You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1792 lines
43 KiB
1792 lines
43 KiB
/*
|
|
* Procedures for creating, accessing and interpreting the device tree.
|
|
*
|
|
* Paul Mackerras August 1996.
|
|
* Copyright (C) 1996-2005 Paul Mackerras.
|
|
*
|
|
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
|
|
* {engebret|bergner}@us.ibm.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/lmb.h>
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kdump.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/system.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pci.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/pSeries_reconfig.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/kexec.h>
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(fmt...) printk(KERN_ERR fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
|
|
static int __initdata dt_root_addr_cells;
|
|
static int __initdata dt_root_size_cells;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
int __initdata iommu_is_off;
|
|
int __initdata iommu_force_on;
|
|
unsigned long tce_alloc_start, tce_alloc_end;
|
|
#endif
|
|
|
|
typedef u32 cell_t;
|
|
|
|
#if 0
|
|
static struct boot_param_header *initial_boot_params __initdata;
|
|
#else
|
|
struct boot_param_header *initial_boot_params;
|
|
#endif
|
|
|
|
static struct device_node *allnodes = NULL;
|
|
|
|
/* use when traversing tree through the allnext, child, sibling,
|
|
* or parent members of struct device_node.
|
|
*/
|
|
static DEFINE_RWLOCK(devtree_lock);
|
|
|
|
/* export that to outside world */
|
|
struct device_node *of_chosen;
|
|
|
|
static inline char *find_flat_dt_string(u32 offset)
|
|
{
|
|
return ((char *)initial_boot_params) +
|
|
initial_boot_params->off_dt_strings + offset;
|
|
}
|
|
|
|
/**
|
|
* This function is used to scan the flattened device-tree, it is
|
|
* used to extract the memory informations at boot before we can
|
|
* unflatten the tree
|
|
*/
|
|
int __init of_scan_flat_dt(int (*it)(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
unsigned long p = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
int rc = 0;
|
|
int depth = -1;
|
|
|
|
do {
|
|
u32 tag = *((u32 *)p);
|
|
char *pathp;
|
|
|
|
p += 4;
|
|
if (tag == OF_DT_END_NODE) {
|
|
depth --;
|
|
continue;
|
|
}
|
|
if (tag == OF_DT_NOP)
|
|
continue;
|
|
if (tag == OF_DT_END)
|
|
break;
|
|
if (tag == OF_DT_PROP) {
|
|
u32 sz = *((u32 *)p);
|
|
p += 8;
|
|
if (initial_boot_params->version < 0x10)
|
|
p = _ALIGN(p, sz >= 8 ? 8 : 4);
|
|
p += sz;
|
|
p = _ALIGN(p, 4);
|
|
continue;
|
|
}
|
|
if (tag != OF_DT_BEGIN_NODE) {
|
|
printk(KERN_WARNING "Invalid tag %x scanning flattened"
|
|
" device tree !\n", tag);
|
|
return -EINVAL;
|
|
}
|
|
depth++;
|
|
pathp = (char *)p;
|
|
p = _ALIGN(p + strlen(pathp) + 1, 4);
|
|
if ((*pathp) == '/') {
|
|
char *lp, *np;
|
|
for (lp = NULL, np = pathp; *np; np++)
|
|
if ((*np) == '/')
|
|
lp = np+1;
|
|
if (lp != NULL)
|
|
pathp = lp;
|
|
}
|
|
rc = it(p, pathp, depth, data);
|
|
if (rc != 0)
|
|
break;
|
|
} while(1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
unsigned long __init of_get_flat_dt_root(void)
|
|
{
|
|
unsigned long p = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
|
|
while(*((u32 *)p) == OF_DT_NOP)
|
|
p += 4;
|
|
BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
|
|
p += 4;
|
|
return _ALIGN(p + strlen((char *)p) + 1, 4);
|
|
}
|
|
|
|
/**
|
|
* This function can be used within scan_flattened_dt callback to get
|
|
* access to properties
|
|
*/
|
|
void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
|
|
unsigned long *size)
|
|
{
|
|
unsigned long p = node;
|
|
|
|
do {
|
|
u32 tag = *((u32 *)p);
|
|
u32 sz, noff;
|
|
const char *nstr;
|
|
|
|
p += 4;
|
|
if (tag == OF_DT_NOP)
|
|
continue;
|
|
if (tag != OF_DT_PROP)
|
|
return NULL;
|
|
|
|
sz = *((u32 *)p);
|
|
noff = *((u32 *)(p + 4));
|
|
p += 8;
|
|
if (initial_boot_params->version < 0x10)
|
|
p = _ALIGN(p, sz >= 8 ? 8 : 4);
|
|
|
|
nstr = find_flat_dt_string(noff);
|
|
if (nstr == NULL) {
|
|
printk(KERN_WARNING "Can't find property index"
|
|
" name !\n");
|
|
return NULL;
|
|
}
|
|
if (strcmp(name, nstr) == 0) {
|
|
if (size)
|
|
*size = sz;
|
|
return (void *)p;
|
|
}
|
|
p += sz;
|
|
p = _ALIGN(p, 4);
|
|
} while(1);
|
|
}
|
|
|
|
int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
|
|
{
|
|
const char* cp;
|
|
unsigned long cplen, l;
|
|
|
|
cp = of_get_flat_dt_prop(node, "compatible", &cplen);
|
|
if (cp == NULL)
|
|
return 0;
|
|
while (cplen > 0) {
|
|
if (strncasecmp(cp, compat, strlen(compat)) == 0)
|
|
return 1;
|
|
l = strlen(cp) + 1;
|
|
cp += l;
|
|
cplen -= l;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
void *res;
|
|
|
|
*mem = _ALIGN(*mem, align);
|
|
res = (void *)*mem;
|
|
*mem += size;
|
|
|
|
return res;
|
|
}
|
|
|
|
static unsigned long __init unflatten_dt_node(unsigned long mem,
|
|
unsigned long *p,
|
|
struct device_node *dad,
|
|
struct device_node ***allnextpp,
|
|
unsigned long fpsize)
|
|
{
|
|
struct device_node *np;
|
|
struct property *pp, **prev_pp = NULL;
|
|
char *pathp;
|
|
u32 tag;
|
|
unsigned int l, allocl;
|
|
int has_name = 0;
|
|
int new_format = 0;
|
|
|
|
tag = *((u32 *)(*p));
|
|
if (tag != OF_DT_BEGIN_NODE) {
|
|
printk("Weird tag at start of node: %x\n", tag);
|
|
return mem;
|
|
}
|
|
*p += 4;
|
|
pathp = (char *)*p;
|
|
l = allocl = strlen(pathp) + 1;
|
|
*p = _ALIGN(*p + l, 4);
|
|
|
|
/* version 0x10 has a more compact unit name here instead of the full
|
|
* path. we accumulate the full path size using "fpsize", we'll rebuild
|
|
* it later. We detect this because the first character of the name is
|
|
* not '/'.
