You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/scsi/ufs/ufs_test.c

1411 lines
39 KiB

/* Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt"\n"
#include <linux/async.h>
#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/test-iosched.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include <linux/delay.h>
#include <../sd.h>
#define MODULE_NAME "ufs_test"
#define TEST_MAX_BIOS_PER_REQ 128
#define TEST_DEFAULT_SECTOR_RANGE (1024*1024) /* 512MB */
#define LARGE_PRIME_1 1103515367
#define LARGE_PRIME_2 35757
#define MAGIC_SEED 7
#define DEFAULT_NUM_OF_BIOS 2
#define LONG_SEQUENTIAL_MIXED_TIMOUT_MS 100000
#define THREADS_COMPLETION_TIMOUT msecs_to_jiffies(10000) /* 10 sec */
#define MAX_PARALLEL_QUERIES 33
#define RANDOM_REQUEST_THREADS 4
#define LUN_DEPTH_TEST_SIZE 9
#define SECTOR_SIZE 512
#define NUM_UNLUCKY_RETRIES 10
/*
* this defines the density of random requests in the address space, and
* it represents the ratio between accessed sectors and non-accessed sectors
*/
#define LONG_RAND_TEST_REQ_RATIO 64
/* request queue limitation is 128 requests, and we leave 10 spare requests */
#define QUEUE_MAX_REQUESTS 118
#define MB_MSEC_RATIO_APPROXIMATION ((1024 * 1024) / 1000)
/* actual number of MiB in test multiplied by 10, for single digit precision*/
#define BYTE_TO_MB_x_10(x) ((x * 10) / (1024 * 1024))
/* extract integer value */
#define LONG_TEST_SIZE_INTEGER(x) (BYTE_TO_MB_x_10(x) / 10)
/* and calculate the MiB value fraction */
#define LONG_TEST_SIZE_FRACTION(x) (BYTE_TO_MB_x_10(x) - \
(LONG_TEST_SIZE_INTEGER(x) * 10))
/* translation mask from sectors to block */
#define SECTOR_TO_BLOCK_MASK 0x7
#define TEST_OPS(test_name, upper_case_name) \
static int ufs_test_ ## test_name ## _show(struct seq_file *file, \
void *data) \
{ return ufs_test_show(file, UFS_TEST_ ## upper_case_name); } \
static int ufs_test_ ## test_name ## _open(struct inode *inode, \
struct file *file) \
{ return single_open(file, ufs_test_ ## test_name ## _show, \
inode->i_private); } \
static ssize_t ufs_test_ ## test_name ## _write(struct file *file, \
const char __user *buf, size_t count, loff_t *ppos) \
{ return ufs_test_write(file, buf, count, ppos, \
UFS_TEST_ ## upper_case_name); } \
const struct file_operations ufs_test_ ## test_name ## _ops = { \
.open = ufs_test_ ## test_name ## _open, \
.read = seq_read, \
.write = ufs_test_ ## test_name ## _write, \
.release = single_release, \
};
#define add_test(utd, test_name, upper_case_name) \
ufs_test_add_test(utd, UFS_TEST_ ## upper_case_name, "ufs_test_"#test_name,\
&(ufs_test_ ## test_name ## _ops)); \
enum ufs_test_testcases {
UFS_TEST_WRITE_READ_TEST,
UFS_TEST_MULTI_QUERY,
UFS_TEST_DATA_INTEGRITY,
UFS_TEST_LONG_SEQUENTIAL_READ,
UFS_TEST_LONG_SEQUENTIAL_WRITE,
UFS_TEST_LONG_SEQUENTIAL_MIXED,
UFS_TEST_LONG_RANDOM_READ,
UFS_TEST_LONG_RANDOM_WRITE,
UFS_TEST_PARALLEL_READ_AND_WRITE,
UFS_TEST_LUN_DEPTH,
NUM_TESTS,
};
enum ufs_test_stage {
DEFAULT,
UFS_TEST_ERROR,
UFS_TEST_LONG_SEQUENTIAL_MIXED_STAGE1,
UFS_TEST_LONG_SEQUENTIAL_MIXED_STAGE2,
UFS_TEST_LUN_DEPTH_TEST_RUNNING,
UFS_TEST_LUN_DEPTH_DONE_ISSUING_REQ,
};
struct ufs_test_data {
/* Data structure for debugfs dentrys */
struct dentry **test_list;
/*
* Data structure containing individual test information, including
* self-defined specific data
*/
struct test_info test_info;
/* device test */
struct blk_dev_test_type bdt;
/* A wait queue for OPs to complete */
wait_queue_head_t wait_q;
/* a flag for write compleation */
bool queue_complete;
/*
* To determine the number of r/w bios. When seed = 0, random is
* disabled and 2 BIOs are written.
