraSPARC-III+ page size encodings yet.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
remap_func((tlb_type == spitfire ?
(spitfire_get_dtlb_data(sparc64_highest_locked_tlbent()) & _PAGE_PADDR) :
(cheetah_get_litlb_data(sparc64_highest_locked_tlbent()) & _PAGE_PADDR)),
(unsigned long) KERNBASE,
prom_get_mmu_ihandle());
if (bigkernel)
remap_func(((tte_data + 0x400000) & _PAGE_PADDR),
(unsigned long) KERNBASE + 0x400000, prom_get_mmu_ihandle());
/* Flush out that temporary mapping. */
spitfire_flush_dtlb_nucleus_page(0x0);
spitfire_flush_itlb_nucleus_page(0x0);
/* Now lock us back into the TLBs via OBP. */
prom_dtlb_load(sparc64_highest_locked_tlbent(), tte_data, tte_vaddr);
prom_itlb_load(sparc64_highest_locked_tlbent(), tte_data, tte_vaddr);
if (bigkernel) {
prom_dtlb_load(sparc64_highest_locked_tlbent()-1, tte_data + 0x400000,
tte_vaddr + 0x400000);
prom_itlb_load(sparc64_highest_locked_tlbent()-1, tte_data + 0x400000,
tte_vaddr + 0x400000);
}
/* Re-read translations property. */
if ((n = prom_getproperty(node, "translations", (char *)trans, tsz)) == -1) {
prom_printf("Couldn't get translation property\n");
prom_halt();
}
n = n / sizeof(*trans);
for (i = 0; i < n; i++) {
unsigned long vaddr = trans[i].virt;
unsigned long size = trans[i].size;
if (vaddr < 0xf0000000UL) {
unsigned long avoid_start = (unsigned long) KERNBASE;
unsigned long avoid_end = avoid_start + (4 * 1024 * 1024);
if (bigkernel)
avoid_end += (4 * 1024 * 1024);
if (vaddr < avoid_start) {
unsigned long top = vaddr + size;
if (top > avoid_start)
top = avoid_start;
prom_unmap(top - vaddr, vaddr);
}
if ((vaddr + size) > avoid_end) {
unsigned long bottom = vaddr;
if (bottom < avoid_end)
bottom = avoid_end;
prom_unmap((vaddr + size) - bottom, bottom);
}
}
}
prom_printf("done.\n");
register_prom_callbacks();
}
/* The OBP specifications for sun4u mark 0xfffffffc00000000 and
* upwards as reserved for use by the firmware (I wonder if this
* will be the same on Cheetah...). We use this virtual address
* range for the VPTE table mappings of the nucleus so we need
* to zap them when we enter the PROM. -DaveM
*/
static void __flush_nucleus_vptes(void)
{
unsigned long prom_reserved_base = 0xfffffffc00000000UL;
int i;
/* Only DTLB must be checked for VPTE entries. */
if (tlb_type == spitfire) {
for (i = 0; i < 63; i++) {
unsigned long tag;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no cheetah+
* page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
tag = spitfire_get_dtlb_tag(i);
if (((tag & ~(PAGE_MASK)) == 0) &&
((tag & (PAGE_MASK)) >= prom_reserved_base)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
for (i = 0; i < 512; i++) {
unsigned long tag = cheetah_get_dtlb_tag(i, 2);
if ((tag & ~PAGE_MASK) == 0 &&
(tag & PAGE_MASK) >= prom_reserved_base) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
cheetah_put_dtlb_data(i, 0x0UL, 2);
}
if (tlb_type != cheetah_plus)
continue;
tag = cheetah_get_dtlb_tag(i, 3);
if ((tag & ~PAGE_MASK) == 0 &&
(tag & PAGE_MASK) >= prom_reserved_base) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
cheetah_put_dtlb_data(i, 0x0UL, 3);
}
}
} else {
/* Implement me :-) */
BUG();
}
}
static int prom_ditlb_set;
struct prom_tlb_entry {
int tlb_ent;
unsigned long tlb_tag;
unsigned long tlb_data;
};
struct prom_tlb_entry prom_itlb[16], prom_dtlb[16];
void prom_world(int enter)
{
unsigned long pstate;
int i;
if (!enter)
set_fs((mm_segment_t) { get_thread_current_ds() });
if (!prom_ditlb_set)
return;
/* Make sure the following runs atomically. */
__asm__ __volatile__("flushw\n\t"
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
if (enter) {
/* Kick out nucleus VPTEs. */
__flush_nucleus_vptes();
/* Install PROM world. */