|
|
*/
|
|
if ((*pathp) != '/') {
|
|
new_format = 1;
|
|
if (fpsize == 0) {
|
|
/* root node: special case. fpsize accounts for path
|
|
* plus terminating zero. root node only has '/', so
|
|
* fpsize should be 2, but we want to avoid the first
|
|
* level nodes to have two '/' so we use fpsize 1 here
|
|
*/
|
|
fpsize = 1;
|
|
allocl = 2;
|
|
} else {
|
|
/* account for '/' and path size minus terminal 0
|
|
* already in 'l'
|
|
*/
|
|
fpsize += l;
|
|
allocl = fpsize;
|
|
}
|
|
}
|
|
|
|
|
|
np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
|
|
__alignof__(struct device_node));
|
|
if (allnextpp) {
|
|
memset(np, 0, sizeof(*np));
|
|
np->full_name = ((char*)np) + sizeof(struct device_node);
|
|
if (new_format) {
|
|
char *p = np->full_name;
|
|
/* rebuild full path for new format */
|
|
if (dad && dad->parent) {
|
|
strcpy(p, dad->full_name);
|
|
#ifdef DEBUG
|
|
if ((strlen(p) + l + 1) != allocl) {
|
|
DBG("%s: p: %d, l: %d, a: %d\n",
|
|
pathp, (int)strlen(p), l, allocl);
|
|
}
|
|
#endif
|
|
p += strlen(p);
|
|
}
|
|
*(p++) = '/';
|
|
memcpy(p, pathp, l);
|
|
} else
|
|
memcpy(np->full_name, pathp, l);
|
|
prev_pp = &np->properties;
|
|
**allnextpp = np;
|
|
*allnextpp = &np->allnext;
|
|
if (dad != NULL) {
|
|
np->parent = dad;
|
|
/* we temporarily use the next field as `last_child'*/
|
|
if (dad->next == 0)
|
|
dad->child = np;
|
|
else
|
|
dad->next->sibling = np;
|
|
dad->next = np;
|
|
}
|
|
kref_init(&np->kref);
|
|
}
|
|
while(1) {
|
|
u32 sz, noff;
|
|
char *pname;
|
|
|
|
tag = *((u32 *)(*p));
|
|
if (tag == OF_DT_NOP) {
|
|
*p += 4;
|
|
continue;
|
|
}
|
|
if (tag != OF_DT_PROP)
|
|
break;
|
|
*p += 4;
|
|
sz = *((u32 *)(*p));
|
|
noff = *((u32 *)((*p) + 4));
|
|
*p += 8;
|
|
if (initial_boot_params->version < 0x10)
|
|
*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
|
|
|
|
pname = find_flat_dt_string(noff);
|
|
if (pname == NULL) {
|
|
printk("Can't find property name in list !\n");
|
|
break;
|
|
}
|
|
if (strcmp(pname, "name") == 0)
|
|
has_name = 1;
|
|
l = strlen(pname) + 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property),
|
|
__alignof__(struct property));
|
|
if (allnextpp) {
|
|
if (strcmp(pname, "linux,phandle") == 0) {
|
|
np->node = *((u32 *)*p);
|
|
if (np->linux_phandle == 0)
|
|
np->linux_phandle = np->node;
|
|
}
|
|
if (strcmp(pname, "ibm,phandle") == 0)
|
|
np->linux_phandle = *((u32 *)*p);
|
|
pp->name = pname;
|
|
pp->length = sz;
|
|
pp->value = (void *)*p;
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
}
|
|
*p = _ALIGN((*p) + sz, 4);
|
|
}
|
|
/* with version 0x10 we may not have the name property, recreate
|
|
* it here from the unit name if absent
|
|
*/
|
|
if (!has_name) {
|
|
char *p = pathp, *ps = pathp, *pa = NULL;
|
|
int sz;
|
|
|
|
while (*p) {
|
|
if ((*p) == '@')
|
|
pa = p;
|
|
if ((*p) == '/')
|
|
ps = p + 1;
|
|
p++;
|
|
}
|
|
if (pa < ps)
|
|
pa = p;
|
|
sz = (pa - ps) + 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
|
|
__alignof__(struct property));
|
|
if (allnextpp) {
|
|
pp->name = "name";
|
|
pp->length = sz;
|
|
pp->value = (unsigned char *)(pp + 1);
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
memcpy(pp->value, ps, sz - 1);
|
|
((char *)pp->value)[sz - 1] = 0;
|
|
DBG("fixed up name for %s -> %s\n", pathp, pp->value);
|
|
}
|
|
}
|
|
if (allnextpp) {
|
|
*prev_pp = NULL;
|
|
np->name = get_property(np, "name", NULL);
|
|
np->type = get_property(np, "device_type", NULL);
|
|
|
|
if (!np->name)
|
|
np->name = "<NULL>";
|
|
if (!np->type)
|
|
np->type = "<NULL>";
|
|
}
|
|
while (tag == OF_DT_BEGIN_NODE) {
|
|
mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
|
|
tag = *((u32 *)(*p));
|
|
}
|
|
if (tag != OF_DT_END_NODE) {
|
|
printk("Weird tag at end of node: %x\n", tag);
|
|
return mem;
|
|
}
|
|
*p += 4;
|
|
return mem;
|
|
}
|
|
|
|
static int __init early_parse_mem(char *p)
|
|
{
|
|
if (!p)
|
|
return 1;
|
|
|
|
memory_limit = PAGE_ALIGN(memparse(p, &p));
|
|
DBG("memory limit = 0x%lx\n", memory_limit);
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", early_parse_mem);
|
|
|
|
/*
|
|
* The device tree may be allocated below our memory limit, or inside the
|
|
* crash kernel region for kdump. If so, move it out now.
