You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/media/platform/ti-vpe/vpdma.c

1171 lines
30 KiB

/*
* VPDMA helper library
*
* Copyright (c) 2013 Texas Instruments Inc.
*
* David Griego, <dagriego@biglakesoftware.com>
* Dale Farnsworth, <dale@farnsworth.org>
* Archit Taneja, <archit@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include "vpdma.h"
#include "vpdma_priv.h"
#define VPDMA_FIRMWARE "vpdma-1b8.bin"
const struct vpdma_data_format vpdma_yuv_fmts[] = {
[VPDMA_DATA_FMT_Y444] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_Y444,
.depth = 8,
},
[VPDMA_DATA_FMT_Y422] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_Y422,
.depth = 8,
},
[VPDMA_DATA_FMT_Y420] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_Y420,
.depth = 8,
},
[VPDMA_DATA_FMT_C444] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_C444,
.depth = 8,
},
[VPDMA_DATA_FMT_C422] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_C422,
.depth = 8,
},
[VPDMA_DATA_FMT_C420] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_C420,
.depth = 4,
},
[VPDMA_DATA_FMT_YCR422] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_YCR422,
.depth = 16,
},
[VPDMA_DATA_FMT_YC444] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_YC444,
.depth = 24,
},
[VPDMA_DATA_FMT_CRY422] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_CRY422,
.depth = 16,
},
[VPDMA_DATA_FMT_CBY422] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_CBY422,
.depth = 16,
},
[VPDMA_DATA_FMT_YCB422] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_YCB422,
.depth = 16,
},
};
EXPORT_SYMBOL(vpdma_yuv_fmts);
const struct vpdma_data_format vpdma_rgb_fmts[] = {
[VPDMA_DATA_FMT_RGB565] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_RGB16_565,
.depth = 16,
},
[VPDMA_DATA_FMT_ARGB16_1555] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ARGB_1555,
.depth = 16,
},
[VPDMA_DATA_FMT_ARGB16] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ARGB_4444,
.depth = 16,
},
[VPDMA_DATA_FMT_RGBA16_5551] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_RGBA_5551,
.depth = 16,
},
[VPDMA_DATA_FMT_RGBA16] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_RGBA_4444,
.depth = 16,
},
[VPDMA_DATA_FMT_ARGB24] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ARGB24_6666,
.depth = 24,
},
[VPDMA_DATA_FMT_RGB24] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_RGB24_888,
.depth = 24,
},
[VPDMA_DATA_FMT_ARGB32] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ARGB32_8888,
.depth = 32,
},
[VPDMA_DATA_FMT_RGBA24] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_RGBA24_6666,
.depth = 24,
},
[VPDMA_DATA_FMT_RGBA32] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_RGBA32_8888,
.depth = 32,
},
[VPDMA_DATA_FMT_BGR565] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_BGR16_565,
.depth = 16,
},
[VPDMA_DATA_FMT_ABGR16_1555] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ABGR_1555,
.depth = 16,
},
[VPDMA_DATA_FMT_ABGR16] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ABGR_4444,
.depth = 16,
},
[VPDMA_DATA_FMT_BGRA16_5551] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_BGRA_5551,
.depth = 16,
},
[VPDMA_DATA_FMT_BGRA16] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_BGRA_4444,
.depth = 16,
},
[VPDMA_DATA_FMT_ABGR24] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ABGR24_6666,
.depth = 24,
},
[VPDMA_DATA_FMT_BGR24] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_BGR24_888,
.depth = 24,
},
[VPDMA_DATA_FMT_ABGR32] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_ABGR32_8888,
.depth = 32,
},
[VPDMA_DATA_FMT_BGRA24] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_BGRA24_6666,
.depth = 24,
},
[VPDMA_DATA_FMT_BGRA32] = {
.type = VPDMA_DATA_FMT_TYPE_RGB,
.data_type = DATA_TYPE_BGRA32_8888,
.depth = 32,
},
};
EXPORT_SYMBOL(vpdma_rgb_fmts);
/*
* To handle RAW format we are re-using the CBY422
* vpdma data type so that we use the vpdma to re-order
* the incoming bytes, as the parser assumes that the
* first byte presented on the bus is the MSB of a 2
* bytes value.