*/
unsigned int random_test_seed;
struct dentry *random_test_seed_dentry;
/* A counter for the number of test requests completed */
unsigned int completed_req_count;
/* Test stage */
enum ufs_test_stage test_stage;
/* Parameters for maintaining multiple threads */
int fail_threads;
atomic_t outstanding_threads;
struct completion outstanding_complete;
/* user-defined size of address space in which to perform I/O */
u32 sector_range;
/* total number of requests to be submitted in long test */
u32 long_test_num_reqs;
};
static struct ufs_test_data *utd;
static int ufs_test_add_test(struct ufs_test_data *utd,
enum ufs_test_testcases test_id, char *test_str,
const struct file_operations *test_fops)
{
int ret = 0;
struct dentry *tests_root;
if (test_id >= NUM_TESTS)
return -EINVAL;
tests_root = test_iosched_get_debugfs_tests_root();
if (!tests_root) {
pr_err("%s: Failed to create debugfs root.", __func__);
return -EINVAL;
}
utd->test_list[test_id] = debugfs_create_file(test_str,
S_IRUGO | S_IWUGO, tests_root,
NULL, test_fops);
if (!utd->test_list[test_id]) {
pr_err("%s: Could not create the test %s", test_str,
__func__);
ret = -ENOMEM;
}
return ret;
}
/**
* struct test_scenario - keeps scenario data that creates unique pattern
* @td: per test reference
* @direction: pattern initial direction
* @toggle_direction: every toggle_direction requests switch direction for one
* request
* @total_req: number of request to issue
* @rnd_req: should request issue to random LBA with random size
* @run_q: the maximum number of request to hold in queue (before run_queue())
*/
struct test_scenario {
struct test_data *td;
int direction;
int toggle_direction;
int total_req;
bool rnd_req;
int run_q;
};
enum scenario_id {
/* scenarios for parallel read and write test */
SCEN_RANDOM_READ_50,
SCEN_RANDOM_WRITE_50,
SCEN_RANDOM_READ_32_NO_FLUSH,
SCEN_RANDOM_WRITE_32_NO_FLUSH,
SCEN_RANDOM_MAX,
};
static struct test_scenario test_scenario[SCEN_RANDOM_MAX] = {
{NULL, READ, 0, 50, true, 5}, /* SCEN_RANDOM_READ_50 */
{NULL, WRITE, 0, 50, true, 5}, /* SCEN_RANDOM_WRITE_50 */
/* SCEN_RANDOM_READ_32_NO_FLUSH */
{NULL, READ, 0, 32, true, 64},
/* SCEN_RANDOM_WRITE_32_NO_FLUSH */
{NULL, WRITE, 0, 32, true, 64},
};
static
struct test_scenario *get_scenario(struct test_data *td, enum scenario_id id)
{
struct test_scenario *ret = &test_scenario[id];
ret->td = td;
return ret;
}
static char *ufs_test_get_test_case_str(struct test_data *td)
{
if (!td) {
pr_err("%s: NULL td", __func__);
return NULL;
}
switch (td->test_info.testcase) {
case UFS_TEST_WRITE_READ_TEST:
return "UFS write read test";
case UFS_TEST_MULTI_QUERY:
return "Test multiple queries at the same time";
case UFS_TEST_LONG_RANDOM_READ:
return "UFS long random read test";
case UFS_TEST_LONG_RANDOM_WRITE:
return "UFS long random write test";
case UFS_TEST_DATA_INTEGRITY:
return "UFS random data integrity test";
case UFS_TEST_LONG_SEQUENTIAL_READ:
return "UFS long sequential read test";
case UFS_TEST_LONG_SEQUENTIAL_WRITE:
return "UFS long sequential write test";
case UFS_TEST_LONG_SEQUENTIAL_MIXED:
return "UFS long sequential mixed test";
case UFS_TEST_PARALLEL_READ_AND_WRITE:
return "UFS parallel read and write test";
case UFS_TEST_LUN_DEPTH:
return "UFS LUN depth test";
default:
return "Unknown test";
}
}
static unsigned int ufs_test_pseudo_random_seed(unsigned int *seed_number,
unsigned int min_val, unsigned int max_val)
{
int ret = 0;
if (!seed_number)
return 0;
*seed_number = ((unsigned int) (((unsigned long) *seed_number
* (unsigned long) LARGE_PRIME_1) + LARGE_PRIME_2));
ret = (unsigned int) ((*seed_number) % max_val);
return (ret > min_val ? ret : min_val);
}
/**
* pseudo_rnd_sector_and_size - provides random sector and size for test request
* @seed: random seed
* @min_start_sector: minimum lba
* @start_sector: pointer for output start sector
* @num_of_bios: pointer for output number of bios
*
* Note that for UFS sector number has to be aligned with block size. Since
* scsi will send the block number as the LBA.
*/
static void pseudo_rnd_sector_and_size(struct ufs_test_data *utd,
unsigned int *start_sector,
unsigned int *num_of_bios)
{
struct test_iosched *tios = utd->test_iosched;
u32 min_start_sector = tios->start_sector;
unsigned int max_sec = min_start_sector + utd->sector_range;
do {
*start_sector = ufs_test_pseudo_random_seed(
&utd->random_test_seed, 1, max_sec);
*num_of_bios = ufs_test_pseudo_random_seed(
&utd->random_test_seed, 1, TEST_MAX_BIOS_PER_REQ);
if (!(*num_of_bios))
*num_of_bios = 1;
} while ((*start_sector < min_start_sector) ||
(*start_sector + (*num_of_bios * TEST_BIO_SIZE)) > max_sec);
/*
* The test-iosched API is working with sectors 512b, while UFS LBA
* is in blocks (4096). Thus the last 3 bits has to be cleared.
