You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/arch/arm/mach-exynos4/dev-ahci.c

263 lines
7.1 KiB

/* linux/arch/arm/mach-exynos4/dev-ahci.c
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS4 - AHCI support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/ahci_platform.h>
#include <plat/cpu.h>
#include <mach/irqs.h>
#include <mach/map.h>
#include <mach/regs-pmu.h>
/* PHY Control Register */
#define SATA_CTRL0 0x0
/* PHY Link Control Register */
#define SATA_CTRL1 0x4
/* PHY Status Register */
#define SATA_PHY_STATUS 0x8
#define SATA_CTRL0_RX_DATA_VALID(x) (x << 27)
#define SATA_CTRL0_SPEED_MODE (1 << 26)
#define SATA_CTRL0_M_PHY_CAL (1 << 19)
#define SATA_CTRL0_PHY_CMU_RST_N (1 << 10)
#define SATA_CTRL0_M_PHY_LN_RST_N (1 << 9)
#define SATA_CTRL0_PHY_POR_N (1 << 8)
#define SATA_CTRL1_RST_PMALIVE_N (1 << 8)
#define SATA_CTRL1_RST_RXOOB_N (1 << 7)
#define SATA_CTRL1_RST_RX_N (1 << 6)
#define SATA_CTRL1_RST_TX_N (1 << 5)
#define SATA_PHY_STATUS_CMU_OK (1 << 18)
#define SATA_PHY_STATUS_LANE_OK (1 << 16)
#define LANE0 0x200
#define COM_LANE 0xA00
#define HOST_PORTS_IMPL 0xC
#define SCLK_SATA_FREQ (67 * MHZ)
static void __iomem *phy_base, *phy_ctrl;
struct phy_reg {
u8 reg;
u8 val;
};
/* SATA PHY setup */
static const struct phy_reg exynos4_sataphy_cmu[] = {
{ 0x00, 0x06 }, { 0x02, 0x80 }, { 0x22, 0xa0 }, { 0x23, 0x42 },
{ 0x2e, 0x04 }, { 0x2f, 0x50 }, { 0x30, 0x70 }, { 0x31, 0x02 },
{ 0x32, 0x25 }, { 0x33, 0x40 }, { 0x34, 0x01 }, { 0x35, 0x40 },
{ 0x61, 0x2e }, { 0x63, 0x5e }, { 0x65, 0x42 }, { 0x66, 0xd1 },
{ 0x67, 0x20 }, { 0x68, 0x28 }, { 0x69, 0x78 }, { 0x6a, 0x04 },
{ 0x6b, 0xc8 }, { 0x6c, 0x06 },
};
static const struct phy_reg exynos4_sataphy_lane[] = {
{ 0x00, 0x02 }, { 0x05, 0x10 }, { 0x06, 0x84 }, { 0x07, 0x04 },
{ 0x08, 0xe0 }, { 0x10, 0x23 }, { 0x13, 0x05 }, { 0x14, 0x30 },
{ 0x15, 0x00 }, { 0x17, 0x70 }, { 0x18, 0xf2 }, { 0x19, 0x1e },
{ 0x1a, 0x18 }, { 0x1b, 0x0d }, { 0x1c, 0x08 }, { 0x50, 0x60 },
{ 0x51, 0x0f },
};
static const struct phy_reg exynos4_sataphy_comlane[] = {
{ 0x01, 0x20 }, { 0x03, 0x40 }, { 0x04, 0x3c }, { 0x05, 0x7d },
{ 0x06, 0x1d }, { 0x07, 0xcf }, { 0x08, 0x05 }, { 0x09, 0x63 },
{ 0x0a, 0x29 }, { 0x0b, 0xc4 }, { 0x0c, 0x01 }, { 0x0d, 0x03 },
{ 0x0e, 0x28 }, { 0x0f, 0x98 }, { 0x10, 0x19 }, { 0x13, 0x80 },
{ 0x14, 0xf0 }, { 0x15, 0xd0 }, { 0x39, 0xa0 }, { 0x3a, 0xa0 },
{ 0x3b, 0xa0 }, { 0x3c, 0xa0 }, { 0x3d, 0xa0 }, { 0x3e, 0xa0 },
{ 0x3f, 0xa0 }, { 0x40, 0x42 }, { 0x42, 0x80 }, { 0x43, 0x58 },
{ 0x45, 0x44 }, { 0x46, 0x5c }, { 0x47, 0x86 }, { 0x48, 0x8d },
{ 0x49, 0xd0 }, { 0x4a, 0x09 }, { 0x4b, 0x90 }, { 0x4c, 0x07 },
{ 0x4d, 0x40 }, { 0x51, 0x20 }, { 0x52, 0x32 }, { 0x7f, 0xd8 },
{ 0x80, 0x1a }, { 0x81, 0xff }, { 0x82, 0x11 }, { 0x83, 0x00 },
{ 0x87, 0xf0 }, { 0x87, 0xff }, { 0x87, 0xff }, { 0x87, 0xff },
{ 0x87, 0xff }, { 0x8c, 0x1c }, { 0x8d, 0xc2 }, { 0x8e, 0xc3 },
{ 0x8f, 0x3f }, { 0x90, 0x0a }, { 0x96, 0xf8 },
};
static int wait_for_phy_ready(void __iomem *reg, unsigned long bit)
{
unsigned long timeout;
/* wait for maximum of 3 sec */
timeout = jiffies + msecs_to_jiffies(3000);
while (!(__raw_readl(reg) & bit)) {
if (time_after(jiffies, timeout))
return -1;
cpu_relax();
}
return 0;
}
static int ahci_phy_init(void __iomem *mmio)
{
int i, ctrl0;
for (i = 0; i < ARRAY_SIZE(exynos4_sataphy_cmu); i++)
__raw_writeb(exynos4_sataphy_cmu[i].val,
phy_base + (exynos4_sataphy_cmu[i].reg * 4));
for (i = 0; i < ARRAY_SIZE(exynos4_sataphy_lane); i++)