* RAW8 handles from 1 to 8 bits
* RAW16 handles from 9 to 16 bits
*/
const struct vpdma_data_format vpdma_raw_fmts[] = {
[VPDMA_DATA_FMT_RAW8] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_CBY422,
.depth = 8,
},
[VPDMA_DATA_FMT_RAW16] = {
.type = VPDMA_DATA_FMT_TYPE_YUV,
.data_type = DATA_TYPE_CBY422,
.depth = 16,
},
};
EXPORT_SYMBOL(vpdma_raw_fmts);
const struct vpdma_data_format vpdma_misc_fmts[] = {
[VPDMA_DATA_FMT_MV] = {
.type = VPDMA_DATA_FMT_TYPE_MISC,
.data_type = DATA_TYPE_MV,
.depth = 4,
},
};
EXPORT_SYMBOL(vpdma_misc_fmts);
struct vpdma_channel_info {
int num; /* VPDMA channel number */
int cstat_offset; /* client CSTAT register offset */
};
static const struct vpdma_channel_info chan_info[] = {
[VPE_CHAN_LUMA1_IN] = {
.num = VPE_CHAN_NUM_LUMA1_IN,
.cstat_offset = VPDMA_DEI_LUMA1_CSTAT,
},
[VPE_CHAN_CHROMA1_IN] = {
.num = VPE_CHAN_NUM_CHROMA1_IN,
.cstat_offset = VPDMA_DEI_CHROMA1_CSTAT,
},
[VPE_CHAN_LUMA2_IN] = {
.num = VPE_CHAN_NUM_LUMA2_IN,
.cstat_offset = VPDMA_DEI_LUMA2_CSTAT,
},
[VPE_CHAN_CHROMA2_IN] = {
.num = VPE_CHAN_NUM_CHROMA2_IN,
.cstat_offset = VPDMA_DEI_CHROMA2_CSTAT,
},
[VPE_CHAN_LUMA3_IN] = {
.num = VPE_CHAN_NUM_LUMA3_IN,
.cstat_offset = VPDMA_DEI_LUMA3_CSTAT,
},
[VPE_CHAN_CHROMA3_IN] = {
.num = VPE_CHAN_NUM_CHROMA3_IN,
.cstat_offset = VPDMA_DEI_CHROMA3_CSTAT,
},
[VPE_CHAN_MV_IN] = {
.num = VPE_CHAN_NUM_MV_IN,
.cstat_offset = VPDMA_DEI_MV_IN_CSTAT,
},
[VPE_CHAN_MV_OUT] = {
.num = VPE_CHAN_NUM_MV_OUT,
.cstat_offset = VPDMA_DEI_MV_OUT_CSTAT,
},
[VPE_CHAN_LUMA_OUT] = {
.num = VPE_CHAN_NUM_LUMA_OUT,
.cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
},
[VPE_CHAN_CHROMA_OUT] = {
.num = VPE_CHAN_NUM_CHROMA_OUT,
.cstat_offset = VPDMA_VIP_UP_UV_CSTAT,
},
[VPE_CHAN_RGB_OUT] = {
.num = VPE_CHAN_NUM_RGB_OUT,
.cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
},
};
static u32 read_reg(struct vpdma_data *vpdma, int offset)
{
return ioread32(vpdma->base + offset);
}
static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
{
iowrite32(value, vpdma->base + offset);
}
static int read_field_reg(struct vpdma_data *vpdma, int offset,
u32 mask, int shift)
{
return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
}
static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
u32 mask, int shift)
{
u32 val = read_reg(vpdma, offset);
val &= ~(mask << shift);
val |= (field & mask) << shift;
write_reg(vpdma, offset, val);
}
void vpdma_dump_regs(struct vpdma_data *vpdma)
{
struct device *dev = &vpdma->pdev->dev;
#define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
dev_dbg(dev, "VPDMA Registers:\n");
DUMPREG(PID);
DUMPREG(LIST_ADDR);
DUMPREG(LIST_ATTR);
DUMPREG(LIST_STAT_SYNC);
DUMPREG(BG_RGB);
DUMPREG(BG_YUV);
DUMPREG(SETUP);
DUMPREG(MAX_SIZE1);
DUMPREG(MAX_SIZE2);
DUMPREG(MAX_SIZE3);
/*
* dumping registers of only group0 and group3, because VPE channels
* lie within group0 and group3 registers
*/
DUMPREG(INT_CHAN_STAT(0));
DUMPREG(INT_CHAN_MASK(0));
DUMPREG(INT_CHAN_STAT(3));
DUMPREG(INT_CHAN_MASK(3));
DUMPREG(INT_CLIENT0_STAT);
DUMPREG(INT_CLIENT0_MASK);
DUMPREG(INT_CLIENT1_STAT);
DUMPREG(INT_CLIENT1_MASK);
DUMPREG(INT_LIST0_STAT);
DUMPREG(INT_LIST0_MASK);
/*
* these are registers specific to VPE clients, we can make this
* function dump client registers specific to VPE or VIP based on
* who is using it