*/
*start_sector &= ~SECTOR_TO_BLOCK_MASK;
}
static void ufs_test_pseudo_rnd_size(unsigned int *seed,
unsigned int *num_of_bios)
{
*num_of_bios = ufs_test_pseudo_random_seed(seed, 1,
TEST_MAX_BIOS_PER_REQ);
if (!(*num_of_bios))
*num_of_bios = DEFAULT_NUM_OF_BIOS;
}
static int ufs_test_show(struct seq_file *file, int test_case)
{
char *test_description;
switch (test_case) {
case UFS_TEST_WRITE_READ_TEST:
test_description = "\nufs_write_read_test\n"
"=========\n"
"Description:\n"
"This test write once a random block and than reads it to "
"verify its content. Used to debug first time transactions.\n";
break;
case UFS_TEST_MULTI_QUERY:
test_description = "Test multiple queries at the same time.\n";
break;
case UFS_TEST_DATA_INTEGRITY:
test_description = "\nufs_data_integrity_test\n"
"=========\n"
"Description:\n"
"This test writes 118 requests of size 4KB to randomly chosen LBAs.\n"
"The test then reads from these LBAs and checks that the\n"
"correct buffer has been read.\n";
break;
case UFS_TEST_LONG_SEQUENTIAL_READ:
test_description = "\nufs_long_sequential_read_test\n"
"=========\n"
"Description:\n"
"This test runs the following scenarios\n"
"- Long Sequential Read Test: this test measures read "
"throughput at the driver level by sequentially reading many "
"large requests.\n";
break;
case UFS_TEST_LONG_RANDOM_READ:
test_description = "\nufs_long_random_read_test\n"
"=========\n"
"Description:\n"
"This test runs the following scenarios\n"
"- Long Random Read Test: this test measures read "
"IOPS at the driver level by reading many 4KB requests"
"with random LBAs\n";
break;
case UFS_TEST_LONG_SEQUENTIAL_WRITE:
test_description = "\nufs_long_sequential_write_test\n"
"=========\n"
"Description:\n"
"This test runs the following scenarios\n"
"- Long Sequential Write Test: this test measures write "
"throughput at the driver level by sequentially writing many "
"large requests\n";
break;
case UFS_TEST_LONG_RANDOM_WRITE:
test_description = "\nufs_long_random_write_test\n"
"=========\n"
"Description:\n"
"This test runs the following scenarios\n"
"- Long Random Write Test: this test measures write "
"IOPS at the driver level by writing many 4KB requests"
"with random LBAs\n";
break;
case UFS_TEST_LONG_SEQUENTIAL_MIXED:
test_description = "\nufs_long_sequential_mixed_test_read\n"
"=========\n"
"Description:\n"
"The test will verify correctness of sequential data pattern "
"written to the device while new data (with same pattern) is "
"written simultaneously.\n"
"First this test will run a long sequential write scenario."
"This first stage will write the pattern that will be read "
"later. Second, sequential read requests will read and "
"compare the same data. The second stage reads, will issue in "
"Parallel to write requests with the same LBA and size.\n"
"NOTE: The test requires a long timeout.\n";
break;
case UFS_TEST_PARALLEL_READ_AND_WRITE:
test_description = "\nufs_test_parallel_read_and_write\n"
"=========\n"
"Description:\n"
"This test initiate two threads. Each thread is issuing "
"multiple random requests. One thread will issue only read "
"requests, while the other will only issue write requests.\n";
break;
case UFS_TEST_LUN_DEPTH:
test_description = "\nufs_test_lun_depth\n"
"=========\n"
"Description:\n"
"This test is trying to stress the edge cases of the UFS "
"device queue. This queue has two such edges, the total queue "
"depth and the command per LU. To test those edges properly, "
"two deviations from the edge in addition to the edge are "
"tested as well. One deviation will be fixed (1), and the "
"second will be picked randomly.\n"
"The test will fill a request queue with random read "
"requests. The amount of request will vary each iteration and "
"will be either the one of the edges or the sum of this edge "
"with one deviations.\n"
"The test will test for each iteration once only reads and "
"once only writes.\n";
break;
default:
test_description = "Unknown test";
}
seq_puts(file, test_description);
return 0;
}
static struct gendisk *ufs_test_get_rq_disk(void)
{
struct request_queue *req_q = test_iosched_get_req_queue();
struct scsi_device *sd;
struct device *dev;
struct scsi_disk *sdkp;
struct gendisk *gd;
if (!req_q) {
pr_info("%s: Could not fetch request_queue", __func__);
gd = NULL;
goto exit;
}
sd = (struct scsi_device *)req_q->queuedata;
dev = &sd->sdev_gendev;
sdkp = scsi_disk_get_from_dev(dev);
if (!sdkp) {
pr_info("%s: Could not fatch scsi disk", __func__);
gd = NULL;
goto exit;
}
gd = sdkp->disk;
exit:
return gd;
}
static int ufs_test_check_result(struct test_data *td)
{
if (utd->test_stage == UFS_TEST_ERROR) {
pr_err("%s: An error occurred during the test.", __func__);
return TEST_FAILED;
}
if (utd->fail_threads != 0) {
pr_err("%s: About %d threads failed during execution.",
__func__, utd->fail_threads);
return utd->fail_threads;
}
return 0;
}
static bool ufs_write_read_completion(void)
{
if (!utd->queue_complete) {
utd->queue_complete = true;
wake_up(&utd->wait_q);
return false;
}
return true;
}
static int ufs_test_run_write_read_test(struct test_data *td)
{
int ret = 0;
unsigned int start_sec;
unsigned int num_bios;
struct request_queue *q = td->req_q;
start_sec = td->start_sector + sizeof(int) * BIO_U32_SIZE
* td->num_of_write_bios;
if (utd->random_test_seed != 0)
ufs_test_pseudo_rnd_size(&utd->random_test_seed, &num_bios);
else
num_bios = DEFAULT_NUM_OF_BIOS;
/* Adding a write request */
pr_info(
"%s: Adding a write request with %d bios to Q, req_id=%d"
, __func__, num_bios, td->wr_rd_next_req_id);
utd->queue_complete = false;
ret = test_iosched_add_wr_rd_test_req(0, WRITE, start_sec, num_bios,
TEST_PATTERN_5A, NULL);
if (ret) {
pr_err("%s: failed to add a write request", __func__);
return ret;
}
/* waiting for the write request to finish */
blk_run_queue(q);
wait_event(utd->wait_q, utd->queue_complete);
/* Adding a read request*/
pr_info("%s: Adding a read request to Q", __func__);
ret = test_iosched_add_wr_rd_test_req(0, READ, start_sec,
num_bios, TEST_PATTERN_5A, NULL);
if (ret) {
pr_err("%s: failed to add a read request", __func__);
return ret;
}
blk_run_queue(q);
return ret;
}
static void ufs_test_thread_complete(int result)
{
if (result)
utd->fail_threads++;
atomic_dec(&utd->outstanding_threads);
if (!atomic_read(&utd->outstanding_threads))
complete(&utd->outstanding_complete);
}
static void ufs_test_random_async_query(void *data, async_cookie_t cookie)
{
int op;
struct ufs_hba *hba = (struct ufs_hba *)data;
int buff_len = QUERY_DESC_UNIT_DEF_SIZE;
u8 desc_buf[QUERY_DESC_UNIT_DEF_SIZE];
bool flag;
u32 att;
int ret = 0;
op = ufs_test_pseudo_random_seed(&utd->random_test_seed, 1, 8);
/*
* When write data (descriptor/attribute/flag) queries are issued,
* regular work and functionality must be kept. The data is read
* first to make sure the original state is restored.