|
|
*/
|
|
static void move_device_tree(void)
|
|
{
|
|
unsigned long start, size;
|
|
void *p;
|
|
|
|
DBG("-> move_device_tree\n");
|
|
|
|
start = __pa(initial_boot_params);
|
|
size = initial_boot_params->totalsize;
|
|
|
|
if ((memory_limit && (start + size) > memory_limit) ||
|
|
overlaps_crashkernel(start, size)) {
|
|
p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
|
|
memcpy(p, initial_boot_params, size);
|
|
initial_boot_params = (struct boot_param_header *)p;
|
|
DBG("Moved device tree to 0x%p\n", p);
|
|
}
|
|
|
|
DBG("<- move_device_tree\n");
|
|
}
|
|
|
|
/**
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used (this used to be done by finish_device_tree)
|
|
*/
|
|
void __init unflatten_device_tree(void)
|
|
{
|
|
unsigned long start, mem, size;
|
|
struct device_node **allnextp = &allnodes;
|
|
|
|
DBG(" -> unflatten_device_tree()\n");
|
|
|
|
/* First pass, scan for size */
|
|
start = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
size = unflatten_dt_node(0, &start, NULL, NULL, 0);
|
|
size = (size | 3) + 1;
|
|
|
|
DBG(" size is %lx, allocating...\n", size);
|
|
|
|
/* Allocate memory for the expanded device tree */
|
|
mem = lmb_alloc(size + 4, __alignof__(struct device_node));
|
|
mem = (unsigned long) __va(mem);
|
|
|
|
((u32 *)mem)[size / 4] = 0xdeadbeef;
|
|
|
|
DBG(" unflattening %lx...\n", mem);
|
|
|
|
/* Second pass, do actual unflattening */
|
|
start = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
|
|
if (*((u32 *)start) != OF_DT_END)
|
|
printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
|
|
if (((u32 *)mem)[size / 4] != 0xdeadbeef)
|
|
printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
|
|
((u32 *)mem)[size / 4] );
|
|
*allnextp = NULL;
|
|
|
|
/* Get pointer to OF "/chosen" node for use everywhere */
|
|
of_chosen = of_find_node_by_path("/chosen");
|
|
if (of_chosen == NULL)
|
|
of_chosen = of_find_node_by_path("/chosen@0");
|
|
|
|
DBG(" <- unflatten_device_tree()\n");
|
|
}
|
|
|
|
/*
|
|
* ibm,pa-features is a per-cpu property that contains a string of
|
|
* attribute descriptors, each of which has a 2 byte header plus up
|
|
* to 254 bytes worth of processor attribute bits. First header
|
|
* byte specifies the number of bytes following the header.
|
|
* Second header byte is an "attribute-specifier" type, of which
|
|
* zero is the only currently-defined value.
|
|
* Implementation: Pass in the byte and bit offset for the feature
|
|
* that we are interested in. The function will return -1 if the
|
|
* pa-features property is missing, or a 1/0 to indicate if the feature
|
|
* is supported/not supported. Note that the bit numbers are
|
|
* big-endian to match the definition in PAPR.
|
|
*/
|
|
static struct ibm_pa_feature {
|
|
unsigned long cpu_features; /* CPU_FTR_xxx bit */
|
|
unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
|
|
unsigned char pabyte; /* byte number in ibm,pa-features */
|
|
unsigned char pabit; /* bit number (big-endian) */
|
|
unsigned char invert; /* if 1, pa bit set => clear feature */
|
|
} ibm_pa_features[] __initdata = {
|
|
{0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
|
|
{0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
|
|
{CPU_FTR_SLB, 0, 0, 2, 0},
|
|
{CPU_FTR_CTRL, 0, 0, 3, 0},
|
|
{CPU_FTR_NOEXECUTE, 0, 0, 6, 0},
|
|
{CPU_FTR_NODSISRALIGN, 0, 1, 1, 1},
|
|
#if 0
|
|
/* put this back once we know how to test if firmware does 64k IO */
|
|
{CPU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
|
|
#endif
|
|
{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
|
|
};
|
|
|
|
static void __init scan_features(unsigned long node, unsigned char *ftrs,
|
|
unsigned long tablelen,
|
|
struct ibm_pa_feature *fp,
|
|
unsigned long ft_size)
|
|
{
|
|
unsigned long i, len, bit;
|
|
|
|
/* find descriptor with type == 0 */
|
|
for (;;) {
|
|
if (tablelen < 3)
|
|
return;
|
|
len = 2 + ftrs[0];
|
|
if (tablelen < len)
|
|
return; /* descriptor 0 not found */
|
|
if (ftrs[1] == 0)
|
|
break;
|
|
tablelen -= len;
|
|
ftrs += len;
|
|
}
|
|
|
|
/* loop over bits we know about */
|
|
for (i = 0; i < ft_size; ++i, ++fp) {
|
|
if (fp->pabyte >= ftrs[0])
|
|
continue;
|
|
bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
|
|
if (bit ^ fp->invert) {
|
|
cur_cpu_spec->cpu_features |= fp->cpu_features;
|
|
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
|
|
} else {
|
|
cur_cpu_spec->cpu_features &= ~fp->cpu_features;
|
|
cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init check_cpu_pa_features(unsigned long node)
|
|
{
|
|
unsigned char *pa_ftrs;
|
|
unsigned long tablelen;
|
|
|
|
pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
|
|
if (pa_ftrs == NULL)
|
|
return;
|
|
|
|
scan_features(node, pa_ftrs, tablelen,
|
|
ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
|
|
}
|
|
|
|
static struct feature_property {
|
|
const char *name;
|
|
u32 min_value;
|
|
unsigned long cpu_feature;
|
|
unsigned long cpu_user_ftr;
|
|
} feature_properties[] __initdata = {
|
|
#ifdef CONFIG_ALTIVEC
|
|
{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
|
|
{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_PPC64
|
|
{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
|
|
{"ibm,purr", 1, CPU_FTR_PURR, 0},
|
|
{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
|
|
#endif /* CONFIG_PPC64 */
|
|
};
|
|
|
|
static void __init check_cpu_feature_properties(unsigned long node)
|
|
{
|
|
unsigned long i;
|
|
struct feature_property *fp = feature_properties;
|
|
const u32 *prop;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
|
|
prop = of_get_flat_dt_prop(node, fp->name, NULL);
|
|
if (prop && *prop >= fp->min_value) {
|
|
cur_cpu_spec->cpu_features |= fp->cpu_feature;
|
|
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init early_init_dt_scan_cpus(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data)
|
|
{
|
|
static int logical_cpuid = 0;
|
|
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
const u32 *prop;
|
|
const u32 *intserv;
|
|
int i, nthreads;
|
|
unsigned long len;
|
|
int found = 0;
|
|
|
|
/* We are scanning "cpu" nodes only */
|
|
if (type == NULL || strcmp(type, "cpu") != 0)
|
|
return 0;
|
|
|
|
/* Get physical cpuid */
|
|
intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
|
|
if (intserv) {
|
|
nthreads = len / sizeof(int);
|
|
} else {
|
|
intserv = of_get_flat_dt_prop(node, "reg", NULL);
|
|
nthreads = 1;
|
|
}
|
|
|
|
/*
|
|
* Now see if any of these threads match our boot cpu.