for (i = 0; i < 16; i++) {
if (prom_dtlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU));
if (tlb_type == spitfire)
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
}
if (prom_itlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_itlb[i].tlb_tag),
"r" (TLB_TAG_ACCESS),
"i" (ASI_IMMU));
if (tlb_type == spitfire)
spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
}
}
} else {
for (i = 0; i < 16; i++) {
if (prom_dtlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
if (tlb_type == spitfire)
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
else
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
}
if (prom_itlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS),
"i" (ASI_IMMU));
if (tlb_type == spitfire)
spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL);
else
cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL);
}
}
}
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}
void inherit_locked_prom_mappings(int save_p)
{
int i;
int dtlb_seen = 0;
int itlb_seen = 0;
/* Fucking losing PROM has more mappings in the TLB, but
* it (conveniently) fails to mention any of these in the
* translations property. The only ones that matter are
* the locked PROM tlb entries, so we impose the following
* irrecovable rule on the PROM, it is allowed 8 locked
* entries in the ITLB and 8 in the DTLB.
*
* Supposedly the upper 16GB of the address space is
* reserved for OBP, BUT I WISH THIS WAS DOCUMENTED
* SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface
* used between the client program and the firmware on sun5
* systems to coordinate mmu mappings is also COMPLETELY
* UNDOCUMENTED!!!!!! Thanks S(t)un!
*/
if (save_p) {
for (i = 0; i < 16; i++) {
prom_itlb[i].tlb_ent = -1;
prom_dtlb[i].tlb_ent = -1;
}
}
if (tlb_type == spitfire) {
int high = SPITFIRE_HIGHEST_LOCKED_TLBENT - bigkernel;
for (i = 0; i < high; i++) {
unsigned long data;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no cheetah+
* page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
data = spitfire_get_dtlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
tag = spitfire_get_dtlb_tag(i);
if (save_p) {
prom_dtlb[dtlb_seen].tlb_ent = i;
prom_dtlb[dtlb_seen].tlb_tag = tag;
prom_dtlb[dtlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
dtlb_seen++;
if (dtlb_seen > 15)
break;
}
}
for (i = 0; i < high; i++) {
unsigned long data;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
data = spitfire_get_itlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
tag = spitfire_get_itlb_tag(i);
if (save_p) {
prom_itlb[itlb_seen].tlb_ent = i;
prom_itlb[itlb_seen].tlb_tag = tag;
prom_itlb[itlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
spitfire_put_itlb_data(i, 0x0UL);
itlb_seen++;
if (itlb_seen > 15)
break;
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
int high = CHEETAH_HIGHEST_LOCKED_TLBENT - bigkernel;
for (i = 0; i < high; i++) {
unsigned long data;
data = cheetah_get_ldtlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
tag = cheetah_get_ldtlb_tag(i);
if (save_p) {
prom_dtlb[dtlb_seen].tlb_ent = i;
prom_dtlb[dtlb_seen].tlb_tag = tag;
prom_dtlb[dtlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
cheetah_put_ldtlb_data(i, 0x0UL);
dtlb_seen++;
if (dtlb_seen > 15)
break;
}
}
for (i = 0; i < high; i++) {
unsigned long data;
data = cheetah_get_litlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
tag = cheetah_get_litlb_tag(i);
if (save_p) {
prom_itlb[itlb_seen].tlb_ent = i;
prom_itlb[itlb_seen].tlb_tag = tag;
prom_itlb[itlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
cheetah_put_litlb_data(i, 0x0UL);
itlb_seen++;
if (itlb_seen > 15)
break;
}
}
} else {
/* Implement me :-) */
BUG();
}
if (save_p)
prom_ditlb_set = 1;