*/
DUMPREG(DEI_CHROMA1_CSTAT);
DUMPREG(DEI_LUMA1_CSTAT);
DUMPREG(DEI_CHROMA2_CSTAT);
DUMPREG(DEI_LUMA2_CSTAT);
DUMPREG(DEI_CHROMA3_CSTAT);
DUMPREG(DEI_LUMA3_CSTAT);
DUMPREG(DEI_MV_IN_CSTAT);
DUMPREG(DEI_MV_OUT_CSTAT);
DUMPREG(VIP_UP_Y_CSTAT);
DUMPREG(VIP_UP_UV_CSTAT);
DUMPREG(VPI_CTL_CSTAT);
}
EXPORT_SYMBOL(vpdma_dump_regs);
/*
* Allocate a DMA buffer
*/
int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
{
buf->size = size;
buf->mapped = false;
buf->addr = kzalloc(size, GFP_KERNEL);
if (!buf->addr)
return -ENOMEM;
WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
return 0;
}
EXPORT_SYMBOL(vpdma_alloc_desc_buf);
void vpdma_free_desc_buf(struct vpdma_buf *buf)
{
WARN_ON(buf->mapped);
kfree(buf->addr);
buf->addr = NULL;
buf->size = 0;
}
EXPORT_SYMBOL(vpdma_free_desc_buf);
/*
* map descriptor/payload DMA buffer, enabling DMA access
*/
int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
{
struct device *dev = &vpdma->pdev->dev;
WARN_ON(buf->mapped);
buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, buf->dma_addr)) {
dev_err(dev, "failed to map buffer\n");
return -EINVAL;
}
buf->mapped = true;
return 0;
}
EXPORT_SYMBOL(vpdma_map_desc_buf);
/*
* unmap descriptor/payload DMA buffer, disabling DMA access and
* allowing the main processor to acces the data
*/
void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
{
struct device *dev = &vpdma->pdev->dev;
if (buf->mapped)
dma_unmap_single(dev, buf->dma_addr, buf->size,
DMA_BIDIRECTIONAL);
buf->mapped = false;
}
EXPORT_SYMBOL(vpdma_unmap_desc_buf);
/*
* Cleanup all pending descriptors of a list
* First, stop the current list being processed.
* If the VPDMA was busy, this step makes vpdma to accept post lists.
* To cleanup the internal FSM, post abort list descriptor for all the
* channels from @channels array of size @size.
*/
int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
int *channels, int size)
{
struct vpdma_desc_list abort_list;
int i, ret, timeout = 500;
write_reg(vpdma, VPDMA_LIST_ATTR,
(list_num << VPDMA_LIST_NUM_SHFT) |
(1 << VPDMA_LIST_STOP_SHFT));
if (size <= 0 || !channels)
return 0;
ret = vpdma_create_desc_list(&abort_list,
size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
if (ret)
return ret;
for (i = 0; i < size; i++)
vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
if (ret)
return ret;
ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
if (ret)
return ret;
while (vpdma_list_busy(vpdma, list_num) && --timeout)
;
if (timeout == 0) {
dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
return -EBUSY;
}
vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
vpdma_free_desc_buf(&abort_list.buf);
return 0;
}
EXPORT_SYMBOL(vpdma_list_cleanup);
/*
* create a descriptor list, the user of this list will append configuration,
* control and data descriptors to this list, this list will be submitted to
* VPDMA. VPDMA's list parser will go through each descriptor and perform the
* required DMA operations
*/
int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
{
int r;
r = vpdma_alloc_desc_buf(&list->buf, size);
if (r)
return r;
list->next = list->buf.addr;
list->type = type;
return 0;
}
EXPORT_SYMBOL(vpdma_create_desc_list);
/*
* once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
* to allow new descriptors to be added to the list.
