You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/scsi/arcmsr/arcmsr_hba.c

2370 lines
67 KiB

/*
*******************************************************************************
** O.S : Linux
** FILE NAME : arcmsr_hba.c
** BY : Erich Chen
** Description: SCSI RAID Device Driver for
** ARECA RAID Host adapter
*******************************************************************************
** Copyright (C) 2002 - 2005, Areca Technology Corporation All rights reserved
**
** Web site: www.areca.com.tw
** E-mail: support@areca.com.tw
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License version 2 as
** published by the Free Software Foundation.
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*******************************************************************************
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES(INCLUDING,BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
** For history of changes, see Documentation/scsi/ChangeLog.arcmsr
** Firmware Specification, see Documentation/scsi/arcmsr_spec.txt
*******************************************************************************
*/
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/spinlock.h>
#include <linux/pci_ids.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsicam.h>
#include "arcmsr.h"
MODULE_AUTHOR("Erich Chen <support@areca.com.tw>");
MODULE_DESCRIPTION("ARECA (ARC11xx/12xx/13xx/16xx) SATA/SAS RAID HOST Adapter");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(ARCMSR_DRIVER_VERSION);
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd);
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb);
static int arcmsr_abort(struct scsi_cmnd *);
static int arcmsr_bus_reset(struct scsi_cmnd *);
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *info);
static int arcmsr_queue_command(struct scsi_cmnd *cmd,
void (*done) (struct scsi_cmnd *));
static int arcmsr_probe(struct pci_dev *pdev,
const struct pci_device_id *id);
static void arcmsr_remove(struct pci_dev *pdev);
static void arcmsr_shutdown(struct pci_dev *pdev);
static void arcmsr_iop_init(struct AdapterControlBlock *acb);
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb);
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb);
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb);
static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb);
static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb);
static const char *arcmsr_info(struct Scsi_Host *);
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb);
static int arcmsr_adjust_disk_queue_depth(struct scsi_device *sdev,
int queue_depth)
{
if (queue_depth > ARCMSR_MAX_CMD_PERLUN)
queue_depth = ARCMSR_MAX_CMD_PERLUN;
scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, queue_depth);
return queue_depth;
}
static struct scsi_host_template arcmsr_scsi_host_template = {
.module = THIS_MODULE,
.name = "ARCMSR ARECA SATA/SAS RAID HOST Adapter"
ARCMSR_DRIVER_VERSION,
.info = arcmsr_info,
.queuecommand = arcmsr_queue_command,
.eh_abort_handler = arcmsr_abort,
.eh_bus_reset_handler = arcmsr_bus_reset,
.bios_param = arcmsr_bios_param,
.change_queue_depth = arcmsr_adjust_disk_queue_depth,
.can_queue = ARCMSR_MAX_OUTSTANDING_CMD,
.this_id = ARCMSR_SCSI_INITIATOR_ID,
.sg_tablesize = ARCMSR_MAX_SG_ENTRIES,
.max_sectors = ARCMSR_MAX_XFER_SECTORS,
.cmd_per_lun = ARCMSR_MAX_CMD_PERLUN,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = arcmsr_host_attrs,
};
#ifdef CONFIG_SCSI_ARCMSR_AER
static pci_ers_result_t arcmsr_pci_slot_reset(struct pci_dev *pdev);
static pci_ers_result_t arcmsr_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state);
static struct pci_error_handlers arcmsr_pci_error_handlers = {
.error_detected = arcmsr_pci_error_detected,
.slot_reset = arcmsr_pci_slot_reset,
};
#endif
static struct pci_device_id arcmsr_device_id_table[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1110)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1120)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1130)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1160)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1170)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1200)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1201)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1202)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1210)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1220)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1230)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1260)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1270)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1280)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1380)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1381)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1680)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1681)},
{0, 0}, /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, arcmsr_device_id_table);
static struct pci_driver arcmsr_pci_driver = {
.name = "arcmsr",
.id_table = arcmsr_device_id_table,
.probe = arcmsr_probe,
.remove = arcmsr_remove,
.shutdown = arcmsr_shutdown,
#ifdef CONFIG_SCSI_ARCMSR_AER
.err_handler = &arcmsr_pci_error_handlers,
#endif
};
static irqreturn_t arcmsr_do_interrupt(int irq, void *dev_id)
{
irqreturn_t handle_state;
struct AdapterControlBlock *acb = dev_id;
spin_lock(acb->host->host_lock);
handle_state = arcmsr_interrupt(acb);
spin_unlock(acb->host->host_lock);
return handle_state;
}
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *geom)
{
int ret, heads, sectors, cylinders, total_capacity;
unsigned char *buffer;/* return copy of block device's partition table */
buffer = scsi_bios_ptable(bdev);
if (buffer) {
ret = scsi_partsize(buffer, capacity, &geom[2], &geom[0], &geom[1]);
kfree(buffer);
if (ret != -1)
return ret;
}
total_capacity = capacity;
heads = 64;
sectors = 32;
cylinders = total_capacity / (heads * sectors);
if (cylinders > 1024) {
heads = 255;
sectors = 63;
cylinders = total_capacity / (heads * sectors);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return 0;
}
static void arcmsr_define_adapter_type(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev = acb->pdev;
u16 dev_id;
pci_read_config_word(pdev, PCI_DEVICE_ID, &dev_id);
switch (dev_id) {