*/
switch (op) {
case UPIU_QUERY_OPCODE_READ_DESC:
case UPIU_QUERY_OPCODE_WRITE_DESC:
ret = ufshcd_query_descriptor(hba, UPIU_QUERY_OPCODE_READ_DESC,
QUERY_DESC_IDN_UNIT, 0, 0, desc_buf, &buff_len);
break;
case UPIU_QUERY_OPCODE_WRITE_ATTR:
case UPIU_QUERY_OPCODE_READ_ATTR:
ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &att);
if (ret || op == UPIU_QUERY_OPCODE_READ_ATTR)
break;
ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &att);
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
case UPIU_QUERY_OPCODE_SET_FLAG:
case UPIU_QUERY_OPCODE_CLEAR_FLAG:
case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
/* We read the QUERY_FLAG_IDN_BKOPS_EN and restore it later */
ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
QUERY_FLAG_IDN_BKOPS_EN, &flag);
if (ret || op == UPIU_QUERY_OPCODE_READ_FLAG)
break;
/* After changing the flag we have to change it back */
ret = ufshcd_query_flag(hba, op, QUERY_FLAG_IDN_BKOPS_EN, NULL);
if ((op == UPIU_QUERY_OPCODE_SET_FLAG && flag) ||
(op == UPIU_QUERY_OPCODE_CLEAR_FLAG && !flag))
/* No need to change it back */
break;
if (flag)
ret |= ufshcd_query_flag(hba,
UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_BKOPS_EN, NULL);
else
ret |= ufshcd_query_flag(hba,
UPIU_QUERY_OPCODE_CLEAR_FLAG,
QUERY_FLAG_IDN_BKOPS_EN, NULL);
break;
default:
pr_err("%s: Random error unknown op %d", __func__, op);
}
if (ret)
pr_err("%s: Query thread with op %d, failed with err %d.",
__func__, op, ret);
ufs_test_thread_complete(ret);
}
static void scenario_free_end_io_fn(struct request *rq, int err)
{
struct test_request *test_rq;
struct test_data *ptd = test_get_test_data();
unsigned long flags;
BUG_ON(!rq);
test_rq = (struct test_request *)rq->elv.priv[0];
BUG_ON(!test_rq);
spin_lock_irqsave(&test_iosched->lock, flags);
ptd->dispatched_count--;
list_del_init(&test_rq->queuelist);
__blk_put_request(ptd->req_q, test_rq->rq);
spin_unlock_irqrestore(&test_iosched->lock, flags);
if (err)
pr_err("%s: request %d completed, err=%d", __func__,
test_rq->req_id, err);
test_iosched_free_test_req_data_buffer(test_rq);
kfree(test_rq);
check_test_completion();
}
static bool ufs_test_multi_thread_completion(void)
{
return atomic_read(&utd->outstanding_threads) <= 0 &&
utd->test_stage != UFS_TEST_LUN_DEPTH_TEST_RUNNING;
}
static bool long_rand_test_check_completion(void)
{
if (utd->completed_req_count > utd->long_test_num_reqs) {
pr_err("%s: Error: Completed more requests than total test requests.\nTerminating test."
, __func__);
return true;
}
return utd->completed_req_count == utd->long_test_num_reqs;
}
static bool long_seq_test_check_completion(void)
{
if (utd->completed_req_count > utd->long_test_num_reqs) {
pr_err("%s: Error: Completed more requests than total test requests"
, __func__);
pr_err("%s: Terminating test.", __func__);
return true;
}
return utd->completed_req_count == utd->long_test_num_reqs;
}
/**
* ufs_test_toggle_direction() - decides whether toggling is
* needed. Toggle factor zero means no toggling.
*
* toggle_factor - iteration to toggle = toggling frequency
* iteration - the current request iteration
*
* Returns nonzero if toggling is needed, and 0 when toggling is
* not needed.