}
/* Give PROM back his world, done during reboots... */
void prom_reload_locked(void)
{
int i;
for (i = 0; i < 16; i++) {
if (prom_dtlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU));
if (tlb_type == spitfire)
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
}
if (prom_itlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_itlb[i].tlb_tag),
"r" (TLB_TAG_ACCESS),
"i" (ASI_IMMU));
if (tlb_type == spitfire)
spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
else
cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
}
}
}
#ifdef DCACHE_ALIASING_POSSIBLE
void __flush_dcache_range(unsigned long start, unsigned long end)
{
unsigned long va;
if (tlb_type == spitfire) {
int n = 0;
for (va = start; va < end; va += 32) {
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
if (++n >= 512)
break;
}
} else {
start = __pa(start);
end = __pa(end);
for (va = start; va < end; va += 32)
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (va),
"i" (ASI_DCACHE_INVALIDATE));
}
}
#endif /* DCACHE_ALIASING_POSSIBLE */
/* If not locked, zap it. */
void __flush_tlb_all(void)
{
unsigned long pstate;
int i;
__asm__ __volatile__("flushw\n\t"
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
if (tlb_type == spitfire) {
for (i = 0; i < 64; i++) {
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
}
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
spitfire_put_itlb_data(i, 0x0UL);
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
cheetah_flush_dtlb_all();
cheetah_flush_itlb_all();
}
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}
/* Caller does TLB context flushing on local CPU if necessary.
* The caller also ensures that CTX_VALID(mm->context) is false.
*
* We must be careful about boundary cases so that we never
* let the user have CTX 0 (nucleus) or we ever use a CTX
* version of zero (and thus NO_CONTEXT would not be caught
* by version mis-match tests in mmu_context.h).
*/
void get_new_mmu_context(struct mm_struct *mm)
{
unsigned long ctx, new_ctx;
unsigned long orig_pgsz_bits;
spin_lock(&ctx_alloc_lock);
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
if (new_ctx >= (1 << CTX_NR_BITS)) {
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
if (new_ctx >= ctx) {
int i;
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
CTX_FIRST_VERSION;
if (new_ctx == 1)
new_ctx = CTX_FIRST_VERSION;
/* Don't call memset, for 16 entries that's just
* plain silly...
*/
mmu_context_bmap[0] = 3;
mmu_context_bmap[1] = 0;
mmu_context_bmap[2] = 0;
mmu_context_bmap[3] = 0;
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
mmu_context_bmap[i + 0] = 0;
mmu_context_bmap[i + 1] = 0;
mmu_context_bmap[i + 2] = 0;
mmu_context_bmap[i + 3] = 0;
}
goto out;
}
}
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
out:
tlb_context_cache = new_ctx;
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
spin_unlock(&ctx_alloc_lock);
}
#ifndef CONFIG_SMP
struct pgtable_cache_struct pgt_quicklists;
#endif
/* OK, we have to color these pages. The page tables are accessed
* by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S
* code, as well as by PAGE_OFFSET range direct-mapped addresses by
* other parts of the kernel. By coloring, we make sure that the tlbmiss
* fast handlers do not get data from old/garbage dcache lines that
* correspond to an old/stale virtual address (user/kernel) that
* previously mapped the pagetable page while accessing vpte range
* addresses. The idea is that if the vpte color and PAGE_OFFSET range
* color is the same, then when the kernel initializes the pagetable
* using the later address range, accesses with the first address
* range will see the newly initialized data rather than the garbage.