*/
void vpdma_reset_desc_list(struct vpdma_desc_list *list)
{
list->next = list->buf.addr;
}
EXPORT_SYMBOL(vpdma_reset_desc_list);
/*
* free the buffer allocated fot the VPDMA descriptor list, this should be
* called when the user doesn't want to use VPDMA any more.
*/
void vpdma_free_desc_list(struct vpdma_desc_list *list)
{
vpdma_free_desc_buf(&list->buf);
list->next = NULL;
}
EXPORT_SYMBOL(vpdma_free_desc_list);
bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
{
return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
}
EXPORT_SYMBOL(vpdma_list_busy);
/*
* submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
*/
int vpdma_submit_descs(struct vpdma_data *vpdma,
struct vpdma_desc_list *list, int list_num)
{
int list_size;
unsigned long flags;
if (vpdma_list_busy(vpdma, list_num))
return -EBUSY;
/* 16-byte granularity */
list_size = (list->next - list->buf.addr) >> 4;
spin_lock_irqsave(&vpdma->lock, flags);
write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
write_reg(vpdma, VPDMA_LIST_ATTR,
(list_num << VPDMA_LIST_NUM_SHFT) |
(list->type << VPDMA_LIST_TYPE_SHFT) |
list_size);
spin_unlock_irqrestore(&vpdma->lock, flags);
return 0;
}
EXPORT_SYMBOL(vpdma_submit_descs);
static void dump_dtd(struct vpdma_dtd *dtd);
void vpdma_update_dma_addr(struct vpdma_data *vpdma,
struct vpdma_desc_list *list, dma_addr_t dma_addr,
void *write_dtd, int drop, int idx)
{
struct vpdma_dtd *dtd = list->buf.addr;
dma_addr_t write_desc_addr;
int offset;
dtd += idx;
vpdma_unmap_desc_buf(vpdma, &list->buf);
dtd->start_addr = dma_addr;
/* Calculate write address from the offset of write_dtd from start
* of the list->buf
*/
offset = (void *)write_dtd - list->buf.addr;
write_desc_addr = list->buf.dma_addr + offset;
if (drop)
dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
1, 1, 0);
else
dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
1, 0, 0);
vpdma_map_desc_buf(vpdma, &list->buf);
dump_dtd(dtd);
}
EXPORT_SYMBOL(vpdma_update_dma_addr);
void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
u32 width, u32 height)
{
if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
reg_addr != VPDMA_MAX_SIZE3)
reg_addr = VPDMA_MAX_SIZE1;
write_field_reg(vpdma, reg_addr, width - 1,
VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
write_field_reg(vpdma, reg_addr, height - 1,
VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
}
EXPORT_SYMBOL(vpdma_set_max_size);
static void dump_cfd(struct vpdma_cfd *cfd)
{
int class;
class = cfd_get_class(cfd);
pr_debug("config descriptor of payload class: %s\n",
class == CFD_CLS_BLOCK ? "simple block" :
"address data block");
if (class == CFD_CLS_BLOCK)
pr_debug("word0: dst_addr_offset = 0x%08x\n",
cfd->dest_addr_offset);
if (class == CFD_CLS_BLOCK)
pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
cfd_get_pkt_type(cfd),
cfd_get_direct(cfd), class, cfd_get_dest(cfd),
cfd_get_payload_len(cfd));
}
/*
* append a configuration descriptor to the given descriptor list, where the
* payload is in the form of a simple data block specified in the descriptor
* header, this is used to upload scaler coefficients to the scaler module
*/
void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
struct vpdma_buf *blk, u32 dest_offset)
{
struct vpdma_cfd *cfd;
int len = blk->size;
WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
cfd = list->next;
WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
cfd->dest_addr_offset = dest_offset;
cfd->block_len = len;
cfd->payload_addr = (u32) blk->dma_addr;
cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
client, len >> 4);
list->next = cfd + 1;
dump_cfd(cfd);
}
EXPORT_SYMBOL(vpdma_add_cfd_block);
/*
* append a configuration descriptor to the given descriptor list, where the
* payload is in the address data block format, this is used to a configure a
* discontiguous set of MMRs
*/
void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
struct vpdma_buf *adb)
{
struct vpdma_cfd *cfd;
unsigned int len = adb->size;
WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
cfd = list->next;
BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
cfd->w0 = 0;
cfd->w1 = 0;
cfd->payload_addr = (u32) adb->dma_addr;
cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
client, len >> 4);
list->next = cfd + 1;
dump_cfd(cfd);
};
EXPORT_SYMBOL(vpdma_add_cfd_adb);
/*
* control descriptor format change based on what type of control descriptor it
* is, we only use 'sync on channel' control descriptors for now, so assume it's
* that
*/
static void dump_ctd(struct vpdma_ctd *ctd)
{
pr_debug("control descriptor\n");
pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
}
/*
* append a 'sync on channel' type control descriptor to the given descriptor
* list, this descriptor stalls the VPDMA list till the time DMA is completed
* on the specified channel
*/
void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
enum vpdma_channel chan)
{
struct vpdma_ctd *ctd;
ctd = list->next;
WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
ctd->w0 = 0;
ctd->w1 = 0;
ctd->w2 = 0;
ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
CTD_TYPE_SYNC_ON_CHANNEL);
list->next = ctd + 1;
dump_ctd(ctd);
}
EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
/*
* append an 'abort_channel' type control descriptor to the given descriptor
* list, this descriptor aborts any DMA transaction happening using the
* specified channel
*/
void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
int chan_num)
{
struct vpdma_ctd *ctd;
ctd = list->next;
WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
ctd->w0 = 0;
ctd->w1 = 0;
ctd->w2 = 0;
ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
CTD_TYPE_ABORT_CHANNEL);
list->next = ctd + 1;
dump_ctd(ctd);
}
EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
static void dump_dtd(struct vpdma_dtd *dtd)
{
int dir, chan;
dir = dtd_get_dir(dtd);
chan = dtd_get_chan(dtd);
pr_debug("%s data transfer descriptor for channel %d\n",
dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
if (dir == DTD_DIR_IN)
pr_debug("word1: line_length = %d, xfer_height = %d\n",
dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
pr_debug("word2: start_addr = %pad\n", &dtd->start_addr);
pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
dtd_get_pkt_type(dtd),
dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
dtd_get_next_chan(dtd));
if (dir == DTD_DIR_IN)
pr_debug("word4: frame_width = %d, frame_height = %d\n",
dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
else
pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
if (dir == DTD_DIR_IN)
pr_debug("word5: hor_start = %d, ver_start = %d\n",
dtd_get_h_start(dtd), dtd_get_v_start(dtd));
else
pr_debug("word5: max_width %d, max_height %d\n",
dtd_get_max_width(dtd), dtd_get_max_height(dtd));
pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
}
/*
* append an outbound data transfer descriptor to the given descriptor list,
* this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
*
* @list: vpdma desc list to which we add this decriptor
* @width: width of the image in pixels in memory
* @c_rect: compose params of output image
* @fmt: vpdma data format of the buffer
* dma_addr: dma address as seen by VPDMA
* max_width: enum for maximum width of data transfer
* max_height: enum for maximum height of data transfer
* chan: VPDMA channel
* flags: VPDMA flags to configure some descriptor fileds
*/
void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
int stride, const struct v4l2_rect *c_rect,
const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
int max_w, int max_h, enum vpdma_channel chan, u32 flags)
{
vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
max_w, max_h, chan_info[chan].num, flags);
}
EXPORT_SYMBOL(vpdma_add_out_dtd);
void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
int stride, const struct v4l2_rect *c_rect,
const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
int max_w, int max_h, int raw_vpdma_chan, u32 flags)
{
int priority = 0;
int field = 0;
int notify = 1;
int channel, next_chan;
struct v4l2_rect rect = *c_rect;
int depth = fmt->depth;
struct vpdma_dtd *dtd;
channel = next_chan = raw_vpdma_chan;
if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
fmt->data_type == DATA_TYPE_C420) {
rect.height >>= 1;
rect.top >>= 1;
depth = 8;
}