*/
static inline int ufs_test_toggle_direction(int toggle_factor, int iteration)
{
if (!toggle_factor)
return 0;
return !(iteration % toggle_factor);
}
static void ufs_test_run_scenario(void *data, async_cookie_t cookie)
{
struct test_scenario *ts = (struct test_scenario *)data;
int ret = 0, i, start_sec;
BUG_ON(!ts);
start_sec = ts->td->start_sector;
for (i = 0; i < ts->total_req; i++) {
int num_bios = DEFAULT_NUM_OF_BIOS;
int direction;
if (ufs_test_toggle_direction(ts->toggle_direction, i))
direction = (ts->direction == WRITE) ? READ : WRITE;
else
direction = ts->direction;
/* use randomly generated requests */
if (ts->rnd_req && utd->random_test_seed != 0)
pseudo_rnd_sector_and_size(utd, &start_sec, &num_bios);
ret = test_iosched_add_wr_rd_test_req(0, direction, start_sec,
num_bios, TEST_PATTERN_5A,
scenario_free_end_io_fn);
if (ret) {
pr_err("%s: failed to create request", __func__);
break;
}
/*
* We want to run the queue every run_q requests, or,
* when the requests pool is exhausted
*/
if (ts->td->dispatched_count >= QUEUE_MAX_REQUESTS ||
(ts->run_q && !(i % ts->run_q)))
blk_run_queue(ts->td->req_q);
}
blk_run_queue(ts->td->req_q);
ufs_test_thread_complete(ret);
}
static int ufs_test_run_multi_query_test(struct test_data *td)
{
int i;
struct scsi_device *sdev;
struct ufs_hba *hba;
BUG_ON(!td || !td->req_q || !td->req_q->queuedata);
sdev = (struct scsi_device *)td->req_q->queuedata;
BUG_ON(!sdev->host);
hba = shost_priv(sdev->host);
BUG_ON(!hba);
atomic_set(&utd->outstanding_threads, 0);
utd->fail_threads = 0;
init_completion(&utd->outstanding_complete);
for (i = 0; i < MAX_PARALLEL_QUERIES; ++i) {
atomic_inc(&utd->outstanding_threads);
async_schedule(ufs_test_random_async_query, hba);
}
if (!wait_for_completion_timeout(&utd->outstanding_complete,
THREADS_COMPLETION_TIMOUT)) {
pr_err("%s: Multi-query test timed-out %d threads left",
__func__, atomic_read(&utd->outstanding_threads));
}
test_iosched_mark_test_completion();
return 0;
}
static int ufs_test_run_parallel_read_and_write_test(struct test_data *td)
{
struct test_scenario *read_data, *write_data;
int i;
bool changed_seed = false;
read_data = get_scenario(td, SCEN_RANDOM_READ_50);
write_data = get_scenario(td, SCEN_RANDOM_WRITE_50);
/* allow randomness even if user forgot */
if (utd->random_test_seed <= 0) {
changed_seed = true;
utd->random_test_seed = 1;
}
atomic_set(&utd->outstanding_threads, 0);
utd->fail_threads = 0;
init_completion(&utd->outstanding_complete);
for (i = 0; i < (RANDOM_REQUEST_THREADS / 2); i++) {
async_schedule(ufs_test_run_scenario, read_data);
async_schedule(ufs_test_run_scenario, write_data);
atomic_add(2, &utd->outstanding_threads);
}
if (!wait_for_completion_timeout(&utd->outstanding_complete,
THREADS_COMPLETION_TIMOUT)) {
pr_err("%s: Multi-thread test timed-out %d threads left",
__func__, atomic_read(&utd->outstanding_threads));
}
check_test_completion();
/* clear random seed if changed */
if (changed_seed)
utd->random_test_seed = 0;
return 0;
}
static void ufs_test_run_synchronous_scenario(struct test_scenario *read_data)
{
init_completion(&utd->outstanding_complete);
atomic_set(&utd->outstanding_threads, 1);
async_schedule(ufs_test_run_scenario, read_data);
if (!wait_for_completion_timeout(&utd->outstanding_complete,
THREADS_COMPLETION_TIMOUT)) {
pr_err("%s: Multi-thread test timed-out %d threads left",
__func__, atomic_read(&utd->outstanding_threads));
}
}
static int ufs_test_run_lun_depth_test(struct test_data *td)
{
struct test_scenario *read_data, *write_data;
struct scsi_device *sdev;
bool changed_seed = false;
int i = 0, num_req[LUN_DEPTH_TEST_SIZE];
int lun_qdepth, nutrs, num_scenarios;
BUG_ON(!td || !td->req_q || !td->req_q->queuedata);
sdev = (struct scsi_device *)td->req_q->queuedata;
lun_qdepth = sdev->max_queue_depth;
nutrs = sdev->host->can_queue;
/* allow randomness even if user forgot */
if (utd->random_test_seed <= 0) {
changed_seed = true;
utd->random_test_seed = 1;
}
/* initialize the number of request for each iteration */
num_req[i++] = ufs_test_pseudo_random_seed(
&utd->random_test_seed, 1, lun_qdepth - 2);
num_req[i++] = lun_qdepth - 1;
num_req[i++] = lun_qdepth;
num_req[i++] = lun_qdepth + 1;
/* if (nutrs-lun_qdepth-2 <= 0), do not run this scenario */
if (nutrs - lun_qdepth - 2 > 0)
num_req[i++] = lun_qdepth + 1 + ufs_test_pseudo_random_seed(
&utd->random_test_seed, 1, nutrs - lun_qdepth - 2);
/* if nutrs == lun_qdepth, do not run these three scenarios */
if (nutrs != lun_qdepth) {
num_req[i++] = nutrs - 1;
num_req[i++] = nutrs;
num_req[i++] = nutrs + 1;
}
/* a random number up to 10, not to cause overflow or timeout */
num_req[i++] = nutrs + 1 + ufs_test_pseudo_random_seed(
&utd->random_test_seed, 1, 10);
num_scenarios = i;
utd->test_stage = UFS_TEST_LUN_DEPTH_TEST_RUNNING;
utd->fail_threads = 0;
read_data = get_scenario(td, SCEN_RANDOM_READ_32_NO_FLUSH);