|
|
* NOTE: This must match the parsing done in smp_setup_cpu_maps.
|
|
*/
|
|
for (i = 0; i < nthreads; i++) {
|
|
/*
|
|
* version 2 of the kexec param format adds the phys cpuid of
|
|
* booted proc.
|
|
*/
|
|
if (initial_boot_params && initial_boot_params->version >= 2) {
|
|
if (intserv[i] ==
|
|
initial_boot_params->boot_cpuid_phys) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* Check if it's the boot-cpu, set it's hw index now,
|
|
* unfortunately this format did not support booting
|
|
* off secondary threads.
|
|
*/
|
|
if (of_get_flat_dt_prop(node,
|
|
"linux,boot-cpu", NULL) != NULL) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* logical cpu id is always 0 on UP kernels */
|
|
logical_cpuid++;
|
|
#endif
|
|
}
|
|
|
|
if (found) {
|
|
DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
|
|
intserv[i]);
|
|
boot_cpuid = logical_cpuid;
|
|
set_hard_smp_processor_id(boot_cpuid, intserv[i]);
|
|
|
|
/*
|
|
* PAPR defines "logical" PVR values for cpus that
|
|
* meet various levels of the architecture:
|
|
* 0x0f000001 Architecture version 2.04
|
|
* 0x0f000002 Architecture version 2.05
|
|
* If the cpu-version property in the cpu node contains
|
|
* such a value, we call identify_cpu again with the
|
|
* logical PVR value in order to use the cpu feature
|
|
* bits appropriate for the architecture level.
|
|
*
|
|
* A POWER6 partition in "POWER6 architected" mode
|
|
* uses the 0x0f000002 PVR value; in POWER5+ mode
|
|
* it uses 0x0f000001.
|
|
*/
|
|
prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
|
|
if (prop && (*prop & 0xff000000) == 0x0f000000)
|
|
identify_cpu(0, *prop);
|
|
}
|
|
|
|
check_cpu_feature_properties(node);
|
|
check_cpu_pa_features(node);
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
if (nthreads > 1)
|
|
cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
|
|
else
|
|
cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init early_init_dt_scan_chosen(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
unsigned long *lprop;
|
|
unsigned long l;
|
|
char *p;
|
|
|
|
DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
|
|
|
|
if (depth != 1 ||
|
|
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
|
|
return 0;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* check if iommu is forced on or off */
|
|
if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
|
|
iommu_is_off = 1;
|
|
if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
|
|
iommu_force_on = 1;
|
|
#endif
|
|
|
|
/* mem=x on the command line is the preferred mechanism */
|
|
lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
|
|
if (lprop)
|
|
memory_limit = *lprop;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
|
|
if (lprop)
|
|
tce_alloc_start = *lprop;
|
|
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
|
|
if (lprop)
|
|
tce_alloc_end = *lprop;
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
|
|
if (lprop)
|
|
crashk_res.start = *lprop;
|
|
|
|
lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
|
|
if (lprop)
|
|
crashk_res.end = crashk_res.start + *lprop - 1;
|
|
#endif
|
|
|
|
/* Retreive command line */
|
|
p = of_get_flat_dt_prop(node, "bootargs", &l);
|
|
if (p != NULL && l > 0)
|
|
strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
|
|
|
|
#ifdef CONFIG_CMDLINE
|
|
if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
|
|
strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
|
|
#endif /* CONFIG_CMDLINE */
|
|
|
|
DBG("Command line is: %s\n", cmd_line);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
static int __init early_init_dt_scan_root(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
u32 *prop;
|
|
|
|
if (depth != 0)
|
|
return 0;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
dt_root_size_cells = (prop == NULL) ? 1 : *prop;
|
|
DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
|
|
DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
|
|
{
|
|
cell_t *p = *cellp;
|
|
|
|
*cellp = p + s;
|
|
return of_read_ulong(p, s);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
/*
|
|
* Interpret the ibm,dynamic-memory property in the
|
|
* /ibm,dynamic-reconfiguration-memory node.
|
|
* This contains a list of memory blocks along with NUMA affinity
|
|
* information.
|
|
*/
|
|
static int __init early_init_dt_scan_drconf_memory(unsigned long node)
|
|
{
|
|
cell_t *dm, *ls;
|
|
unsigned long l, n;
|
|
unsigned long base, size, lmb_size, flags;
|
|
|
|
ls = (cell_t *)of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
|
|
if (ls == NULL || l < dt_root_size_cells * sizeof(cell_t))
|
|
return 0;
|
|
lmb_size = dt_mem_next_cell(dt_root_size_cells, &ls);
|
|
|
|
dm = (cell_t *)of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
|
|
if (dm == NULL || l < sizeof(cell_t))
|
|
return 0;
|
|
|
|
n = *dm++; /* number of entries */
|
|
if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(cell_t))
|
|
return 0;
|
|
|
|
for (; n != 0; --n) {
|
|
base = dt_mem_next_cell(dt_root_addr_cells, &dm);
|
|
flags = dm[3];
|
|
/* skip DRC index, pad, assoc. list index, flags */
|
|
dm += 4;
|
|
/* skip this block if the reserved bit is set in flags (0x80)
|
|
or if the block is not assigned to this partition (0x8) */
|
|
if ((flags & 0x80) || !(flags & 0x8))
|
|
continue;
|
|
size = lmb_size;
|
|
if (iommu_is_off) {
|
|
if (base >= 0x80000000ul)
|
|
continue;
|
|
if ((base + size) > 0x80000000ul)
|
|
size = 0x80000000ul - base;
|
|
}
|
|
lmb_add(base, size);
|
|
}
|
|
lmb_dump_all();
|
|
return 0;
|
|
}
|
|
#else
|
|
#define early_init_dt_scan_drconf_memory(node) 0
|
|
#endif /* CONFIG_PPC_PSERIES */
|
|
|
|
static int __init early_init_dt_scan_memory(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
cell_t *reg, *endp;
|
|
unsigned long l;
|
|
|
|
/* Look for the ibm,dynamic-reconfiguration-memory node */
|
|
if (depth == 1 &&
|
|
strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
|
|
return early_init_dt_scan_drconf_memory(node);
|
|
|
|
/* We are scanning "memory" nodes only */
|
|
if (type == NULL) {
|
|
/*
|
|
* The longtrail doesn't have a device_type on the
|
|
* /memory node, so look for the node called /memory@0.