dma_addr += rect.top * stride + (rect.left * depth >> 3);
dtd = list->next;
WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
notify,
field,
!!(flags & VPDMA_DATA_FRAME_1D),
!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
stride);
dtd->w1 = 0;
dtd->start_addr = (u32) dma_addr;
dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
DTD_DIR_OUT, channel, priority, next_chan);
dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
dtd->max_width_height = dtd_max_width_height(max_w, max_h);
dtd->client_attr0 = 0;
dtd->client_attr1 = 0;
list->next = dtd + 1;
dump_dtd(dtd);
}
EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
/*
* append an inbound data transfer descriptor to the given descriptor list,
* this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
*
* @list: vpdma desc list to which we add this decriptor
* @width: width of the image in pixels in memory(not the cropped width)
* @c_rect: crop params of input image
* @fmt: vpdma data format of the buffer
* dma_addr: dma address as seen by VPDMA
* chan: VPDMA channel
* field: top or bottom field info of the input image
* flags: VPDMA flags to configure some descriptor fileds
* frame_width/height: the complete width/height of the image presented to the
* client (this makes sense when multiple channels are
* connected to the same client, forming a larger frame)
* start_h, start_v: position where the given channel starts providing pixel
* data to the client (makes sense when multiple channels
* contribute to the client)
*/
void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
int stride, const struct v4l2_rect *c_rect,
const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
enum vpdma_channel chan, int field, u32 flags, int frame_width,
int frame_height, int start_h, int start_v)
{
int priority = 0;
int notify = 1;
int depth = fmt->depth;
int channel, next_chan;
struct v4l2_rect rect = *c_rect;
struct vpdma_dtd *dtd;
channel = next_chan = chan_info[chan].num;
if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
fmt->data_type == DATA_TYPE_C420) {
rect.height >>= 1;
rect.top >>= 1;
depth = 8;
}
dma_addr += rect.top * stride + (rect.left * depth >> 3);
dtd = list->next;
WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
notify,
field,
!!(flags & VPDMA_DATA_FRAME_1D),
!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
stride);
dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
rect.height);
dtd->start_addr = (u32) dma_addr;
dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
DTD_DIR_IN, channel, priority, next_chan);
dtd->frame_width_height = dtd_frame_width_height(frame_width,
frame_height);
dtd->start_h_v = dtd_start_h_v(start_h, start_v);
dtd->client_attr0 = 0;
dtd->client_attr1 = 0;
list->next = dtd + 1;
dump_dtd(dtd);
}
EXPORT_SYMBOL(vpdma_add_in_dtd);
int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
{
int i, list_num = -1;
unsigned long flags;
spin_lock_irqsave(&vpdma->lock, flags);
for (i = 0; i < VPDMA_MAX_NUM_LIST &&
vpdma->hwlist_used[i] == true; i++)
;
if (i < VPDMA_MAX_NUM_LIST) {
list_num = i;
vpdma->hwlist_used[i] = true;
vpdma->hwlist_priv[i] = priv;
}
spin_unlock_irqrestore(&vpdma->lock, flags);
return list_num;
}
EXPORT_SYMBOL(vpdma_hwlist_alloc);
void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
{
if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
return NULL;
return vpdma->hwlist_priv[list_num];
}
EXPORT_SYMBOL(vpdma_hwlist_get_priv);
void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
{
void *priv;
unsigned long flags;
spin_lock_irqsave(&vpdma->lock, flags);
vpdma->hwlist_used[list_num] = false;
priv = vpdma->hwlist_priv;
spin_unlock_irqrestore(&vpdma->lock, flags);
return priv;
}
EXPORT_SYMBOL(vpdma_hwlist_release);
/* set or clear the mask for list complete interrupt */
void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
int list_num, bool enable)
{
u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
u32 val;
val = read_reg(vpdma, reg_addr);
if (enable)
val |= (1 << (list_num * 2));
else
val &= ~(1 << (list_num * 2));
write_reg(vpdma, reg_addr, val);
}
EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
/* get the LIST_STAT register */
unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
{
u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
return read_reg(vpdma, reg_addr);
}
EXPORT_SYMBOL(vpdma_get_list_stat);
/* get the LIST_MASK register */
unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
{
u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
return read_reg(vpdma, reg_addr);
}
EXPORT_SYMBOL(vpdma_get_list_mask);
/* clear previosuly occured list intterupts in the LIST_STAT register */
void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
int list_num)
{
u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
write_reg(vpdma, reg_addr, 3 << (list_num * 2));
}
EXPORT_SYMBOL(vpdma_clear_list_stat);
void vpdma_set_bg_color(struct vpdma_data *vpdma,
struct vpdma_data_format *fmt, u32 color)
{
if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
write_reg(vpdma, VPDMA_BG_RGB, color);
else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
write_reg(vpdma, VPDMA_BG_YUV, color);
}
EXPORT_SYMBOL(vpdma_set_bg_color);
/*
* configures the output mode of the line buffer for the given client, the
* line buffer content can either be mirrored(each line repeated twice) or
* passed to the client as is
*/
void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
enum vpdma_channel chan)
{
int client_cstat = chan_info[chan].cstat_offset;
write_field_reg(vpdma, client_cstat, line_mode,
VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
}
EXPORT_SYMBOL(vpdma_set_line_mode);
/*
* configures the event which should trigger VPDMA transfer for the given
* client
*/
void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
enum vpdma_frame_start_event fs_event,
enum vpdma_channel chan)
{
int client_cstat = chan_info[chan].cstat_offset;
write_field_reg(vpdma, client_cstat, fs_event,
VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
}
EXPORT_SYMBOL(vpdma_set_frame_start_event);
static void vpdma_firmware_cb(const struct firmware *f, void *context)
{
struct vpdma_data *vpdma = context;
struct vpdma_buf fw_dma_buf;
int i, r;
dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
if (!f || !f->data) {
dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
return;
}
/* already initialized */
if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
VPDMA_LIST_RDY_SHFT)) {
vpdma->cb(vpdma->pdev);
return;
}
r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
if (r) {
dev_err(&vpdma->pdev->dev,
"failed to allocate dma buffer for firmware\n");
goto rel_fw;
}
memcpy(fw_dma_buf.addr, f->data, f->size);
vpdma_map_desc_buf(vpdma, &fw_dma_buf);
write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
for (i = 0; i < 100; i++) { /* max 1 second */
msleep_interruptible(10);
if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
VPDMA_LIST_RDY_SHFT))
break;
}
if (i == 100) {
dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
goto free_buf;
}
vpdma->cb(vpdma->pdev);
free_buf:
vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
vpdma_free_desc_buf(&fw_dma_buf);
rel_fw:
release_firmware(f);
}
static int vpdma_load_firmware(struct vpdma_data *vpdma)
{
int r;
struct device *dev = &vpdma->pdev->dev;
r = request_firmware_nowait(THIS_MODULE, 1,
(const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
vpdma_firmware_cb);
if (r) {
dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
return r;
} else {
dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
}
return 0;
}
int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
void (*cb)(struct platform_device *pdev))
{
struct resource *res;
int r;
dev_dbg(&pdev->dev, "vpdma_create\n");
vpdma->pdev = pdev;
vpdma->cb = cb;
spin_lock_init(&vpdma->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
if (res == NULL) {
dev_err(&pdev->dev, "missing platform resources data\n");
return -ENODEV;
}
vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!vpdma->base) {
dev_err(&pdev->dev, "failed to ioremap\n");
return -ENOMEM;
}
r = vpdma_load_firmware(vpdma);
if (r) {
pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
return r;
}
return 0;
}
EXPORT_SYMBOL(vpdma_create);
MODULE_AUTHOR("Texas Instruments Inc.");
MODULE_FIRMWARE(VPDMA_FIRMWARE);
MODULE_LICENSE("GPL v2");