You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/bluetooth/hci_ag6xx.c

337 lines
7.8 KiB

/*
*
* Bluetooth HCI UART driver for Intel/AG6xx devices
*
* Copyright (C) 2016 Intel Corporation
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/tty.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "hci_uart.h"
#include "btintel.h"
struct ag6xx_data {
struct sk_buff *rx_skb;
struct sk_buff_head txq;
};
struct pbn_entry {
__le32 addr;
__le32 plen;
__u8 data[0];
} __packed;
static int ag6xx_open(struct hci_uart *hu)
{
struct ag6xx_data *ag6xx;
BT_DBG("hu %p", hu);
ag6xx = kzalloc(sizeof(*ag6xx), GFP_KERNEL);
if (!ag6xx)
return -ENOMEM;
skb_queue_head_init(&ag6xx->txq);
hu->priv = ag6xx;
return 0;
}
static int ag6xx_close(struct hci_uart *hu)
{
struct ag6xx_data *ag6xx = hu->priv;
BT_DBG("hu %p", hu);
skb_queue_purge(&ag6xx->txq);
kfree_skb(ag6xx->rx_skb);
kfree(ag6xx);
hu->priv = NULL;
return 0;
}
static int ag6xx_flush(struct hci_uart *hu)
{
struct ag6xx_data *ag6xx = hu->priv;
BT_DBG("hu %p", hu);
skb_queue_purge(&ag6xx->txq);
return 0;
}
static struct sk_buff *ag6xx_dequeue(struct hci_uart *hu)
{
struct ag6xx_data *ag6xx = hu->priv;
struct sk_buff *skb;
skb = skb_dequeue(&ag6xx->txq);
if (!skb)
return skb;
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);
return skb;
}
static int ag6xx_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
struct ag6xx_data *ag6xx = hu->priv;
skb_queue_tail(&ag6xx->txq, skb);
return 0;
}
static const struct h4_recv_pkt ag6xx_recv_pkts[] = {
{ H4_RECV_ACL, .recv = hci_recv_frame },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = hci_recv_frame },
};
static int ag6xx_recv(struct hci_uart *hu, const void *data, int count)
{
struct ag6xx_data *ag6xx = hu->priv;
if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
return -EUNATCH;
ag6xx->rx_skb = h4_recv_buf(hu->hdev, ag6xx->rx_skb, data, count,
ag6xx_recv_pkts,
ARRAY_SIZE(ag6xx_recv_pkts));
if (IS_ERR(ag6xx->rx_skb)) {
int err = PTR_ERR(ag6xx->rx_skb);
bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
ag6xx->rx_skb = NULL;
return err;
}
return count;
}
static int intel_mem_write(struct hci_dev *hdev, u32 addr, u32 plen,
const void *data)
{
/* Can write a maximum of 247 bytes per HCI command.
* HCI cmd Header (3), Intel mem write header (6), data (247).
*/
while (plen > 0) {
struct sk_buff *skb;
u8 cmd_param[253], fragment_len = (plen > 247) ? 247 : plen;
__le32 leaddr = cpu_to_le32(addr);
memcpy(cmd_param, &leaddr, 4);
cmd_param[4] = 0;
cmd_param[5] = fragment_len;
memcpy(cmd_param + 6, data, fragment_len);
skb = __hci_cmd_sync(hdev, 0xfc8e, fragment_len + 6, cmd_param,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
plen -= fragment_len;
data += fragment_len;
addr += fragment_len;
}
return 0;
}
static int ag6xx_setup(struct hci_uart *hu)
{
struct hci_dev *hdev = hu->hdev;
struct sk_buff *skb;
struct intel_version ver;
const struct firmware *fw;
const u8 *fw_ptr;
char fwname[64];
bool patched = false;
int err;
hu->hdev->set_diag = btintel_set_diag;
hu->hdev->set_bdaddr = btintel_set_bdaddr;
err = btintel_enter_mfg(hdev);
if (err)
return err;
err = btintel_read_version(hdev, &ver);
if (err)
return err;
btintel_version_info(hdev, &ver);
/* The hardware platform number has a fixed value of 0x37 and
* for now only accept this single value.