|
|
*/
|
|
if (depth != 1 || strcmp(uname, "memory@0") != 0)
|
|
return 0;
|
|
} else if (strcmp(type, "memory") != 0)
|
|
return 0;
|
|
|
|
reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
|
|
if (reg == NULL)
|
|
reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
|
|
if (reg == NULL)
|
|
return 0;
|
|
|
|
endp = reg + (l / sizeof(cell_t));
|
|
|
|
DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
|
|
uname, l, reg[0], reg[1], reg[2], reg[3]);
|
|
|
|
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
|
|
unsigned long base, size;
|
|
|
|
base = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
if (size == 0)
|
|
continue;
|
|
DBG(" - %lx , %lx\n", base, size);
|
|
#ifdef CONFIG_PPC64
|
|
if (iommu_is_off) {
|
|
if (base >= 0x80000000ul)
|
|
continue;
|
|
if ((base + size) > 0x80000000ul)
|
|
size = 0x80000000ul - base;
|
|
}
|
|
#endif
|
|
lmb_add(base, size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __init early_reserve_mem(void)
|
|
{
|
|
u64 base, size;
|
|
u64 *reserve_map;
|
|
unsigned long self_base;
|
|
unsigned long self_size;
|
|
|
|
reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_mem_rsvmap);
|
|
|
|
/* before we do anything, lets reserve the dt blob */
|
|
self_base = __pa((unsigned long)initial_boot_params);
|
|
self_size = initial_boot_params->totalsize;
|
|
lmb_reserve(self_base, self_size);
|
|
|
|
#ifdef CONFIG_PPC32
|
|
/*
|
|
* Handle the case where we might be booting from an old kexec
|
|
* image that setup the mem_rsvmap as pairs of 32-bit values
|
|
*/
|
|
if (*reserve_map > 0xffffffffull) {
|
|
u32 base_32, size_32;
|
|
u32 *reserve_map_32 = (u32 *)reserve_map;
|
|
|
|
while (1) {
|
|
base_32 = *(reserve_map_32++);
|
|
size_32 = *(reserve_map_32++);
|
|
if (size_32 == 0)
|
|
break;
|
|
/* skip if the reservation is for the blob */
|
|
if (base_32 == self_base && size_32 == self_size)
|
|
continue;
|
|
DBG("reserving: %x -> %x\n", base_32, size_32);
|
|
lmb_reserve(base_32, size_32);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
while (1) {
|
|
base = *(reserve_map++);
|
|
size = *(reserve_map++);
|
|
if (size == 0)
|
|
break;
|
|
/* skip if the reservation is for the blob */
|
|
if (base == self_base && size == self_size)
|
|
continue;
|
|
DBG("reserving: %llx -> %llx\n", base, size);
|
|
lmb_reserve(base, size);
|
|
}
|
|
|
|
#if 0
|
|
DBG("memory reserved, lmbs :\n");
|
|
lmb_dump_all();
|
|
#endif
|
|
}
|
|
|
|
void __init early_init_devtree(void *params)
|
|
{
|
|
DBG(" -> early_init_devtree()\n");
|
|
|
|
/* Setup flat device-tree pointer */
|
|
initial_boot_params = params;
|
|
|
|
#ifdef CONFIG_PPC_RTAS
|
|
/* Some machines might need RTAS info for debugging, grab it now. */
|
|
of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
|
|
#endif
|
|
|
|
/* Retrieve various informations from the /chosen node of the
|
|
* device-tree, including the platform type, initrd location and
|
|
* size, TCE reserve, and more ...
|
|
*/
|
|
of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
|
|
|
|
/* Scan memory nodes and rebuild LMBs */
|
|
lmb_init();
|
|
of_scan_flat_dt(early_init_dt_scan_root, NULL);
|
|
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
|
|
|
|
/* Save command line for /proc/cmdline and then parse parameters */
|
|
strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
|
|
parse_early_param();
|
|
|
|
/* Reserve LMB regions used by kernel, initrd, dt, etc... */
|
|
lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
|
|
reserve_kdump_trampoline();
|
|
reserve_crashkernel();
|
|
early_reserve_mem();
|
|
|
|
lmb_enforce_memory_limit(memory_limit);
|
|
lmb_analyze();
|
|
|
|
DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
|
|
|
|
/* We may need to relocate the flat tree, do it now.
|
|
* FIXME .. and the initrd too? */
|
|
move_device_tree();
|
|
|
|
DBG("Scanning CPUs ...\n");
|
|
|
|
/* Retreive CPU related informations from the flat tree
|
|
* (altivec support, boot CPU ID, ...)
|
|
*/
|
|
of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
|
|
|
|
DBG(" <- early_init_devtree()\n");
|
|
}
|
|
|
|
#undef printk
|
|
|
|
int
|
|
prom_n_addr_cells(struct device_node* np)
|
|
{
|
|
const int *ip;
|
|
do {
|
|
if (np->parent)
|
|
np = np->parent;
|
|
ip = get_property(np, "#address-cells", NULL);
|
|
if (ip != NULL)
|
|
return *ip;
|
|
} while (np->parent);
|
|
/* No #address-cells property for the root node, default to 1 */
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(prom_n_addr_cells);
|
|
|
|
int
|
|
prom_n_size_cells(struct device_node* np)
|
|
{
|
|
const int* ip;
|
|
do {
|
|
if (np->parent)
|
|
np = np->parent;
|
|
ip = get_property(np, "#size-cells", NULL);
|
|
if (ip != NULL)
|
|
return *ip;
|
|
} while (np->parent);
|
|
/* No #size-cells property for the root node, default to 1 */
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(prom_n_size_cells);
|
|
|
|
/**
|
|
* Construct and return a list of the device_nodes with a given name.