__raw_writeb(exynos4_sataphy_lane[i].val,
phy_base + (LANE0 + exynos4_sataphy_lane[i].reg) * 4);
for (i = 0; i < ARRAY_SIZE(exynos4_sataphy_comlane); i++)
__raw_writeb(exynos4_sataphy_comlane[i].val,
phy_base + (COM_LANE + exynos4_sataphy_comlane[i].reg) * 4);
__raw_writeb(0x07, phy_base);
ctrl0 = __raw_readl(phy_ctrl + SATA_CTRL0);
ctrl0 |= SATA_CTRL0_PHY_CMU_RST_N;
__raw_writel(ctrl0, phy_ctrl + SATA_CTRL0);
if (wait_for_phy_ready(phy_ctrl + SATA_PHY_STATUS,
SATA_PHY_STATUS_CMU_OK) < 0) {
printk(KERN_ERR "PHY CMU not ready\n");
return -EBUSY;
}
__raw_writeb(0x03, phy_base + (COM_LANE * 4));
ctrl0 = __raw_readl(phy_ctrl + SATA_CTRL0);
ctrl0 |= SATA_CTRL0_M_PHY_LN_RST_N;
__raw_writel(ctrl0, phy_ctrl + SATA_CTRL0);
if (wait_for_phy_ready(phy_ctrl + SATA_PHY_STATUS,
SATA_PHY_STATUS_LANE_OK) < 0) {
printk(KERN_ERR "PHY LANE not ready\n");
return -EBUSY;
}
ctrl0 = __raw_readl(phy_ctrl + SATA_CTRL0);
ctrl0 |= SATA_CTRL0_M_PHY_CAL;
__raw_writel(ctrl0, phy_ctrl + SATA_CTRL0);
return 0;
}
static int exynos4_ahci_init(struct device *dev, void __iomem *mmio)
{
struct clk *clk_sata, *clk_sataphy, *clk_sclk_sata;
int val, ret;
phy_base = ioremap(EXYNOS4_PA_SATAPHY, SZ_64K);
if (!phy_base) {
dev_err(dev, "failed to allocate memory for SATA PHY\n");
return -ENOMEM;
}
phy_ctrl = ioremap(EXYNOS4_PA_SATAPHY_CTRL, SZ_16);
if (!phy_ctrl) {
dev_err(dev, "failed to allocate memory for SATA PHY CTRL\n");
ret = -ENOMEM;
goto err1;
}
clk_sata = clk_get(dev, "sata");
if (IS_ERR(clk_sata)) {
dev_err(dev, "failed to get sata clock\n");
ret = PTR_ERR(clk_sata);
clk_sata = NULL;
goto err2;
}
clk_enable(clk_sata);
clk_sataphy = clk_get(dev, "sataphy");
if (IS_ERR(clk_sataphy)) {
dev_err(dev, "failed to get sataphy clock\n");
ret = PTR_ERR(clk_sataphy);
clk_sataphy = NULL;
goto err3;
}
clk_enable(clk_sataphy);
clk_sclk_sata = clk_get(dev, "sclk_sata");
if (IS_ERR(clk_sclk_sata)) {
dev_err(dev, "failed to get sclk_sata\n");
ret = PTR_ERR(clk_sclk_sata);
clk_sclk_sata = NULL;
goto err4;
}
clk_enable(clk_sclk_sata);
clk_set_rate(clk_sclk_sata, SCLK_SATA_FREQ);
__raw_writel(S5P_PMU_SATA_PHY_CONTROL_EN, S5P_PMU_SATA_PHY_CONTROL);
/* Enable PHY link control */
val = SATA_CTRL1_RST_PMALIVE_N | SATA_CTRL1_RST_RXOOB_N |
SATA_CTRL1_RST_RX_N | SATA_CTRL1_RST_TX_N;
__raw_writel(val, phy_ctrl + SATA_CTRL1);
/* Set communication speed as 3Gbps and enable PHY power */
val = SATA_CTRL0_RX_DATA_VALID(3) | SATA_CTRL0_SPEED_MODE |
SATA_CTRL0_PHY_POR_N;
__raw_writel(val, phy_ctrl + SATA_CTRL0);
/* Port0 is available */
__raw_writel(0x1, mmio + HOST_PORTS_IMPL);
return ahci_phy_init(mmio);
err4:
clk_disable(clk_sataphy);
clk_put(clk_sataphy);
err3:
clk_disable(clk_sata);
clk_put(clk_sata);
err2:
iounmap(phy_ctrl);
err1:
iounmap(phy_base);
return ret;
}
static struct ahci_platform_data exynos4_ahci_pdata = {
.init = exynos4_ahci_init,
};
static struct resource exynos4_ahci_resource[] = {
[0] = {
.start = EXYNOS4_PA_SATA,
.end = EXYNOS4_PA_SATA + SZ_64K - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_SATA,
.end = IRQ_SATA,
.flags = IORESOURCE_IRQ,
},
};
static u64 exynos4_ahci_dmamask = DMA_BIT_MASK(32);
struct platform_device exynos4_device_ahci = {
.name = "ahci",
.id = -1,
.resource = exynos4_ahci_resource,
.num_resources = ARRAY_SIZE(exynos4_ahci_resource),
.dev = {
.platform_data = &exynos4_ahci_pdata,
.dma_mask = &exynos4_ahci_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
};