*/
#ifdef DCACHE_ALIASING_POSSIBLE
#define DC_ALIAS_SHIFT 1
#else
#define DC_ALIAS_SHIFT 0
#endif
pte_t *__pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
struct page *page;
unsigned long color;
{
pte_t *ptep = pte_alloc_one_fast(mm, address);
if (ptep)
return ptep;
}
color = VPTE_COLOR(address);
page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT);
if (page) {
unsigned long *to_free;
unsigned long paddr;
pte_t *pte;
#ifdef DCACHE_ALIASING_POSSIBLE
set_page_count(page, 1);
ClearPageCompound(page);
set_page_count((page + 1), 1);
ClearPageCompound(page + 1);
#endif
paddr = (unsigned long) page_address(page);
memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT));
if (!color) {
pte = (pte_t *) paddr;
to_free = (unsigned long *) (paddr + PAGE_SIZE);
} else {
pte = (pte_t *) (paddr + PAGE_SIZE);
to_free = (unsigned long *) paddr;
}
#ifdef DCACHE_ALIASING_POSSIBLE
/* Now free the other one up, adjust cache size. */
preempt_disable();
*to_free = (unsigned long) pte_quicklist[color ^ 0x1];
pte_quicklist[color ^ 0x1] = to_free;
pgtable_cache_size++;
preempt_enable();
#endif
return pte;
}
return NULL;
}
void sparc_ultra_dump_itlb(void)
{
int slot;
if (tlb_type == spitfire) {
printk ("Contents of itlb: ");
for (slot = 0; slot < 14; slot++) printk (" ");
printk ("%2x:%016lx,%016lx\n",
0,
spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
for (slot = 1; slot < 64; slot+=3) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
slot+1,
spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
slot+2,
spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
printk ("Contents of itlb0:\n");
for (slot = 0; slot < 16; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
slot+1,
cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
}
printk ("Contents of itlb2:\n");
for (slot = 0; slot < 128; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
slot+1,
cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
}
}
}
void sparc_ultra_dump_dtlb(void)
{
int slot;
if (tlb_type == spitfire) {
printk ("Contents of dtlb: ");
for (slot = 0; slot < 14; slot++) printk (" ");
printk ("%2x:%016lx,%016lx\n", 0,
spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
for (slot = 1; slot < 64; slot+=3) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
slot+1,
spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
slot+2,
spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
printk ("Contents of dtlb0:\n");
for (slot = 0; slot < 16; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
slot+1,
cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
}
printk ("Contents of dtlb2:\n");
for (slot = 0; slot < 512; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
slot+1,
cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
}
if (tlb_type == cheetah_plus) {
printk ("Contents of dtlb3:\n");
for (slot = 0; slot < 512; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
slot+1,
cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
}
}
}
}
extern unsigned long cmdline_memory_size;
unsigned long __init bootmem_init(unsigned long *pages_avail)
{
unsigned long bootmap_size, start_pfn, end_pfn;
unsigned long end_of_phys_memory = 0UL;
unsigned long bootmap_pfn, bytes_avail, size;
int i;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("bootmem_init: Scan sp_banks, ");
#endif
bytes_avail = 0UL;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
end_of_phys_memory = sp_banks[i].base_addr +
sp_banks[i].num_bytes;
bytes_avail += sp_banks[i].num_bytes;
if (cmdline_memory_size) {
if (bytes_avail > cmdline_memory_size) {
unsigned long slack = bytes_avail - cmdline_memory_size;
bytes_avail -= slack;
end_of_phys_memory -= slack;
sp_banks[i].num_bytes -= slack;
if (sp_banks[i].num_bytes == 0) {
sp_banks[i].base_addr = 0xdeadbeef;
} else {
sp_banks[i+1].num_bytes = 0;
sp_banks[i+1].base_addr = 0xdeadbeef;
}
break;
}
}
}
*pages_avail = bytes_avail >> PAGE_SHIFT;
/* Start with page aligned address of last symbol in kernel
* image. The kernel is hard mapped below PAGE_OFFSET in a
* 4MB locked TLB translation.