*/
if (ver.hw_platform != 0x37) {
bt_dev_err(hdev, "Unsupported Intel hardware platform: 0x%X",
ver.hw_platform);
return -EINVAL;
}
/* Only the hardware variant iBT 2.1 (AG6XX) is supported by this
* firmware setup method.
*/
if (ver.hw_variant != 0x0a) {
bt_dev_err(hdev, "Unsupported Intel hardware variant: 0x%x",
ver.hw_variant);
return -EINVAL;
}
snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bddata",
ver.hw_platform, ver.hw_variant);
err = request_firmware(&fw, fwname, &hdev->dev);
if (err < 0) {
bt_dev_err(hdev, "Failed to open Intel bddata file: %s (%d)",
fwname, err);
goto patch;
}
fw_ptr = fw->data;
bt_dev_info(hdev, "Applying bddata (%s)", fwname);
skb = __hci_cmd_sync_ev(hdev, 0xfc2f, fw->size, fw->data,
HCI_EV_CMD_STATUS, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Applying bddata failed (%ld)", PTR_ERR(skb));
release_firmware(fw);
return PTR_ERR(skb);
}
kfree_skb(skb);
release_firmware(fw);
patch:
/* If there is no applied patch, fw_patch_num is always 0x00. In other
* cases, current firmware is already patched. No need to patch it.
*/
if (ver.fw_patch_num) {
bt_dev_info(hdev, "Device is already patched. patch num: %02x",
ver.fw_patch_num);
patched = true;
goto complete;
}
snprintf(fwname, sizeof(fwname),
"intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.pbn",
ver.hw_platform, ver.hw_variant, ver.hw_revision,
ver.fw_variant, ver.fw_revision, ver.fw_build_num,
ver.fw_build_ww, ver.fw_build_yy);
err = request_firmware(&fw, fwname, &hdev->dev);
if (err < 0) {
bt_dev_err(hdev, "Failed to open Intel patch file: %s(%d)",
fwname, err);
goto complete;
}
fw_ptr = fw->data;
bt_dev_info(hdev, "Patching firmware file (%s)", fwname);
/* PBN patch file contains a list of binary patches to be applied on top
* of the embedded firmware. Each patch entry header contains the target
* address and patch size.
*
* Patch entry:
* | addr(le) | patch_len(le) | patch_data |
* | 4 Bytes | 4 Bytes | n Bytes |
*
* PBN file is terminated by a patch entry whose address is 0xffffffff.
*/
while (fw->size > fw_ptr - fw->data) {
struct pbn_entry *pbn = (void *)fw_ptr;
u32 addr, plen;
if (pbn->addr == 0xffffffff) {
bt_dev_info(hdev, "Patching complete");
patched = true;
break;
}
addr = le32_to_cpu(pbn->addr);
plen = le32_to_cpu(pbn->plen);
if (fw->data + fw->size <= pbn->data + plen) {
bt_dev_info(hdev, "Invalid patch len (%d)", plen);
break;
}
bt_dev_info(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
fw->size);
err = intel_mem_write(hdev, addr, plen, pbn->data);
if (err) {
bt_dev_err(hdev, "Patching failed");
break;
}
fw_ptr = pbn->data + plen;
}
release_firmware(fw);
complete:
/* Exit manufacturing mode and reset */
err = btintel_exit_mfg(hdev, true, patched);
if (err)
return err;
/* Set the event mask for Intel specific vendor events. This enables
* a few extra events that are useful during general operation.
*/
btintel_set_event_mask_mfg(hdev, false);
btintel_check_bdaddr(hdev);
return 0;
}
static const struct hci_uart_proto ag6xx_proto = {
.id = HCI_UART_AG6XX,
.name = "AG6XX",
.manufacturer = 2,
.open = ag6xx_open,
.close = ag6xx_close,
.flush = ag6xx_flush,
.setup = ag6xx_setup,
.recv = ag6xx_recv,
.enqueue = ag6xx_enqueue,
.dequeue = ag6xx_dequeue,
};
int __init ag6xx_init(void)
{
return hci_uart_register_proto(&ag6xx_proto);
}
int __exit ag6xx_deinit(void)
{
return hci_uart_unregister_proto(&ag6xx_proto);
}