|
|
*/
|
|
struct device_node *find_devices(const char *name)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
if (np->name != 0 && strcasecmp(np->name, name) == 0) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_devices);
|
|
|
|
/**
|
|
* Construct and return a list of the device_nodes with a given type.
|
|
*/
|
|
struct device_node *find_type_devices(const char *type)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
if (np->type != 0 && strcasecmp(np->type, type) == 0) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_type_devices);
|
|
|
|
/**
|
|
* Returns all nodes linked together
|
|
*/
|
|
struct device_node *find_all_nodes(void)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_all_nodes);
|
|
|
|
/** Checks if the given "compat" string matches one of the strings in
|
|
* the device's "compatible" property
|
|
*/
|
|
int device_is_compatible(const struct device_node *device, const char *compat)
|
|
{
|
|
const char* cp;
|
|
int cplen, l;
|
|
|
|
cp = get_property(device, "compatible", &cplen);
|
|
if (cp == NULL)
|
|
return 0;
|
|
while (cplen > 0) {
|
|
if (strncasecmp(cp, compat, strlen(compat)) == 0)
|
|
return 1;
|
|
l = strlen(cp) + 1;
|
|
cp += l;
|
|
cplen -= l;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(device_is_compatible);
|
|
|
|
|
|
/**
|
|
* Indicates whether the root node has a given value in its
|
|
* compatible property.
|
|
*/
|
|
int machine_is_compatible(const char *compat)
|
|
{
|
|
struct device_node *root;
|
|
int rc = 0;
|
|
|
|
root = of_find_node_by_path("/");
|
|
if (root) {
|
|
rc = device_is_compatible(root, compat);
|
|
of_node_put(root);
|
|
}
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(machine_is_compatible);
|
|
|
|
/**
|
|
* Construct and return a list of the device_nodes with a given type
|
|
* and compatible property.
|
|
*/
|
|
struct device_node *find_compatible_devices(const char *type,
|
|
const char *compat)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
if (type != NULL
|
|
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
|
|
continue;
|
|
if (device_is_compatible(np, compat)) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_compatible_devices);
|
|
|
|
/**
|
|
* Find the device_node with a given full_name.
|
|
*/
|
|
struct device_node *find_path_device(const char *path)
|
|
{
|
|
struct device_node *np;
|
|
|
|
for (np = allnodes; np != 0; np = np->allnext)
|
|
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
|
|
return np;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(find_path_device);
|
|
|
|
/*******
|
|
*
|
|
* New implementation of the OF "find" APIs, return a refcounted
|
|
* object, call of_node_put() when done. The device tree and list
|
|
* are protected by a rw_lock.
|
|
*
|
|
* Note that property management will need some locking as well,
|
|
* this isn't dealt with yet.
|
|
*
|
|
*******/
|
|
|
|
/**
|
|
* of_find_node_by_name - Find a node by its "name" property
|
|
* @from: The node to start searching from or NULL, the node
|
|
* you pass will not be searched, only the next one
|
|
* will; typically, you pass what the previous call
|
|
* returned. of_node_put() will be called on it
|
|
* @name: The name string to match against
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_name(struct device_node *from,
|
|
const char *name)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = from ? from->allnext : allnodes;
|
|
for (; np != NULL; np = np->allnext)
|
|
if (np->name != NULL && strcasecmp(np->name, name) == 0
|
|
&& of_node_get(np))
|
|
break;
|
|
of_node_put(from);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_name);
|
|
|
|
/**
|
|
* of_find_node_by_type - Find a node by its "device_type" property
|
|
* @from: The node to start searching from or NULL, the node
|
|
* you pass will not be searched, only the next one
|
|
* will; typically, you pass what the previous call
|
|
* returned. of_node_put() will be called on it
|
|
* @name: The type string to match against
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_type(struct device_node *from,
|
|
const char *type)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = from ? from->allnext : allnodes;
|
|
for (; np != 0; np = np->allnext)
|
|
if (np->type != 0 && strcasecmp(np->type, type) == 0
|
|
&& of_node_get(np))
|
|
break;
|
|
of_node_put(from);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_type);
|
|
|
|
/**
|
|
* of_find_compatible_node - Find a node based on type and one of the
|
|
* tokens in its "compatible" property
|
|
* @from: The node to start searching from or NULL, the node
|
|
* you pass will not be searched, only the next one
|
|
* will; typically, you pass what the previous call
|
|
* returned. of_node_put() will be called on it
|
|
* @type: The type string to match "device_type" or NULL to ignore
|
|
* @compatible: The string to match to one of the tokens in the device
|
|
* "compatible" list.
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_compatible_node(struct device_node *from,
|
|
const char *type, const char *compatible)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = from ? from->allnext : allnodes;
|
|
for (; np != 0; np = np->allnext) {
|
|
if (type != NULL
|
|
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
|
|
continue;
|
|
if (device_is_compatible(np, compatible) && of_node_get(np))
|
|
break;
|
|
}
|
|
of_node_put(from);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_compatible_node);
|
|
|
|
/**
|
|
* of_find_node_by_path - Find a node matching a full OF path
|
|
* @path: The full path to match
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_path(const char *path)
|
|
{
|
|
struct device_node *np = allnodes;
|
|
|
|
read_lock(&devtree_lock);
|
|
for (; np != 0; np = np->allnext) {
|
|
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
|
|
&& of_node_get(np))
|
|
break;
|
|
}
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_path);
|
|
|
|
/**
|
|
* of_find_node_by_phandle - Find a node given a phandle
|
|
* @handle: phandle of the node to find
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_phandle(phandle handle)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
for (np = allnodes; np != 0; np = np->allnext)
|
|
if (np->linux_phandle == handle)
|
|
break;
|
|
of_node_get(np);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_phandle);
|
|
|
|
/**
|
|
* of_find_all_nodes - Get next node in global list
|
|
* @prev: Previous node or NULL to start iteration
|
|
* of_node_put() will be called on it
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_all_nodes(struct device_node *prev)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = prev ? prev->allnext : allnodes;
|
|
for (; np != 0; np = np->allnext)
|
|
if (of_node_get(np))
|
|
break;
|
|
of_node_put(prev);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_all_nodes);
|
|
|
|
/**
|
|
* of_get_parent - Get a node's parent if any
|
|
* @node: Node to get parent
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_get_parent(const struct device_node *node)
|
|
{
|
|
struct device_node *np;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = of_node_get(node->parent);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_get_parent);
|
|
|
|
/**
|
|
* of_get_next_child - Iterate a node childs
|
|
* @node: parent node
|
|
* @prev: previous child of the parent node, or NULL to get first
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_get_next_child(const struct device_node *node,
|
|
struct device_node *prev)
|
|
{
|
|
struct device_node *next;
|
|
|
|
read_lock(&devtree_lock);
|
|
next = prev ? prev->sibling : node->child;
|
|
for (; next != 0; next = next->sibling)
|
|
if (of_node_get(next))
|
|
break;
|
|
of_node_put(prev);
|
|
read_unlock(&devtree_lock);
|
|
return next;
|
|
}
|
|
EXPORT_SYMBOL(of_get_next_child);
|
|
|
|
/**
|
|
* of_node_get - Increment refcount of a node
|
|
* @node: Node to inc refcount, NULL is supported to
|
|
* simplify writing of callers
|
|
*
|
|
* Returns node.