*/
start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
bootmap_pfn = start_pfn;
end_pfn = end_of_phys_memory >> PAGE_SHIFT;
#ifdef CONFIG_BLK_DEV_INITRD
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
unsigned long ramdisk_image = sparc_ramdisk_image ?
sparc_ramdisk_image : sparc_ramdisk_image64;
if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
ramdisk_image -= KERNBASE;
initrd_start = ramdisk_image + phys_base;
initrd_end = initrd_start + sparc_ramdisk_size;
if (initrd_end > end_of_phys_memory) {
printk(KERN_CRIT "initrd extends beyond end of memory "
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
initrd_end, end_of_phys_memory);
initrd_start = 0;
}
if (initrd_start) {
if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
}
}
#endif
/* Initialize the boot-time allocator. */
max_pfn = max_low_pfn = end_pfn;
min_low_pfn = pfn_base;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
min_low_pfn, bootmap_pfn, max_low_pfn);
#endif
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
bootmap_base = bootmap_pfn << PAGE_SHIFT;
/* Now register the available physical memory with the
* allocator.
*/
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("free_bootmem(sp_banks:%d): base[%lx] size[%lx]\n",
i, sp_banks[i].base_addr, sp_banks[i].num_bytes);
#endif
free_bootmem(sp_banks[i].base_addr, sp_banks[i].num_bytes);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
size = initrd_end - initrd_start;
/* Resert the initrd image area. */
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
initrd_start, initrd_end);
#endif
reserve_bootmem(initrd_start, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
initrd_start += PAGE_OFFSET;
initrd_end += PAGE_OFFSET;
}
#endif
/* Reserve the kernel text/data/bss. */
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
#endif
reserve_bootmem(kern_base, kern_size);
*pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
/* Reserve the bootmem map. We do not account for it
* in pages_avail because we will release that memory
* in free_all_bootmem.
*/
size = bootmap_size;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
(bootmap_pfn << PAGE_SHIFT), size);
#endif
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
return end_pfn;
}
/* paging_init() sets up the page tables */
extern void cheetah_ecache_flush_init(void);
static unsigned long last_valid_pfn;
void __init paging_init(void)
{
extern pmd_t swapper_pmd_dir[1024];
extern unsigned int sparc64_vpte_patchme1[1];
extern unsigned int sparc64_vpte_patchme2[1];
unsigned long alias_base = kern_base + PAGE_OFFSET;
unsigned long second_alias_page = 0;
unsigned long pt, flags, end_pfn, pages_avail;
unsigned long shift = alias_base - ((unsigned long)KERNBASE);
unsigned long real_end;
set_bit(0, mmu_context_bmap);
real_end = (unsigned long)_end;
if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
bigkernel = 1;
#ifdef CONFIG_BLK_DEV_INITRD
if (sparc_ramdisk_image || sparc_ramdisk_image64)
real_end = (PAGE_ALIGN(real_end) + PAGE_ALIGN(sparc_ramdisk_size));
#endif
/* We assume physical memory starts at some 4mb multiple,
* if this were not true we wouldn't boot up to this point
* anyways.
*/
pt = kern_base | _PAGE_VALID | _PAGE_SZ4MB;
pt |= _PAGE_CP | _PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W;
local_irq_save(flags);
if (tlb_type == spitfire) {
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (alias_base), "r" (pt),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" (61 << 3)
: "memory");
if (real_end >= KERNBASE + 0x340000) {
second_alias_page = alias_base + 0x400000;
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (second_alias_page), "r" (pt + 0x400000),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" (60 << 3)
: "memory");
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (alias_base), "r" (pt),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" ((0<<16) | (13<<3))
: "memory");
if (real_end >= KERNBASE + 0x340000) {
second_alias_page = alias_base + 0x400000;
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (second_alias_page), "r" (pt + 0x400000),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" ((0<<16) | (12<<3))
: "memory");
}
}
local_irq_restore(flags);
/* Now set kernel pgd to upper alias so physical page computations
* work.