write_data = get_scenario(td, SCEN_RANDOM_WRITE_32_NO_FLUSH);
for (i = 0; i < num_scenarios; i++) {
int reqs = num_req[i];
read_data->total_req = reqs;
write_data->total_req = reqs;
ufs_test_run_synchronous_scenario(read_data);
ufs_test_run_synchronous_scenario(write_data);
}
utd->test_stage = UFS_TEST_LUN_DEPTH_DONE_ISSUING_REQ;
check_test_completion();
/* clear random seed if changed */
if (changed_seed)
utd->random_test_seed = 0;
return 0;
}
static void long_test_free_end_io_fn(struct request *rq, int err)
{
struct test_request *test_rq;
struct test_data *ptd = test_get_test_data();
unsigned long flags;
if (rq) {
test_rq = (struct test_request *)rq->elv.priv[0];
} else {
pr_err("%s: error: NULL request", __func__);
return;
}
BUG_ON(!test_rq);
spin_lock_irqsave(&test_iosched->lock, flags);
ptd->dispatched_count--;
list_del_init(&test_rq->queuelist);
__blk_put_request(ptd->req_q, test_rq->rq);
spin_unlock_irqrestore(&test_iosched->lock, flags);
if (utd->test_stage == UFS_TEST_LONG_SEQUENTIAL_MIXED_STAGE2 &&
rq_data_dir(rq) == READ &&
compare_buffer_to_pattern(test_rq)) {
/* if the pattern does not match */
pr_err("%s: read pattern not as expected", __func__);
utd->test_stage = UFS_TEST_ERROR;
check_test_completion();
return;
}
if (err)
pr_err("%s: request %d completed, err=%d", __func__,
test_rq->req_id, err);
test_iosched_free_test_req_data_buffer(test_rq);
kfree(test_rq);
utd->completed_req_count++;
check_test_completion();
}
/**
* run_long_test - main function for long sequential test
* @td - test specific data
*
* This function is used to fill up (and keep full) the test queue with
* requests. There are two scenarios this function works with:
* 1. Only read/write (STAGE_1 or no stage)
* 2. Simultaneous read and write to the same LBAs (STAGE_2)
*/
static int run_long_test(struct test_data *td)
{
int ret = 0;
int direction, num_bios_per_request = 1;
static unsigned int inserted_requests;
u32 sector, seed, num_bios, seq_sector_delta;
BUG_ON(!td);
sector = td->start_sector;
if (test_iosched->sector_range)
utd->sector_range = test_iosched->sector_range;
else
utd->sector_range = TEST_DEFAULT_SECTOR_RANGE;
if (utd->test_stage != UFS_TEST_LONG_SEQUENTIAL_MIXED_STAGE2) {
td->test_count = 0;
utd->completed_req_count = 0;
inserted_requests = 0;
}
/* Set test parameters */
switch (td->test_info.testcase) {
case UFS_TEST_LONG_RANDOM_READ:
utd->long_test_num_reqs = (utd->sector_range * SECTOR_SIZE) /
(LONG_RAND_TEST_REQ_RATIO * TEST_BIO_SIZE *
num_bios_per_request);
direction = READ;
break;
case UFS_TEST_LONG_RANDOM_WRITE:
utd->long_test_num_reqs = (utd->sector_range * SECTOR_SIZE) /
(LONG_RAND_TEST_REQ_RATIO * TEST_BIO_SIZE *
num_bios_per_request);
direction = WRITE;
break;
case UFS_TEST_LONG_SEQUENTIAL_READ:
num_bios_per_request = TEST_MAX_BIOS_PER_REQ;
utd->long_test_num_reqs = (utd->sector_range * SECTOR_SIZE) /
(num_bios_per_request * TEST_BIO_SIZE);
direction = READ;
break;
case UFS_TEST_LONG_SEQUENTIAL_WRITE:
case UFS_TEST_LONG_SEQUENTIAL_MIXED:
num_bios_per_request = TEST_MAX_BIOS_PER_REQ;
utd->long_test_num_reqs = (utd->sector_range * SECTOR_SIZE) /
(num_bios_per_request * TEST_BIO_SIZE);
default:
direction = WRITE;
}
seq_sector_delta = num_bios_per_request * (TEST_BIO_SIZE / SECTOR_SIZE);
seed = utd->random_test_seed ? utd->random_test_seed : MAGIC_SEED;
pr_info("%s: Adding %d requests, first req_id=%d", __func__,
utd->long_test_num_reqs, test_iosched->wr_rd_next_req_id);
do {
/*
* since our requests come from a pool containing 128
* requests, we don't want to exhaust this quantity,
* therefore we add up to QUEUE_MAX_REQUESTS (which
* includes a safety margin) and then call the block layer
* to fetch them
*/
if (td->test_count >= QUEUE_MAX_REQUESTS) {
blk_run_queue(td->req_q);
continue;
}
switch (td->test_info.testcase) {
case UFS_TEST_LONG_SEQUENTIAL_READ:
case UFS_TEST_LONG_SEQUENTIAL_WRITE:
case UFS_TEST_LONG_SEQUENTIAL_MIXED:
/* don't need to increment on the first iteration */
if (inserted_requests)
sector += seq_sector_delta;
break;
case UFS_TEST_LONG_RANDOM_READ:
case UFS_TEST_LONG_RANDOM_WRITE:
pseudo_rnd_sector_and_size(utd, &sector, &num_bios);
default:
break;
}
ret = test_iosched_add_wr_rd_test_req(0, direction, sector,
num_bios_per_request, TEST_PATTERN_5A,
long_test_free_end_io_fn);
if (ret) {
pr_err("%s: failed to create request", __func__);
break;
}
inserted_requests++;
if (utd->test_stage == UFS_TEST_LONG_SEQUENTIAL_MIXED_STAGE2) {
ret = test_iosched_add_wr_rd_test_req(0, READ, sector,
num_bios_per_request, TEST_PATTERN_5A,
long_test_free_end_io_fn);
if (ret) {
pr_err("%s: failed to create request",
__func__);
break;
}
inserted_requests++;
}
} while (inserted_requests < utd->long_test_num_reqs);
/* in this case the queue will not run in the above loop */
if (utd->long_test_num_reqs < QUEUE_MAX_REQUESTS)