case 0x1201 : {
acb->adapter_type = ACB_ADAPTER_TYPE_B;
}
break;
default : acb->adapter_type = ACB_ADAPTER_TYPE_A;
}
}
static int arcmsr_alloc_ccb_pool(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct pci_dev *pdev = acb->pdev;
void *dma_coherent;
dma_addr_t dma_coherent_handle, dma_addr;
struct CommandControlBlock *ccb_tmp;
uint32_t intmask_org;
int i, j;
acb->pmuA = pci_ioremap_bar(pdev, 0);
if (!acb->pmuA) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n",
acb->host->host_no);
return -ENOMEM;
}
dma_coherent = dma_alloc_coherent(&pdev->dev,
ARCMSR_MAX_FREECCB_NUM *
sizeof (struct CommandControlBlock) + 0x20,
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent) {
iounmap(acb->pmuA);
return -ENOMEM;
}
acb->dma_coherent = dma_coherent;
acb->dma_coherent_handle = dma_coherent_handle;
if (((unsigned long)dma_coherent & 0x1F)) {
dma_coherent = dma_coherent +
(0x20 - ((unsigned long)dma_coherent & 0x1F));
dma_coherent_handle = dma_coherent_handle +
(0x20 - ((unsigned long)dma_coherent_handle & 0x1F));
}
dma_addr = dma_coherent_handle;
ccb_tmp = (struct CommandControlBlock *)dma_coherent;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb_tmp->cdb_shifted_phyaddr = dma_addr >> 5;
ccb_tmp->acb = acb;
acb->pccb_pool[i] = ccb_tmp;
list_add_tail(&ccb_tmp->list, &acb->ccb_free_list);
dma_addr = dma_addr + sizeof(struct CommandControlBlock);
ccb_tmp++;
}
acb->vir2phy_offset = (unsigned long)ccb_tmp -(unsigned long)dma_addr;
for (i = 0; i < ARCMSR_MAX_TARGETID; i++)
for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++)
acb->devstate[i][j] = ARECA_RAID_GONE;
/*
** here we need to tell iop 331 our ccb_tmp.HighPart
** if ccb_tmp.HighPart is not zero
*/
intmask_org = arcmsr_disable_outbound_ints(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct pci_dev *pdev = acb->pdev;
struct MessageUnit_B *reg;
void __iomem *mem_base0, *mem_base1;
void *dma_coherent;
dma_addr_t dma_coherent_handle, dma_addr;
uint32_t intmask_org;
struct CommandControlBlock *ccb_tmp;
int i, j;
dma_coherent = dma_alloc_coherent(&pdev->dev,
((ARCMSR_MAX_FREECCB_NUM *
sizeof(struct CommandControlBlock) + 0x20) +
sizeof(struct MessageUnit_B)),
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent)
return -ENOMEM;
acb->dma_coherent = dma_coherent;
acb->dma_coherent_handle = dma_coherent_handle;
if (((unsigned long)dma_coherent & 0x1F)) {
dma_coherent = dma_coherent +
(0x20 - ((unsigned long)dma_coherent & 0x1F));
dma_coherent_handle = dma_coherent_handle +
(0x20 - ((unsigned long)dma_coherent_handle & 0x1F));
}
dma_addr = dma_coherent_handle;
ccb_tmp = (struct CommandControlBlock *)dma_coherent;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb_tmp->cdb_shifted_phyaddr = dma_addr >> 5;
ccb_tmp->acb = acb;
acb->pccb_pool[i] = ccb_tmp;
list_add_tail(&ccb_tmp->list, &acb->ccb_free_list);
dma_addr = dma_addr + sizeof(struct CommandControlBlock);
ccb_tmp++;
}
reg = (struct MessageUnit_B *)(dma_coherent +
ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock));
acb->pmuB = reg;
mem_base0 = pci_ioremap_bar(pdev, 0);
if (!mem_base0)
goto out;
mem_base1 = pci_ioremap_bar(pdev, 2);
if (!mem_base1) {
iounmap(mem_base0);
goto out;
}
reg->drv2iop_doorbell_reg = mem_base0 + ARCMSR_DRV2IOP_DOORBELL;
reg->drv2iop_doorbell_mask_reg = mem_base0 +
ARCMSR_DRV2IOP_DOORBELL_MASK;
reg->iop2drv_doorbell_reg = mem_base0 + ARCMSR_IOP2DRV_DOORBELL;
reg->iop2drv_doorbell_mask_reg = mem_base0 +
ARCMSR_IOP2DRV_DOORBELL_MASK;
reg->ioctl_wbuffer_reg = mem_base1 + ARCMSR_IOCTL_WBUFFER;
reg->ioctl_rbuffer_reg = mem_base1 + ARCMSR_IOCTL_RBUFFER;
reg->msgcode_rwbuffer_reg = mem_base1 + ARCMSR_MSGCODE_RWBUFFER;
acb->vir2phy_offset = (unsigned long)ccb_tmp -(unsigned long)dma_addr;
for (i = 0; i < ARCMSR_MAX_TARGETID; i++)
for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++)
acb->devstate[i][j] = ARECA_RAID_GOOD;
/*
** here we need to tell iop 331 our ccb_tmp.HighPart
** if ccb_tmp.HighPart is not zero
*/
intmask_org = arcmsr_disable_outbound_ints(acb);
}
break;
}
return 0;
out:
dma_free_coherent(&acb->pdev->dev,
(ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock) + 0x20 +
sizeof(struct MessageUnit_B)), acb->dma_coherent, acb->dma_coherent_handle);
return -ENOMEM;
}
static int arcmsr_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct Scsi_Host *host;
struct AdapterControlBlock *acb;
uint8_t bus, dev_fun;
int error;
error = pci_enable_device(pdev);
if (error)
goto out;
pci_set_master(pdev);
host = scsi_host_alloc(&arcmsr_scsi_host_template,
sizeof(struct AdapterControlBlock));
if (!host) {
error = -ENOMEM;
goto out_disable_device;
}
acb = (struct AdapterControlBlock *)host->hostdata;
memset(acb, 0, sizeof (struct AdapterControlBlock));
error = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
if (error) {
error = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (error) {
printk(KERN_WARNING
"scsi%d: No suitable DMA mask available\n",
host->host_no);
goto out_host_put;
}
}
bus = pdev->bus->number;
dev_fun = pdev->devfn;
acb->host = host;
acb->pdev = pdev;
host->max_sectors = ARCMSR_MAX_XFER_SECTORS;
host->max_lun = ARCMSR_MAX_TARGETLUN;
host->max_id = ARCMSR_MAX_TARGETID;/*16:8*/
host->max_cmd_len = 16; /*this is issue of 64bit LBA, over 2T byte*/
host->sg_tablesize = ARCMSR_MAX_SG_ENTRIES;
host->can_queue = ARCMSR_MAX_FREECCB_NUM; /* max simultaneous cmds */
host->cmd_per_lun = ARCMSR_MAX_CMD_PERLUN;
host->this_id = ARCMSR_SCSI_INITIATOR_ID;
host->unique_id = (bus << 8) | dev_fun;
host->irq = pdev->irq;
error = pci_request_regions(pdev, "arcmsr");
if (error) {
goto out_host_put;
}
arcmsr_define_adapter_type(acb);
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER;
INIT_LIST_HEAD(&acb->ccb_free_list);
error = arcmsr_alloc_ccb_pool(acb);
if (error)
goto out_release_regions;
error = request_irq(pdev->irq, arcmsr_do_interrupt,
IRQF_SHARED, "arcmsr", acb);
if (error)
goto out_free_ccb_pool;
arcmsr_iop_init(acb);
pci_set_drvdata(pdev, host);
if (strncmp(acb->firm_version, "V1.42", 5) >= 0)
host->max_sectors= ARCMSR_MAX_XFER_SECTORS_B;
error = scsi_add_host(host, &pdev->dev);
if (error)
goto out_free_irq;
error = arcmsr_alloc_sysfs_attr(acb);
if (error)
goto out_free_sysfs;
scsi_scan_host(host);
#ifdef CONFIG_SCSI_ARCMSR_AER
pci_enable_pcie_error_reporting(pdev);
#endif
return 0;
out_free_sysfs:
out_free_irq:
free_irq(pdev->irq, acb);
out_free_ccb_pool:
arcmsr_free_ccb_pool(acb);
out_release_regions:
pci_release_regions(pdev);
out_host_put:
scsi_host_put(host);
out_disable_device:
pci_disable_device(pdev);
out:
return error;
}
static uint8_t arcmsr_hba_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t Index;
uint8_t Retries = 0x00;
do {
for (Index = 0; Index < 100; Index++) {
if (readl(&reg->outbound_intstatus) &
ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT,
&reg->outbound_intstatus);
return 0x00;
}
msleep(10);
}/*max 1 seconds*/
} while (Retries++ < 20);/*max 20 sec*/
return 0xff;
}
static uint8_t arcmsr_hbb_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
uint32_t Index;
uint8_t Retries = 0x00;
do {
for (Index = 0; Index < 100; Index++) {
if (readl(reg->iop2drv_doorbell_reg)
& ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN
, reg->iop2drv_doorbell_reg);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell_reg);
return 0x00;
}
msleep(10);
}/*max 1 seconds*/
} while (Retries++ < 20);/*max 20 sec*/
return 0xff;
}
static void arcmsr_abort_hba_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb))
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout \n"
, acb->host->host_no);
}
static void arcmsr_abort_hbb_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ABORT_CMD, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb))
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout \n"
, acb->host->host_no);
}
static void arcmsr_abort_allcmd(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_abort_hba_allcmd(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_abort_hbb_allcmd(acb);
}
}
}
static void arcmsr_pci_unmap_dma(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
scsi_dma_unmap(pcmd);
}
static void arcmsr_ccb_complete(struct CommandControlBlock *ccb, int stand_flag)
{
struct AdapterControlBlock *acb = ccb->acb;
struct scsi_cmnd *pcmd = ccb->pcmd;
arcmsr_pci_unmap_dma(ccb);
if (stand_flag == 1)
atomic_dec(&acb->ccboutstandingcount);
ccb->startdone = ARCMSR_CCB_DONE;
ccb->ccb_flags = 0;
list_add_tail(&ccb->list, &acb->ccb_free_list);
pcmd->scsi_done(pcmd);
}
static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
int retry_count = 30;
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, &reg->inbound_msgaddr0);
do {
if (!arcmsr_hba_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout, retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
int retry_count = 30;
writel(ARCMSR_MESSAGE_FLUSH_CACHE, reg->drv2iop_doorbell_reg);
do {
if (!arcmsr_hbb_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout,retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_flush_adapter_cache(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_flush_hba_cache(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_flush_hbb_cache(acb);
}
}
}
static void arcmsr_report_sense_info(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)pcmd->sense_buffer;
pcmd->result = DID_OK << 16;
if (sensebuffer) {
int sense_data_length =
sizeof(struct SENSE_DATA) < SCSI_SENSE_BUFFERSIZE
? sizeof(struct SENSE_DATA) : SCSI_SENSE_BUFFERSIZE;
memset(sensebuffer, 0, SCSI_SENSE_BUFFERSIZE);
memcpy(sensebuffer, ccb->arcmsr_cdb.SenseData, sense_data_length);
sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS;
sensebuffer->Valid = 1;
}
}
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb)
{
u32 orig_mask = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A : {
struct MessageUnit_A __iomem *reg = acb->pmuA;
orig_mask = readl(&reg->outbound_intmask)|\
ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE;
writel(orig_mask|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE, \
&reg->outbound_intmask);
}
break;
case ACB_ADAPTER_TYPE_B : {
struct MessageUnit_B *reg = acb->pmuB;
orig_mask = readl(reg->iop2drv_doorbell_mask_reg) & \
(~ARCMSR_IOP2DRV_MESSAGE_CMD_DONE);
writel(0, reg->iop2drv_doorbell_mask_reg);
}
break;
}
return orig_mask;
}
static void arcmsr_report_ccb_state(struct AdapterControlBlock *acb, \
struct CommandControlBlock *ccb, uint32_t flag_ccb)
{
uint8_t id, lun;
id = ccb->pcmd->device->id;
lun = ccb->pcmd->device->lun;
if (!(flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR)) {
if (acb->devstate[id][lun] == ARECA_RAID_GONE)
acb->devstate[id][lun] = ARECA_RAID_GOOD;
ccb->pcmd->result = DID_OK << 16;
arcmsr_ccb_complete(ccb, 1);
} else {
switch (ccb->arcmsr_cdb.DeviceStatus) {
case ARCMSR_DEV_SELECT_TIMEOUT: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb, 1);
}
break;
case ARCMSR_DEV_ABORTED:
case ARCMSR_DEV_INIT_FAIL: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_BAD_TARGET << 16;
arcmsr_ccb_complete(ccb, 1);
}
break;
case ARCMSR_DEV_CHECK_CONDITION: {
acb->devstate[id][lun] = ARECA_RAID_GOOD;
arcmsr_report_sense_info(ccb);
arcmsr_ccb_complete(ccb, 1);
}
break;
default:
printk(KERN_NOTICE
"arcmsr%d: scsi id = %d lun = %d"
" isr get command error done, "
"but got unknown DeviceStatus = 0x%x \n"
, acb->host->host_no
, id
, lun
, ccb->arcmsr_cdb.DeviceStatus);
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb, 1);
break;
}
}
}
static void arcmsr_drain_donequeue(struct AdapterControlBlock *acb, uint32_t flag_ccb)
{
struct CommandControlBlock *ccb;
ccb = (struct CommandControlBlock *)(acb->vir2phy_offset + (flag_ccb << 5));
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if (ccb->startdone == ARCMSR_CCB_ABORTED) {
struct scsi_cmnd *abortcmd = ccb->pcmd;
if (abortcmd) {
abortcmd->result |= DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
printk(KERN_NOTICE "arcmsr%d: ccb ='0x%p' \
isr got aborted command \n", acb->host->host_no, ccb);
}
}
printk(KERN_NOTICE "arcmsr%d: isr get an illegal ccb command \
done acb = '0x%p'"
"ccb = '0x%p' ccbacb = '0x%p' startdone = 0x%x"
" ccboutstandingcount = %d \n"
, acb->host->host_no
, acb
, ccb
, ccb->acb
, ccb->startdone
, atomic_read(&acb->ccboutstandingcount));
}
else
arcmsr_report_ccb_state(acb, ccb, flag_ccb);
}
static void arcmsr_done4abort_postqueue(struct AdapterControlBlock *acb)
{
int i = 0;
uint32_t flag_ccb;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_intstatus;
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
/*clear and abort all outbound posted Q*/
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while (((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF)