*/
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
memset(swapper_pmd_dir, 0, sizeof(swapper_pmd_dir));
/* Now can init the kernel/bad page tables. */
pud_set(pud_offset(&swapper_pg_dir[0], 0),
swapper_pmd_dir + (shift / sizeof(pgd_t)));
sparc64_vpte_patchme1[0] |=
(((unsigned long)pgd_val(init_mm.pgd[0])) >> 10);
sparc64_vpte_patchme2[0] |=
(((unsigned long)pgd_val(init_mm.pgd[0])) & 0x3ff);
flushi((long)&sparc64_vpte_patchme1[0]);
/* Setup bootmem... */
pages_avail = 0;
last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
/* Inherit non-locked OBP mappings. */
inherit_prom_mappings();
/* Ok, we can use our TLB miss and window trap handlers safely.
* We need to do a quick peek here to see if we are on StarFire
* or not, so setup_tba can setup the IRQ globals correctly (it
* needs to get the hard smp processor id correctly).
*/
{
extern void setup_tba(int);
setup_tba(this_is_starfire);
}
inherit_locked_prom_mappings(1);
/* We only created DTLB mapping of this stuff. */
spitfire_flush_dtlb_nucleus_page(alias_base);
if (second_alias_page)
spitfire_flush_dtlb_nucleus_page(second_alias_page);
__flush_tlb_all();
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long npages;
int znum;
for (znum = 0; znum < MAX_NR_ZONES; znum++)
zones_size[znum] = zholes_size[znum] = 0;
npages = end_pfn - pfn_base;
zones_size[ZONE_DMA] = npages;
zholes_size[ZONE_DMA] = npages - pages_avail;
free_area_init_node(0, &contig_page_data, zones_size,
phys_base >> PAGE_SHIFT, zholes_size);
}
device_scan();
}
/* Ok, it seems that the prom can allocate some more memory chunks
* as a side effect of some prom calls we perform during the
* boot sequence. My most likely theory is that it is from the
* prom_set_traptable() call, and OBP is allocating a scratchpad
* for saving client program register state etc.
*/
static void __init sort_memlist(struct linux_mlist_p1275 *thislist)
{
int swapi = 0;
int i, mitr;
unsigned long tmpaddr, tmpsize;
unsigned long lowest;
for (i = 0; thislist[i].theres_more != 0; i++) {
lowest = thislist[i].start_adr;
for (mitr = i+1; thislist[mitr-1].theres_more != 0; mitr++)
if (thislist[mitr].start_adr < lowest) {
lowest = thislist[mitr].start_adr;
swapi = mitr;
}
if (lowest == thislist[i].start_adr)
continue;
tmpaddr = thislist[swapi].start_adr;
tmpsize = thislist[swapi].num_bytes;
for (mitr = swapi; mitr > i; mitr--) {
thislist[mitr].start_adr = thislist[mitr-1].start_adr;
thislist[mitr].num_bytes = thislist[mitr-1].num_bytes;
}
thislist[i].start_adr = tmpaddr;
thislist[i].num_bytes = tmpsize;
}
}
void __init rescan_sp_banks(void)
{
struct linux_prom64_registers memlist[64];
struct linux_mlist_p1275 avail[64], *mlist;
unsigned long bytes, base_paddr;
int num_regs, node = prom_finddevice("/memory");
int i;
num_regs = prom_getproperty(node, "available",
(char *) memlist, sizeof(memlist));
num_regs = (num_regs / sizeof(struct linux_prom64_registers));
for (i = 0; i < num_regs; i++) {
avail[i].start_adr = memlist[i].phys_addr;
avail[i].num_bytes = memlist[i].reg_size;
avail[i].theres_more = &avail[i + 1];
}
avail[i - 1].theres_more = NULL;
sort_memlist(avail);
mlist = &avail[0];
i = 0;
bytes = mlist->num_bytes;
base_paddr = mlist->start_adr;
sp_banks[0].base_addr = base_paddr;
sp_banks[0].num_bytes = bytes;
while (mlist->theres_more != NULL){
i++;
mlist = mlist->theres_more;
bytes = mlist->num_bytes;
if (i >= SPARC_PHYS_BANKS-1) {
printk ("The machine has more banks than "
"this kernel can support\n"
"Increase the SPARC_PHYS_BANKS "
"setting (currently %d)\n",
SPARC_PHYS_BANKS);
i = SPARC_PHYS_BANKS-1;
break;
}
sp_banks[i].base_addr = mlist->start_adr;
sp_banks[i].num_bytes = mlist->num_bytes;
}
i++;
sp_banks[i].base_addr = 0xdeadbeefbeefdeadUL;
sp_banks[i].num_bytes = 0;
for (i = 0; sp_banks[i].num_bytes != 0; i++)
sp_banks[i].num_bytes &= PAGE_MASK;
}
static void __init taint_real_pages(void)
{
struct sparc_phys_banks saved_sp_banks[SPARC_PHYS_BANKS];
int i;
for (i = 0; i < SPARC_PHYS_BANKS; i++) {
saved_sp_banks[i].base_addr =
sp_banks[i].base_addr;
saved_sp_banks[i].num_bytes =
sp_banks[i].num_bytes;
}
rescan_sp_banks();
/* Find changes discovered in the sp_bank rescan and
* reserve the lost portions in the bootmem maps.