blk_run_queue(td->req_q);
return ret;
}
static int run_mixed_long_seq_test(struct test_data *td)
{
int ret;
utd->test_stage = UFS_TEST_LONG_SEQUENTIAL_MIXED_STAGE1;
ret = run_long_test(td);
if (ret)
goto out;
pr_info("%s: First write iteration completed.", __func__);
pr_info("%s: Starting mixed write and reads sequence.", __func__);
utd->test_stage = UFS_TEST_LONG_SEQUENTIAL_MIXED_STAGE2;
ret = run_long_test(td);
out:
return ret;
}
static int long_rand_test_calc_iops(struct test_data *td)
{
unsigned long mtime, num_ios, iops;
mtime = ktime_to_ms(utd->test_info.test_duration);
num_ios = utd->completed_req_count;
pr_info("%s: time is %lu msec, IOS count is %lu", __func__, mtime,
num_ios);
/* preserve some precision */
num_ios *= 1000;
/* calculate those iops */
iops = num_ios / mtime;
pr_info("%s: IOPS: %lu IOP/sec\n", __func__, iops);
return 0;
}
static int long_seq_test_calc_throughput(struct test_data *td)
{
unsigned long fraction, integer;
unsigned long mtime, byte_count;
mtime = ktime_to_ms(utd->test_info.test_duration);
byte_count = utd->test_info.test_byte_count;
pr_info("%s: time is %lu msec, size is %lu.%lu MiB", __func__, mtime,
LONG_TEST_SIZE_INTEGER(byte_count),
LONG_TEST_SIZE_FRACTION(byte_count));
/* we first multiply in order not to lose precision */
mtime *= MB_MSEC_RATIO_APPROXIMATION;
/* divide values to get a MiB/sec integer value with one
digit of precision
*/
fraction = integer = (byte_count * 10) / mtime;
integer /= 10;
/* and calculate the MiB value fraction */
fraction -= integer * 10;
pr_info("%s: Throughput: %lu.%lu MiB/sec\n", __func__, integer,
fraction);
return 0;
}
static bool ufs_data_integrity_completion(void)
{
struct test_data *ptd = test_get_test_data();
bool ret = false;
if (!ptd->dispatched_count) {
/* q is empty in this case */
if (!utd->queue_complete) {
utd->queue_complete = true;
wake_up(&utd->wait_q);
} else {
/* declare completion only on second time q is empty */
ret = true;
}
}
return ret;
}
static int ufs_test_run_data_integrity_test(struct test_data *td)
{
int ret = 0;
int i, j;
unsigned int start_sec, num_bios, retries = NUM_UNLUCKY_RETRIES;
struct request_queue *q = td->req_q;
int sectors[QUEUE_MAX_REQUESTS] = {0};
start_sec = td->start_sector;
utd->queue_complete = false;
if (utd->random_test_seed != 0) {
ufs_test_pseudo_rnd_size(&utd->random_test_seed, &num_bios);
} else {
num_bios = DEFAULT_NUM_OF_BIOS;
utd->random_test_seed = MAGIC_SEED;
}
/* Adding write requests */
pr_info("%s: Adding %d write requests, first req_id=%d", __func__,
QUEUE_MAX_REQUESTS, td->wr_rd_next_req_id);
for (i = 0; i < QUEUE_MAX_REQUESTS; i++) {
/* make sure that we didn't draw the same start_sector twice */
while (retries--) {
pseudo_rnd_sector_and_size(utd, &start_sec, &num_bios);
sectors[i] = start_sec;
for (j = 0; (j < i) && (sectors[i] != sectors[j]); j++)
/* just increment j */;
if (j == i)
break;
}
if (!retries) {
pr_err("%s: too many unlucky start_sector draw retries",
__func__);
ret = -EINVAL;
return ret;
}
retries = NUM_UNLUCKY_RETRIES;
ret = test_iosched_add_wr_rd_test_req(0, WRITE, start_sec, 1, i,
long_test_free_end_io_fn);
if (ret) {
pr_err("%s: failed to add a write request", __func__);
return ret;
}
}
/* waiting for the write request to finish */
blk_run_queue(q);
wait_event(utd->wait_q, utd->queue_complete);
/* Adding read requests */
pr_info("%s: Adding %d read requests, first req_id=%d", __func__,
QUEUE_MAX_REQUESTS, td->wr_rd_next_req_id);
for (i = 0; i < QUEUE_MAX_REQUESTS; i++) {
ret = test_iosched_add_wr_rd_test_req(0, READ, sectors[i],
1, i, long_test_free_end_io_fn);
if (ret) {
pr_err("%s: failed to add a read request", __func__);
return ret;
}
}
blk_run_queue(q);
return ret;
}
static ssize_t ufs_test_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos, int test_case)
{
int ret = 0;
int i;
int number;
ret = kstrtoint_from_user(buf, count, 0, &number);
if (ret < 0) {
pr_err("%s: Error while reading test parameter value %d",
__func__, ret);
return ret;
}
if (number <= 0)
number = 1;
pr_info("%s:the test will run for %d iterations.", __func__, number);
memset(&utd->test_info, 0, sizeof(struct test_info));
/* Initializing test */
utd->test_info.data = utd;
utd->test_info.get_test_case_str_fn = ufs_test_get_test_case_str;
utd->test_info.testcase = test_case;
utd->test_info.get_rq_disk_fn = ufs_test_get_rq_disk;
utd->test_info.check_test_result_fn = ufs_test_check_result;
utd->test_stage = DEFAULT;
switch (test_case) {
case UFS_TEST_WRITE_READ_TEST:
utd->test_info.run_test_fn = ufs_test_run_write_read_test;
utd->test_info.check_test_completion_fn =
ufs_write_read_completion;
break;
case UFS_TEST_MULTI_QUERY:
utd->test_info.run_test_fn = ufs_test_run_multi_query_test;
utd->test_info.check_test_result_fn = ufs_test_check_result;
break;
case UFS_TEST_DATA_INTEGRITY:
utd->test_info.run_test_fn = ufs_test_run_data_integrity_test;
utd->test_info.check_test_completion_fn =
ufs_data_integrity_completion;
break;
case UFS_TEST_LONG_RANDOM_READ:
case UFS_TEST_LONG_RANDOM_WRITE:
utd->test_info.run_test_fn = run_long_test;
utd->test_info.post_test_fn = long_rand_test_calc_iops;
utd->test_info.check_test_result_fn = ufs_test_check_result;
utd->test_info.check_test_completion_fn =
long_rand_test_check_completion;
break;
case UFS_TEST_LONG_SEQUENTIAL_READ:
case UFS_TEST_LONG_SEQUENTIAL_WRITE:
utd->test_info.run_test_fn = run_long_test;
utd->test_info.post_test_fn = long_seq_test_calc_throughput;
utd->test_info.check_test_result_fn = ufs_test_check_result;
utd->test_info.check_test_completion_fn =
long_seq_test_check_completion;
break;
case UFS_TEST_LONG_SEQUENTIAL_MIXED:
utd->test_info.timeout_msec = LONG_SEQUENTIAL_MIXED_TIMOUT_MS;
utd->test_info.run_test_fn = run_mixed_long_seq_test;
utd->test_info.post_test_fn = long_seq_test_calc_throughput;
utd->test_info.check_test_result_fn = ufs_test_check_result;
break;
case UFS_TEST_PARALLEL_READ_AND_WRITE:
utd->test_info.run_test_fn =
ufs_test_run_parallel_read_and_write_test;
utd->test_info.check_test_completion_fn =
ufs_test_multi_thread_completion;
break;
case UFS_TEST_LUN_DEPTH:
utd->test_info.run_test_fn = ufs_test_run_lun_depth_test;
break;
default:
pr_err("%s: Unknown test-case: %d", __func__, test_case);
WARN_ON(true);
}
/* Running the test multiple times */
for (i = 0; i < number; ++i) {
pr_info("%s: Cycle # %d / %d", __func__, i+1, number);
pr_info("%s: ====================", __func__);
utd->test_info.test_byte_count = 0;
ret = test_iosched_start_test(&utd->test_info);
if (ret) {
pr_err("%s: Test failed, err=%d.", __func__, ret);
return ret;
}
/* Allow FS requests to be dispatched */
msleep(1000);
}
pr_info("%s: Completed all the ufs test iterations.", __func__);
return count;
}
TEST_OPS(write_read_test, WRITE_READ_TEST);
TEST_OPS(multi_query, MULTI_QUERY);
TEST_OPS(data_integrity, DATA_INTEGRITY);
TEST_OPS(long_random_read, LONG_RANDOM_READ);
TEST_OPS(long_random_write, LONG_RANDOM_WRITE);
TEST_OPS(long_sequential_read, LONG_SEQUENTIAL_READ);
TEST_OPS(long_sequential_write, LONG_SEQUENTIAL_WRITE);
TEST_OPS(long_sequential_mixed, LONG_SEQUENTIAL_MIXED);
TEST_OPS(parallel_read_and_write, PARALLEL_READ_AND_WRITE);
TEST_OPS(lun_depth, LUN_DEPTH);
static void ufs_test_debugfs_cleanup(void)
{
debugfs_remove_recursive(test_iosched_get_debugfs_tests_root());
kfree(utd->test_list);
}
static int ufs_test_debugfs_init(void)
{
struct dentry *utils_root, *tests_root;
int ret = 0;
utils_root = test_iosched_get_debugfs_utils_root();
tests_root = test_iosched_get_debugfs_tests_root();
utd->test_list = kmalloc(sizeof(struct dentry *) * NUM_TESTS,
GFP_KERNEL);
if (!utd->test_list) {
pr_err("%s: failed to allocate tests dentrys", __func__);
return -ENODEV;
}
if (!utils_root || !tests_root) {
pr_err("%s: Failed to create debugfs root.", __func__);
ret = -EINVAL;
goto exit_err;
}
utd->random_test_seed_dentry = debugfs_create_u32("random_test_seed",
S_IRUGO | S_IWUGO, utils_root, &utd->random_test_seed);
if (!utd->random_test_seed_dentry) {
pr_err("%s: Could not create debugfs random_test_seed.",
__func__);
ret = -ENOMEM;
goto exit_err;
}
ret = add_test(utd, write_read_test, WRITE_READ_TEST);
if (ret)
goto exit_err;
ret = add_test(utd, data_integrity, DATA_INTEGRITY);
if (ret)
goto exit_err;
ret = add_test(utd, long_random_read, LONG_RANDOM_READ);
if (ret)
goto exit_err;
ret = add_test(utd, long_random_write, LONG_RANDOM_WRITE);
if (ret)
goto exit_err;
ret = add_test(utd, long_sequential_read, LONG_SEQUENTIAL_READ);
if (ret)
goto exit_err;
ret = add_test(utd, long_sequential_write, LONG_SEQUENTIAL_WRITE);
if (ret)
goto exit_err;
ret = add_test(utd, long_sequential_mixed, LONG_SEQUENTIAL_MIXED);
if (ret)
goto exit_err;
add_test(utd, multi_query, MULTI_QUERY);
if (ret)
goto exit_err;
add_test(utd, parallel_read_and_write, PARALLEL_READ_AND_WRITE);
if (ret)
goto exit_err;
add_test(utd, lun_depth, LUN_DEPTH);
if (ret)
goto exit_err;
goto exit;
exit_err:
ufs_test_debugfs_cleanup();
exit:
return ret;
}
static void ufs_test_probe(void)
{
ufs_test_debugfs_init();
}
static void ufs_test_remove(void)
{
ufs_test_debugfs_cleanup();
}
int __init ufs_test_init(void)
{
utd = kzalloc(sizeof(struct ufs_test_data), GFP_KERNEL);
if (!utd) {
pr_err("%s: failed to allocate ufs_test_data", __func__);
return -ENODEV;
}
init_waitqueue_head(&utd->wait_q);
utd->bdt.init_fn = ufs_test_probe;
utd->bdt.exit_fn = ufs_test_remove;
INIT_LIST_HEAD(&utd->bdt.list);
test_iosched_register(&utd->bdt);
return 0;
}
EXPORT_SYMBOL(ufs_test_init);
static void __exit ufs_test_exit(void)
{
test_iosched_unregister(&utd->bdt);
kfree(utd);
}
module_init(ufs_test_init);
module_exit(ufs_test_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("UFC test");