&& (i++ < ARCMSR_MAX_OUTSTANDING_CMD)) {
arcmsr_drain_donequeue(acb, flag_ccb);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*clear all outbound posted Q*/
for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) {
if ((flag_ccb = readl(&reg->done_qbuffer[i])) != 0) {
writel(0, &reg->done_qbuffer[i]);
arcmsr_drain_donequeue(acb, flag_ccb);
}
writel(0, &reg->post_qbuffer[i]);
}
reg->doneq_index = 0;
reg->postq_index = 0;
}
break;
}
}
static void arcmsr_remove(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
int poll_count = 0;
arcmsr_free_sysfs_attr(acb);
scsi_remove_host(host);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
arcmsr_disable_outbound_ints(acb);
acb->acb_flags |= ACB_F_SCSISTOPADAPTER;
acb->acb_flags &= ~ACB_F_IOP_INITED;
for (poll_count = 0; poll_count < ARCMSR_MAX_OUTSTANDING_CMD; poll_count++) {
if (!atomic_read(&acb->ccboutstandingcount))
break;
arcmsr_interrupt(acb);/* FIXME: need spinlock */
msleep(25);
}
if (atomic_read(&acb->ccboutstandingcount)) {
int i;
arcmsr_abort_allcmd(acb);
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
ccb->startdone = ARCMSR_CCB_ABORTED;
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
}
}
}
free_irq(pdev->irq, acb);
arcmsr_free_ccb_pool(acb);
pci_release_regions(pdev);
scsi_host_put(host);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static void arcmsr_shutdown(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)host->hostdata;
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
}
static int arcmsr_module_init(void)
{
int error = 0;
error = pci_register_driver(&arcmsr_pci_driver);
return error;
}
static void arcmsr_module_exit(void)
{
pci_unregister_driver(&arcmsr_pci_driver);
}
module_init(arcmsr_module_init);
module_exit(arcmsr_module_exit);
static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb, \
u32 intmask_org)
{
u32 mask;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A : {
struct MessageUnit_A __iomem *reg = acb->pmuA;
mask = intmask_org & ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE |
ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE);
writel(mask, &reg->outbound_intmask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff;
}
break;
case ACB_ADAPTER_TYPE_B : {
struct MessageUnit_B *reg = acb->pmuB;
mask = intmask_org | (ARCMSR_IOP2DRV_DATA_WRITE_OK | \
ARCMSR_IOP2DRV_DATA_READ_OK | ARCMSR_IOP2DRV_CDB_DONE);
writel(mask, reg->iop2drv_doorbell_mask_reg);
acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f;
}
}
}
static int arcmsr_build_ccb(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb, struct scsi_cmnd *pcmd)
{
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
int8_t *psge = (int8_t *)&arcmsr_cdb->u;
__le32 address_lo, address_hi;
int arccdbsize = 0x30;
int nseg;
ccb->pcmd = pcmd;
memset(arcmsr_cdb, 0, sizeof(struct ARCMSR_CDB));
arcmsr_cdb->Bus = 0;
arcmsr_cdb->TargetID = pcmd->device->id;
arcmsr_cdb->LUN = pcmd->device->lun;
arcmsr_cdb->Function = 1;
arcmsr_cdb->CdbLength = (uint8_t)pcmd->cmd_len;
arcmsr_cdb->Context = (unsigned long)arcmsr_cdb;
memcpy(arcmsr_cdb->Cdb, pcmd->cmnd, pcmd->cmd_len);
nseg = scsi_dma_map(pcmd);
if (nseg > ARCMSR_MAX_SG_ENTRIES)
return FAILED;
BUG_ON(nseg < 0);
if (nseg) {
__le32 length;
int i, cdb_sgcount = 0;
struct scatterlist *sg;
/* map stor port SG list to our iop SG List. */
scsi_for_each_sg(pcmd, sg, nseg, i) {
/* Get the physical address of the current data pointer */
length = cpu_to_le32(sg_dma_len(sg));
address_lo = cpu_to_le32(dma_addr_lo32(sg_dma_address(sg)));
address_hi = cpu_to_le32(dma_addr_hi32(sg_dma_address(sg)));
if (address_hi == 0) {
struct SG32ENTRY *pdma_sg = (struct SG32ENTRY *)psge;
pdma_sg->address = address_lo;
pdma_sg->length = length;
psge += sizeof (struct SG32ENTRY);
arccdbsize += sizeof (struct SG32ENTRY);
} else {
struct SG64ENTRY *pdma_sg = (struct SG64ENTRY *)psge;
pdma_sg->addresshigh = address_hi;
pdma_sg->address = address_lo;
pdma_sg->length = length|cpu_to_le32(IS_SG64_ADDR);
psge += sizeof (struct SG64ENTRY);
arccdbsize += sizeof (struct SG64ENTRY);
}
cdb_sgcount++;
}
arcmsr_cdb->sgcount = (uint8_t)cdb_sgcount;
arcmsr_cdb->DataLength = scsi_bufflen(pcmd);
if ( arccdbsize > 256)
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE;
}
if (pcmd->sc_data_direction == DMA_TO_DEVICE ) {
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE;
ccb->ccb_flags |= CCB_FLAG_WRITE;
}
return SUCCESS;
}
static void arcmsr_post_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb)
{
uint32_t cdb_shifted_phyaddr = ccb->cdb_shifted_phyaddr;
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
atomic_inc(&acb->ccboutstandingcount);
ccb->startdone = ARCMSR_CCB_START;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE)
writel(cdb_shifted_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,
&reg->inbound_queueport);
else {
writel(cdb_shifted_phyaddr, &reg->inbound_queueport);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
uint32_t ending_index, index = reg->postq_index;
ending_index = ((index + 1) % ARCMSR_MAX_HBB_POSTQUEUE);
writel(0, &reg->post_qbuffer[ending_index]);
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) {
writel(cdb_shifted_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,\
&reg->post_qbuffer[index]);
}
else {
writel(cdb_shifted_phyaddr, &reg->post_qbuffer[index]);
}
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;/*if last index number set it to 0 */
reg->postq_index = index;
writel(ARCMSR_DRV2IOP_CDB_POSTED, reg->drv2iop_doorbell_reg);
}
break;
}
}
static void arcmsr_stop_hba_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebulid' timeout \n"
, acb->host->host_no);
}
}
static void arcmsr_stop_hbb_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_STOP_BGRB, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebulid' timeout \n"
, acb->host->host_no);
}
}
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_stop_hba_bgrb(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_stop_hbb_bgrb(acb);
}
break;
}
}
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
iounmap(acb->pmuA);
dma_free_coherent(&acb->pdev->dev,
ARCMSR_MAX_FREECCB_NUM * sizeof (struct CommandControlBlock) + 0x20,
acb->dma_coherent,
acb->dma_coherent_handle);
break;
}
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