*/
for (i = 0; saved_sp_banks[i].num_bytes; i++) {
unsigned long old_start, old_end;
old_start = saved_sp_banks[i].base_addr;
old_end = old_start +
saved_sp_banks[i].num_bytes;
while (old_start < old_end) {
int n;
for (n = 0; sp_banks[n].num_bytes; n++) {
unsigned long new_start, new_end;
new_start = sp_banks[n].base_addr;
new_end = new_start + sp_banks[n].num_bytes;
if (new_start <= old_start &&
new_end >= (old_start + PAGE_SIZE)) {
set_bit (old_start >> 22,
sparc64_valid_addr_bitmap);
goto do_next_page;
}
}
reserve_bootmem(old_start, PAGE_SIZE);
do_next_page:
old_start += PAGE_SIZE;
}
}
}
void __init mem_init(void)
{
unsigned long codepages, datapages, initpages;
unsigned long addr, last;
int i;
i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
i += 1;
sparc64_valid_addr_bitmap = (unsigned long *)
__alloc_bootmem(i << 3, SMP_CACHE_BYTES, bootmap_base);
if (sparc64_valid_addr_bitmap == NULL) {
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
prom_halt();
}
memset(sparc64_valid_addr_bitmap, 0, i << 3);
addr = PAGE_OFFSET + kern_base;
last = PAGE_ALIGN(kern_size) + addr;
while (addr < last) {
set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
addr += PAGE_SIZE;
}
taint_real_pages();
max_mapnr = last_valid_pfn - pfn_base;
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("mem_init: Calling free_all_bootmem().\n");
#endif
totalram_pages = num_physpages = free_all_bootmem() - 1;
/*
* Set up the zero page, mark it reserved, so that page count
* is not manipulated when freeing the page from user ptes.
*/
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
if (mem_map_zero == NULL) {
prom_printf("paging_init: Cannot alloc zero page.\n");
prom_halt();
}
SetPageReserved(mem_map_zero);
codepages = (((unsigned long) _etext) - ((unsigned long) _start));
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
nr_free_pages() << (PAGE_SHIFT-10),
codepages << (PAGE_SHIFT-10),
datapages << (PAGE_SHIFT-10),
initpages << (PAGE_SHIFT-10),
PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_ecache_flush_init();
}
void free_initmem (void)
{
unsigned long addr, initend;
/*
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
*/
addr = PAGE_ALIGN((unsigned long)(__init_begin));
initend = (unsigned long)(__init_end) & PAGE_MASK;
for (; addr < initend; addr += PAGE_SIZE) {
unsigned long page;
struct page *p;
page = (addr +
((unsigned long) __va(kern_base)) -
((unsigned long) KERNBASE));
memset((void *)addr, 0xcc, PAGE_SIZE);
p = virt_to_page(page);
ClearPageReserved(p);
set_page_count(p, 1);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
struct page *p = virt_to_page(start);
ClearPageReserved(p);
set_page_count(p, 1);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
#endif