|
|
*/
|
|
struct device_node *of_node_get(struct device_node *node)
|
|
{
|
|
if (node)
|
|
kref_get(&node->kref);
|
|
return node;
|
|
}
|
|
EXPORT_SYMBOL(of_node_get);
|
|
|
|
static inline struct device_node * kref_to_device_node(struct kref *kref)
|
|
{
|
|
return container_of(kref, struct device_node, kref);
|
|
}
|
|
|
|
/**
|
|
* of_node_release - release a dynamically allocated node
|
|
* @kref: kref element of the node to be released
|
|
*
|
|
* In of_node_put() this function is passed to kref_put()
|
|
* as the destructor.
|
|
*/
|
|
static void of_node_release(struct kref *kref)
|
|
{
|
|
struct device_node *node = kref_to_device_node(kref);
|
|
struct property *prop = node->properties;
|
|
|
|
if (!OF_IS_DYNAMIC(node))
|
|
return;
|
|
while (prop) {
|
|
struct property *next = prop->next;
|
|
kfree(prop->name);
|
|
kfree(prop->value);
|
|
kfree(prop);
|
|
prop = next;
|
|
|
|
if (!prop) {
|
|
prop = node->deadprops;
|
|
node->deadprops = NULL;
|
|
}
|
|
}
|
|
kfree(node->full_name);
|
|
kfree(node->data);
|
|
kfree(node);
|
|
}
|
|
|
|
/**
|
|
* of_node_put - Decrement refcount of a node
|
|
* @node: Node to dec refcount, NULL is supported to
|
|
* simplify writing of callers
|
|
*
|
|
*/
|
|
void of_node_put(struct device_node *node)
|
|
{
|
|
if (node)
|
|
kref_put(&node->kref, of_node_release);
|
|
}
|
|
EXPORT_SYMBOL(of_node_put);
|
|
|
|
/*
|
|
* Plug a device node into the tree and global list.
|
|
*/
|
|
void of_attach_node(struct device_node *np)
|
|
{
|
|
write_lock(&devtree_lock);
|
|
np->sibling = np->parent->child;
|
|
np->allnext = allnodes;
|
|
np->parent->child = np;
|
|
allnodes = np;
|
|
write_unlock(&devtree_lock);
|
|
}
|
|
|
|
/*
|
|
* "Unplug" a node from the device tree. The caller must hold
|
|
* a reference to the node. The memory associated with the node
|
|
* is not freed until its refcount goes to zero.
|
|
*/
|
|
void of_detach_node(const struct device_node *np)
|
|
{
|
|
struct device_node *parent;
|
|
|
|
write_lock(&devtree_lock);
|
|
|
|
parent = np->parent;
|
|
|
|
if (allnodes == np)
|
|
allnodes = np->allnext;
|
|
else {
|
|
struct device_node *prev;
|
|
for (prev = allnodes;
|
|
prev->allnext != np;
|
|
prev = prev->allnext)
|
|
;
|
|
prev->allnext = np->allnext;
|
|
}
|
|
|
|
if (parent->child == np)
|
|
parent->child = np->sibling;
|
|
else {
|
|
struct device_node *prevsib;
|
|
for (prevsib = np->parent->child;
|
|
prevsib->sibling != np;
|
|
prevsib = prevsib->sibling)
|
|
;
|
|
prevsib->sibling = np->sibling;
|
|
}
|
|
|
|
write_unlock(&devtree_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
/*
|
|
* Fix up the uninitialized fields in a new device node:
|
|
* name, type and pci-specific fields
|
|
*/
|
|
|
|
static int of_finish_dynamic_node(struct device_node *node)
|
|
{
|
|
struct device_node *parent = of_get_parent(node);
|
|
int err = 0;
|
|
const phandle *ibm_phandle;
|
|
|
|
node->name = get_property(node, "name", NULL);
|
|
node->type = get_property(node, "device_type", NULL);
|
|
|
|
if (!parent) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
/* We don't support that function on PowerMac, at least
|
|
* not yet
|
|
*/
|
|
if (machine_is(powermac))
|
|
return -ENODEV;
|
|
|
|
/* fix up new node's linux_phandle field */
|
|
if ((ibm_phandle = get_property(node, "ibm,phandle", NULL)))
|
|
node->linux_phandle = *ibm_phandle;
|
|
|
|
out:
|
|
of_node_put(parent);
|
|
return err;
|
|
}
|
|
|
|
static int prom_reconfig_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *node)
|
|
{
|
|
int err;
|
|
|
|
switch (action) {
|
|
case PSERIES_RECONFIG_ADD:
|
|
err = of_finish_dynamic_node(node);
|
|
if (err < 0) {
|
|
printk(KERN_ERR "finish_node returned %d\n", err);
|
|
err = NOTIFY_BAD;
|
|
}
|
|
break;
|
|
default:
|
|
err = NOTIFY_DONE;
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct notifier_block prom_reconfig_nb = {
|
|
.notifier_call = prom_reconfig_notifier,
|
|
.priority = 10, /* This one needs to run first */
|
|
};
|
|
|
|
static int __init prom_reconfig_setup(void)
|
|
{
|
|
return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
|
|
}
|
|
__initcall(prom_reconfig_setup);
|
|
#endif
|
|
|
|
struct property *of_find_property(const struct device_node *np,
|
|
const char *name,
|
|
int *lenp)
|
|
{
|
|
struct property *pp;
|
|
|
|
read_lock(&devtree_lock);
|
|
for (pp = np->properties; pp != 0; pp = pp->next)
|
|
if (strcmp(pp->name, name) == 0) {
|
|
if (lenp != 0)
|
|
*lenp = pp->length;
|
|
break;
|
|
}
|
|
read_unlock(&devtree_lock);
|
|
|
|
return pp;
|
|
}
|
|
|
|
/*
|
|
* Find a property with a given name for a given node
|
|
* and return the value.