iounmap(reg->drv2iop_doorbell_reg - ARCMSR_DRV2IOP_DOORBELL);
iounmap(reg->ioctl_wbuffer_reg - ARCMSR_IOCTL_WBUFFER);
dma_free_coherent(&acb->pdev->dev,
(ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock) + 0x20 +
sizeof(struct MessageUnit_B)), acb->dma_coherent, acb->dma_coherent_handle);
}
}
}
void arcmsr_iop_message_read(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell_reg);
}
break;
}
}
static void arcmsr_iop_message_wrote(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_DRV2IOP_DATA_WRITE_OK, reg->drv2iop_doorbell_reg);
}
break;
}
}
struct QBUFFER __iomem *arcmsr_get_iop_rqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *qbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
qbuffer = (struct QBUFFER __iomem *)&reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
qbuffer = (struct QBUFFER __iomem *)reg->ioctl_rbuffer_reg;
}
break;
}
return qbuffer;
}
static struct QBUFFER __iomem *arcmsr_get_iop_wqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *pqbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
pqbuffer = (struct QBUFFER __iomem *) &reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
pqbuffer = (struct QBUFFER __iomem *)reg->ioctl_wbuffer_reg;
}
break;
}
return pqbuffer;
}
static void arcmsr_iop2drv_data_wrote_handle(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *prbuffer;
struct QBUFFER *pQbuffer;
uint8_t __iomem *iop_data;
int32_t my_empty_len, iop_len, rqbuf_firstindex, rqbuf_lastindex;
rqbuf_lastindex = acb->rqbuf_lastindex;
rqbuf_firstindex = acb->rqbuf_firstindex;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = (uint8_t __iomem *)prbuffer->data;
iop_len = prbuffer->data_len;
my_empty_len = (rqbuf_firstindex - rqbuf_lastindex -1)&(ARCMSR_MAX_QBUFFER -1);
if (my_empty_len >= iop_len)
{
while (iop_len > 0) {
pQbuffer = (struct QBUFFER *)&acb->rqbuffer[rqbuf_lastindex];
memcpy(pQbuffer, iop_data,1);
rqbuf_lastindex++;
rqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
acb->rqbuf_lastindex = rqbuf_lastindex;
arcmsr_iop_message_read(acb);
}
else {
acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW;
}
}
static void arcmsr_iop2drv_data_read_handle(struct AdapterControlBlock *acb)
{
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READED;
if (acb->wqbuf_firstindex != acb->wqbuf_lastindex) {
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t __iomem *iop_data;
int32_t allxfer_len = 0;
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t __iomem *)pwbuffer->data;
while ((acb->wqbuf_firstindex != acb->wqbuf_lastindex) && \
(allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[acb->wqbuf_firstindex];
memcpy(iop_data, pQbuffer, 1);
acb->wqbuf_firstindex++;
acb->wqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
pwbuffer->data_len = allxfer_len;
arcmsr_iop_message_wrote(acb);
}
if (acb->wqbuf_firstindex == acb->wqbuf_lastindex) {
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED;
}
}
static void arcmsr_hba_doorbell_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell);
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(acb);
}
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(acb);
}
}
static void arcmsr_hba_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t flag_ccb;
struct MessageUnit_A __iomem *reg = acb->pmuA;
while ((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF) {
arcmsr_drain_donequeue(acb, flag_ccb);
}
}
static void arcmsr_hbb_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t index;
uint32_t flag_ccb;
struct MessageUnit_B *reg = acb->pmuB;
index = reg->doneq_index;
while ((flag_ccb = readl(&reg->done_qbuffer[index])) != 0) {
writel(0, &reg->done_qbuffer[index]);
arcmsr_drain_donequeue(acb, flag_ccb);
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
}
}
static int arcmsr_handle_hba_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_intstatus;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_intstatus = readl(&reg->outbound_intstatus) & \
acb->outbound_int_enable;
if (!(outbound_intstatus & ARCMSR_MU_OUTBOUND_HANDLE_INT)) {
return 1;
}
writel(outbound_intstatus, &reg->outbound_intstatus);
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT) {
arcmsr_hba_doorbell_isr(acb);
}
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT) {
arcmsr_hba_postqueue_isr(acb);
}
return 0;
}
static int arcmsr_handle_hbb_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_B *reg = acb->pmuB;
outbound_doorbell = readl(reg->iop2drv_doorbell_reg) & \
acb->outbound_int_enable;
if (!outbound_doorbell)
return 1;
writel(~outbound_doorbell, reg->iop2drv_doorbell_reg);
/*in case the last action of doorbell interrupt clearance is cached, this action can push HW to write down the clear bit*/
readl(reg->iop2drv_doorbell_reg);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell_reg);
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(acb);
}
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(acb);
}
if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE) {
arcmsr_hbb_postqueue_isr(acb);
}
return 0;
}
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
if (arcmsr_handle_hba_isr(acb)) {
return IRQ_NONE;
}
}
break;
case ACB_ADAPTER_TYPE_B: {
if (arcmsr_handle_hbb_isr(acb)) {
return IRQ_NONE;
}
}
break;
}
return IRQ_HANDLED;
}
static void arcmsr_iop_parking(struct AdapterControlBlock *acb)
{
if (acb) {
/* stop adapter background rebuild */
if (acb->acb_flags & ACB_F_MSG_START_BGRB) {
uint32_t intmask_org;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
}
void arcmsr_post_ioctldata2iop(struct AdapterControlBlock *acb)
{
int32_t wqbuf_firstindex, wqbuf_lastindex;
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t __iomem *iop_data;
int32_t allxfer_len = 0;
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t __iomem *)pwbuffer->data;
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) {
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
wqbuf_firstindex = acb->wqbuf_firstindex;
wqbuf_lastindex = acb->wqbuf_lastindex;
while ((wqbuf_firstindex != wqbuf_lastindex) && (allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[wqbuf_firstindex];
memcpy(iop_data, pQbuffer, 1);
wqbuf_firstindex++;
wqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
acb->wqbuf_firstindex = wqbuf_firstindex;
pwbuffer->data_len = allxfer_len;
arcmsr_iop_message_wrote(acb);
}
}