|
|
*/
|
|
const void *get_property(const struct device_node *np, const char *name,
|
|
int *lenp)
|
|
{
|
|
struct property *pp = of_find_property(np,name,lenp);
|
|
return pp ? pp->value : NULL;
|
|
}
|
|
EXPORT_SYMBOL(get_property);
|
|
|
|
/*
|
|
* Add a property to a node
|
|
*/
|
|
int prom_add_property(struct device_node* np, struct property* prop)
|
|
{
|
|
struct property **next;
|
|
|
|
prop->next = NULL;
|
|
write_lock(&devtree_lock);
|
|
next = &np->properties;
|
|
while (*next) {
|
|
if (strcmp(prop->name, (*next)->name) == 0) {
|
|
/* duplicate ! don't insert it */
|
|
write_unlock(&devtree_lock);
|
|
return -1;
|
|
}
|
|
next = &(*next)->next;
|
|
}
|
|
*next = prop;
|
|
write_unlock(&devtree_lock);
|
|
|
|
#ifdef CONFIG_PROC_DEVICETREE
|
|
/* try to add to proc as well if it was initialized */
|
|
if (np->pde)
|
|
proc_device_tree_add_prop(np->pde, prop);
|
|
#endif /* CONFIG_PROC_DEVICETREE */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove a property from a node. Note that we don't actually
|
|
* remove it, since we have given out who-knows-how-many pointers
|
|
* to the data using get-property. Instead we just move the property
|
|
* to the "dead properties" list, so it won't be found any more.
|
|
*/
|
|
int prom_remove_property(struct device_node *np, struct property *prop)
|
|
{
|
|
struct property **next;
|
|
int found = 0;
|
|
|
|
write_lock(&devtree_lock);
|
|
next = &np->properties;
|
|
while (*next) {
|
|
if (*next == prop) {
|
|
/* found the node */
|
|
*next = prop->next;
|
|
prop->next = np->deadprops;
|
|
np->deadprops = prop;
|
|
found = 1;
|
|
break;
|
|
}
|
|
next = &(*next)->next;
|
|
}
|
|
write_unlock(&devtree_lock);
|
|
|
|
if (!found)
|
|
return -ENODEV;
|
|
|
|
#ifdef CONFIG_PROC_DEVICETREE
|
|
/* try to remove the proc node as well */
|
|
if (np->pde)
|
|
proc_device_tree_remove_prop(np->pde, prop);
|
|
#endif /* CONFIG_PROC_DEVICETREE */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update a property in a node. Note that we don't actually
|
|
* remove it, since we have given out who-knows-how-many pointers
|
|
* to the data using get-property. Instead we just move the property
|
|
* to the "dead properties" list, and add the new property to the
|
|
* property list
|
|
*/
|
|
int prom_update_property(struct device_node *np,
|
|
struct property *newprop,
|
|
struct property *oldprop)
|
|
{
|
|
struct property **next;
|
|
int found = 0;
|
|
|
|
write_lock(&devtree_lock);
|
|
next = &np->properties;
|
|
while (*next) {
|
|
if (*next == oldprop) {
|
|
/* found the node */
|
|
newprop->next = oldprop->next;
|
|
*next = newprop;
|
|
oldprop->next = np->deadprops;
|
|
np->deadprops = oldprop;
|
|
found = 1;
|
|
break;
|
|
}
|
|
next = &(*next)->next;
|
|
}
|
|
write_unlock(&devtree_lock);
|
|
|
|
if (!found)
|
|
return -ENODEV;
|
|
|
|
#ifdef CONFIG_PROC_DEVICETREE
|
|
/* try to add to proc as well if it was initialized */
|
|
if (np->pde)
|
|
proc_device_tree_update_prop(np->pde, newprop, oldprop);
|
|
#endif /* CONFIG_PROC_DEVICETREE */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Find the device node for a given logical cpu number, also returns the cpu
|
|
* local thread number (index in ibm,interrupt-server#s) if relevant and
|
|
* asked for (non NULL)
|
|
*/
|
|
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
|
|
{
|
|
int hardid;
|
|
struct device_node *np;
|
|
|
|
hardid = get_hard_smp_processor_id(cpu);
|
|
|
|
for_each_node_by_type(np, "cpu") {
|
|
const u32 *intserv;
|
|
unsigned int plen, t;
|
|
|
|
/* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
|
|
* fallback to "reg" property and assume no threads
|
|
*/
|
|
intserv = get_property(np, "ibm,ppc-interrupt-server#s",
|
|
&plen);
|
|
if (intserv == NULL) {
|
|
const u32 *reg = get_property(np, "reg", NULL);
|
|
if (reg == NULL)
|
|
continue;
|
|
if (*reg == hardid) {
|
|
if (thread)
|
|
*thread = 0;
|
|
return np;
|
|
}
|
|
} else {
|
|
plen /= sizeof(u32);
|
|
for (t = 0; t < plen; t++) {
|
|
if (hardid == intserv[t]) {
|
|
if (thread)
|
|
*thread = t;
|
|
return np;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(of_get_cpu_node);
|
|
|
|
#ifdef DEBUG
|
|
static struct debugfs_blob_wrapper flat_dt_blob;
|
|
|
|
static int __init export_flat_device_tree(void)
|
|
{
|
|
struct dentry *d;
|
|
|
|
d = debugfs_create_dir("powerpc", NULL);
|
|
if (!d)
|
|
return 1;
|
|
|
|
flat_dt_blob.data = initial_boot_params;
|
|
flat_dt_blob.size = initial_boot_params->totalsize;
|
|
|
|
d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
|
|
d, &flat_dt_blob);
|
|
if (!d)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
__initcall(export_flat_device_tree);
|
|
#endif
|
|
|