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb, \
struct scsi_cmnd *cmd)
{
struct CMD_MESSAGE_FIELD *pcmdmessagefld;
int retvalue = 0, transfer_len = 0;
char *buffer;
struct scatterlist *sg;
uint32_t controlcode = (uint32_t ) cmd->cmnd[5] << 24 |
(uint32_t ) cmd->cmnd[6] << 16 |
(uint32_t ) cmd->cmnd[7] << 8 |
(uint32_t ) cmd->cmnd[8];
/* 4 bytes: Areca io control code */
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg), KM_IRQ0) + sg->offset;
if (scsi_sg_count(cmd) > 1) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
transfer_len += sg->length;
if (transfer_len > sizeof(struct CMD_MESSAGE_FIELD)) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
pcmdmessagefld = (struct CMD_MESSAGE_FIELD *) buffer;
switch(controlcode) {
case ARCMSR_MESSAGE_READ_RQBUFFER: {
unsigned char *ver_addr;
uint8_t *pQbuffer, *ptmpQbuffer;
int32_t allxfer_len = 0;
ver_addr = kmalloc(1032, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
ptmpQbuffer = ver_addr;
while ((acb->rqbuf_firstindex != acb->rqbuf_lastindex)
&& (allxfer_len < 1031)) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_firstindex];
memcpy(ptmpQbuffer, pQbuffer, 1);
acb->rqbuf_firstindex++;
acb->rqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
ptmpQbuffer++;
allxfer_len++;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
struct QBUFFER __iomem *prbuffer;
uint8_t __iomem *iop_data;
int32_t iop_len;
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = prbuffer->data;
iop_len = readl(&prbuffer->data_len);
while (iop_len > 0) {
acb->rqbuffer[acb->rqbuf_lastindex] = readb(iop_data);
acb->rqbuf_lastindex++;
acb->rqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
arcmsr_iop_message_read(acb);
}
memcpy(pcmdmessagefld->messagedatabuffer, ver_addr, allxfer_len);
pcmdmessagefld->cmdmessage.Length = allxfer_len;
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
kfree(ver_addr);
}
break;
case ARCMSR_MESSAGE_WRITE_WQBUFFER: {
unsigned char *ver_addr;
int32_t my_empty_len, user_len, wqbuf_firstindex, wqbuf_lastindex;
uint8_t *pQbuffer, *ptmpuserbuffer;
ver_addr = kmalloc(1032, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
ptmpuserbuffer = ver_addr;
user_len = pcmdmessagefld->cmdmessage.Length;
memcpy(ptmpuserbuffer, pcmdmessagefld->messagedatabuffer, user_len);
wqbuf_lastindex = acb->wqbuf_lastindex;
wqbuf_firstindex = acb->wqbuf_firstindex;
if (wqbuf_lastindex != wqbuf_firstindex) {
struct SENSE_DATA *sensebuffer =
(struct SENSE_DATA *)cmd->sense_buffer;
arcmsr_post_ioctldata2iop(acb);
/* has error report sensedata */
sensebuffer->ErrorCode = 0x70;
sensebuffer->SenseKey = ILLEGAL_REQUEST;
sensebuffer->AdditionalSenseLength = 0x0A;
sensebuffer->AdditionalSenseCode = 0x20;
sensebuffer->Valid = 1;
retvalue = ARCMSR_MESSAGE_FAIL;
} else {
my_empty_len = (wqbuf_firstindex-wqbuf_lastindex - 1)
&(ARCMSR_MAX_QBUFFER - 1);
if (my_empty_len >= user_len) {
while (user_len > 0) {
pQbuffer =
&acb->wqbuffer[acb->wqbuf_lastindex];
memcpy(pQbuffer, ptmpuserbuffer, 1);
acb->wqbuf_lastindex++;
acb->wqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
ptmpuserbuffer++;
user_len--;
}
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_CLEARED) {
acb->acb_flags &=
~ACB_F_MESSAGE_WQBUFFER_CLEARED;
arcmsr_post_ioctldata2iop(acb);
}
} else {
/* has error report sensedata */
struct SENSE_DATA *sensebuffer =
(struct SENSE_DATA *)cmd->sense_buffer;
sensebuffer->ErrorCode = 0x70;
sensebuffer->SenseKey = ILLEGAL_REQUEST;
sensebuffer->AdditionalSenseLength = 0x0A;
sensebuffer->AdditionalSenseCode = 0x20;
sensebuffer->Valid = 1;
retvalue = ARCMSR_MESSAGE_FAIL;
}
}
kfree(ver_addr);
}
break;
case ARCMSR_MESSAGE_CLEAR_RQBUFFER: {
uint8_t *pQbuffer = acb->rqbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED;
acb->rqbuf_firstindex = 0;
acb->rqbuf_lastindex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_CLEAR_WQBUFFER: {
uint8_t *pQbuffer = acb->wqbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |=
(ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->wqbuf_firstindex = 0;
acb->wqbuf_lastindex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: {
uint8_t *pQbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |=
(ACB_F_MESSAGE_WQBUFFER_CLEARED
| ACB_F_MESSAGE_RQBUFFER_CLEARED
| ACB_F_MESSAGE_WQBUFFER_READED);
acb->rqbuf_firstindex = 0;
acb->rqbuf_lastindex = 0;
acb->wqbuf_firstindex = 0;
acb->wqbuf_lastindex = 0;
pQbuffer = acb->rqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
pQbuffer = acb->wqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_RETURN_CODE_3F: {
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_3F;
}
break;
case ARCMSR_MESSAGE_SAY_HELLO: {
int8_t *hello_string = "Hello! I am ARCMSR";
memcpy(pcmdmessagefld->messagedatabuffer, hello_string
, (int16_t)strlen(hello_string));
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
}
break;
case ARCMSR_MESSAGE_SAY_GOODBYE:
arcmsr_iop_parking(acb);
break;
case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE:
arcmsr_flush_adapter_cache(acb);
break;
default:
retvalue = ARCMSR_MESSAGE_FAIL;
}
message_out:
sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset, KM_IRQ0);
return retvalue;
}
static struct CommandControlBlock *arcmsr_get_freeccb(struct AdapterControlBlock *acb)
{
struct list_head *head = &acb->ccb_free_list;
struct CommandControlBlock *ccb = NULL;
if (!list_empty(head)) {
ccb = list_entry(head->next, struct CommandControlBlock, list);
list_del(head->next);
}
return ccb;
}
static void arcmsr_handle_virtual_command(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd)
{
switch (cmd->cmnd[0]) {
case INQUIRY: {
unsigned char inqdata[36];
char *buffer;
struct scatterlist *sg;
if (cmd->device->lun) {
cmd->result = (DID_TIME_OUT << 16);
cmd->scsi_done(cmd);
return;
}
inqdata[0] = TYPE_PROCESSOR;
/* Periph Qualifier & Periph Dev Type */
inqdata[1] = 0;
/* rem media bit & Dev Type Modifier */
inqdata[2] = 0;
/* ISO, ECMA, & ANSI versions */
inqdata[4] = 31;
/* length of additional data */
strncpy(&inqdata[8], "Areca ", 8);
/* Vendor Identification */
strncpy(&inqdata[16], "RAID controller ", 16);
/* Product Identification */
strncpy(&inqdata[32], "R001", 4); /* Product Revision */
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg), KM_IRQ0) + sg->offset;
memcpy(buffer, inqdata, sizeof(inqdata));
sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset, KM_IRQ0);
cmd->scsi_done(cmd);
}
break;
case WRITE_BUFFER:
case READ_BUFFER: {
if (arcmsr_iop_message_xfer(acb, cmd))
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
}
break;
default:
cmd->scsi_done(cmd);
}
}
static int arcmsr_queue_command(struct scsi_cmnd *cmd,
void (* done)(struct scsi_cmnd *))
{
struct Scsi_Host *host = cmd->device->host;
struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata;
struct CommandControlBlock *ccb;
int target = cmd->device->id;
int lun = cmd->device->lun;
cmd->scsi_done = done;
cmd->host_scribble = NULL;
cmd->result = 0;
if (acb->acb_flags & ACB_F_BUS_RESET) {
printk(KERN_NOTICE "arcmsr%d: bus reset"
" and return busy \n"
, acb->host->host_no);
return SCSI_MLQUEUE_HOST_BUSY;
}
if (target == 16) {
/* virtual device for iop message transfer */
arcmsr_handle_virtual_command(acb, cmd);
return 0;
}
if (acb->devstate[target][lun] == ARECA_RAID_GONE) {
uint8_t block_cmd;
block_cmd = cmd->cmnd[0] & 0x0f;
if (block_cmd == 0x08 || block_cmd == 0x0a) {
printk(KERN_NOTICE
"arcmsr%d: block 'read/write'"
"command with gone raid volume"
" Cmd = %2x, TargetId = %d, Lun = %d \n"
, acb->host->host_no
, cmd->cmnd[0]
, target, lun);
cmd->result = (DID_NO_CONNECT << 16);
cmd->scsi_done(cmd);
return 0;
}
}
if (atomic_read(&acb->ccboutstandingcount) >=
ARCMSR_MAX_OUTSTANDING_CMD)
return SCSI_MLQUEUE_HOST_BUSY;
ccb = arcmsr_get_freeccb(acb);
if (!ccb)
return SCSI_MLQUEUE_HOST_BUSY;
if ( arcmsr_build_ccb( acb, ccb, cmd ) == FAILED ) {
cmd->result = (DID_ERROR << 16) | (RESERVATION_CONFLICT << 1);
cmd->scsi_done(cmd);
return 0;
}
arcmsr_post_ccb(acb, ccb);
return 0;
}
static void arcmsr_get_hba_config(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
char *acb_firm_model = acb->firm_model;
char *acb_firm_version = acb->firm_version;
char __iomem *iop_firm_model = (char __iomem *)(&reg->message_rwbuffer[15]);
char __iomem *iop_firm_version = (char __iomem *)(&reg->message_rwbuffer[17]);
int count;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
}
count = 8;
while (count) {
*acb_firm_model = readb(iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count) {
*acb_firm_version = readb(iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
printk(KERN_INFO "ARECA RAID ADAPTER%d: FIRMWARE VERSION %s \n"
, acb->host->host_no
, acb->firm_version);
acb->firm_request_len = readl(&reg->message_rwbuffer[1]);
acb->firm_numbers_queue = readl(&reg->message_rwbuffer[2]);
acb->firm_sdram_size = readl(&reg->message_rwbuffer[3]);
acb->firm_hd_channels = readl(&reg->message_rwbuffer[4]);
}
static void arcmsr_get_hbb_config(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
uint32_t __iomem *lrwbuffer = reg->msgcode_rwbuffer_reg;
char *acb_firm_model = acb->firm_model;
char *acb_firm_version = acb->firm_version;
char __iomem *iop_firm_model = (char __iomem *)(&lrwbuffer[15]);
/*firm_model,15,60-67*/
char __iomem *iop_firm_version = (char __iomem *)(&lrwbuffer[17]);
/*firm_version,17,68-83*/
int count;
writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
}
count = 8;
while (count)
{
*acb_firm_model = readb(iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count)
{
*acb_firm_version = readb(iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
printk(KERN_INFO "ARECA RAID ADAPTER%d: FIRMWARE VERSION %s \n",
acb->host->host_no,
acb->firm_version);
lrwbuffer++;
acb->firm_request_len = readl(lrwbuffer++);
/*firm_request_len,1,04-07*/
acb->firm_numbers_queue = readl(lrwbuffer++);
/*firm_numbers_queue,2,08-11*/
acb->firm_sdram_size = readl(lrwbuffer++);
/*firm_sdram_size,3,12-15*/
acb->firm_hd_channels = readl(lrwbuffer);
/*firm_ide_channels,4,16-19*/
}
static void arcmsr_get_firmware_spec(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_get_hba_config(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_get_hbb_config(acb);
}
break;
}
}
static void arcmsr_polling_hba_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, outbound_intstatus, poll_ccb_done = 0, poll_count = 0;
polling_hba_ccb_retry:
poll_count++;
outbound_intstatus = readl(&reg->outbound_intstatus) & acb->outbound_int_enable;
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while (1) {
if ((flag_ccb = readl(&reg->outbound_queueport)) == 0xFFFFFFFF) {
if (poll_ccb_done)
break;
else {
msleep(25);
if (poll_count > 100)
break;
goto polling_hba_ccb_retry;
}
}
ccb = (struct CommandControlBlock *)(acb->vir2phy_offset + (flag_ccb << 5));
poll_ccb_done = (ccb == poll_ccb) ? 1:0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
, acb->host->host_no
, ccb->pcmd->device->id
, ccb->pcmd->device->lun
, ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
poll_ccb_done = 1;
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
arcmsr_report_ccb_state(acb, ccb, flag_ccb);
}
}
static void arcmsr_polling_hbb_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_B *reg = acb->pmuB;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, poll_ccb_done = 0, poll_count = 0;
int index;
polling_hbb_ccb_retry:
poll_count++;
/* clear doorbell interrupt */
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell_reg);
while (1) {
index = reg->doneq_index;
if ((flag_ccb = readl(&reg->done_qbuffer[index])) == 0) {
if (poll_ccb_done)
break;
else {
msleep(25);
if (poll_count > 100)
break;
goto polling_hbb_ccb_retry;
}
}
writel(0, &reg->done_qbuffer[index]);
index++;
/*if last index number set it to 0 */
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
/* check ifcommand done with no error*/
ccb = (struct CommandControlBlock *)\
(acb->vir2phy_offset + (flag_ccb << 5));/*frame must be 32 bytes aligned*/
poll_ccb_done = (ccb == poll_ccb) ? 1:0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: \
scsi id = %d lun = %d ccb = '0x%p' poll command abort successfully \n"
,acb->host->host_no
,ccb->pcmd->device->id
,ccb->pcmd->device->lun
,ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb, 1);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
arcmsr_report_ccb_state(acb, ccb, flag_ccb);
} /*drain reply FIFO*/
}
static void arcmsr_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_polling_hba_ccbdone(acb,poll_ccb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_polling_hbb_ccbdone(acb,poll_ccb);
}
}
}
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb)
{
uint32_t cdb_phyaddr, ccb_phyaddr_hi32;
dma_addr_t dma_coherent_handle;
/*
********************************************************************
** here we need to tell iop 331 our freeccb.HighPart
** if freeccb.HighPart is not zero
********************************************************************
*/
dma_coherent_handle = acb->dma_coherent_handle;
cdb_phyaddr = (uint32_t)(dma_coherent_handle);
ccb_phyaddr_hi32 = (uint32_t)((cdb_phyaddr >> 16) >> 16);
/*
***********************************************************************
** if adapter type B, set window of "post command Q"
***********************************************************************
*/
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
if (ccb_phyaddr_hi32 != 0) {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t intmask_org;
intmask_org = arcmsr_disable_outbound_ints(acb);
writel(ARCMSR_SIGNATURE_SET_CONFIG, \
&reg->message_rwbuffer[0]);
writel(ccb_phyaddr_hi32, &reg->message_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, \
&reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: ""set ccb high \
part physical address timeout\n",
acb->host->host_no);
return 1;
}
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
unsigned long post_queue_phyaddr;
uint32_t __iomem *rwbuffer;
struct MessageUnit_B *reg = acb->pmuB;
uint32_t intmask_org;
intmask_org = arcmsr_disable_outbound_ints(acb);
reg->postq_index = 0;
reg->doneq_index = 0;
writel(ARCMSR_MESSAGE_SET_POST_WINDOW, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d:can not set diver mode\n", \
acb->host->host_no);
return 1;
}
post_queue_phyaddr = cdb_phyaddr + ARCMSR_MAX_FREECCB_NUM * \
sizeof(struct CommandControlBlock) + offsetof(struct MessageUnit_B, post_qbuffer) ;
rwbuffer = reg->msgcode_rwbuffer_reg;
/* driver "set config" signature */
writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++);
/* normal should be zero */
writel(ccb_phyaddr_hi32, rwbuffer++);
/* postQ size (256 + 8)*4 */
writel(post_queue_phyaddr, rwbuffer++);
/* doneQ size (256 + 8)*4 */
writel(post_queue_phyaddr + 1056, rwbuffer++);
/* ccb maxQ size must be --> [(256 + 8)*4]*/
writel(1056, rwbuffer);
writel(ARCMSR_MESSAGE_SET_CONFIG, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \
timeout \n",acb->host->host_no);
return 1;
}
writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'can not set diver mode \n"\
,acb->host->host_no);
return 1;
}
arcmsr_enable_outbound_ints(acb, intmask_org);
}
break;
}
return 0;
}
static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb)
{
uint32_t firmware_state = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
do {
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
do {
firmware_state = readl(reg->iop2drv_doorbell_reg);
} while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell_reg);
}
break;
}
}
static void arcmsr_start_hba_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, &reg->inbound_msgaddr0);
if (arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebulid' timeout \n", acb->host->host_no);
}
}
static void arcmsr_start_hbb_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_START_BGRB, reg->drv2iop_doorbell_reg);
if (arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebulid' timeout \n",acb->host->host_no);
}
}
static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_start_hba_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_start_hbb_bgrb(acb);
break;
}
}
static void arcmsr_clear_doorbell_queue_buffer(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_doorbell;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
/*clear doorbell interrupt */
writel(outbound_doorbell, &reg->outbound_doorbell);
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*clear interrupt and message state*/
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell_reg);
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell_reg);
/* let IOP know data has been read */
}
break;
}
}
static void arcmsr_enable_eoi_mode(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
return;
case ACB_ADAPTER_TYPE_B:
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ACTIVE_EOI_MODE, reg->drv2iop_doorbell_reg);
if(arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "ARCMSR IOP enables EOI_MODE TIMEOUT");
return;
}
}
break;
}
return;
}
static void arcmsr_iop_init(struct AdapterControlBlock *acb)
{
uint32_t intmask_org;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_wait_firmware_ready(acb);
arcmsr_iop_confirm(acb);
arcmsr_get_firmware_spec(acb);
/*start background rebuild*/
arcmsr_start_adapter_bgrb(acb);
/* empty doorbell Qbuffer if door bell ringed */
arcmsr_clear_doorbell_queue_buffer(acb);
arcmsr_enable_eoi_mode(acb);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
acb->acb_flags |= ACB_F_IOP_INITED;
}
static void arcmsr_iop_reset(struct AdapterControlBlock *acb)
{
struct CommandControlBlock *ccb;
uint32_t intmask_org;
int i = 0;
if (atomic_read(&acb->ccboutstandingcount) != 0) {
/* talk to iop 331 outstanding command aborted */
arcmsr_abort_allcmd(acb);
/* wait for 3 sec for all command aborted*/
ssleep(3);
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
/* clear all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
ccb->startdone = ARCMSR_CCB_ABORTED;
arcmsr_ccb_complete(ccb, 1);
}
}
/* enable all outbound interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
static int arcmsr_bus_reset(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)cmd->device->host->hostdata;
int i;
acb->num_resets++;
acb->acb_flags |= ACB_F_BUS_RESET;
for (i = 0; i < 400; i++) {
if (!atomic_read(&acb->ccboutstandingcount))
break;
arcmsr_interrupt(acb);/* FIXME: need spinlock */
msleep(25);
}
arcmsr_iop_reset(acb);
acb->acb_flags &= ~ACB_F_BUS_RESET;
return SUCCESS;
}
static void arcmsr_abort_one_cmd(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb)
{
u32 intmask;
ccb->startdone = ARCMSR_CCB_ABORTED;
/*
** Wait for 3 sec for all command done.
*/
ssleep(3);
intmask = arcmsr_disable_outbound_ints(acb);
arcmsr_polling_ccbdone(acb, ccb);
arcmsr_enable_outbound_ints(acb, intmask);
}
static int arcmsr_abort(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)cmd->device->host->hostdata;
int i = 0;
printk(KERN_NOTICE
"arcmsr%d: abort device command of scsi id = %d lun = %d \n",
acb->host->host_no, cmd->device->id, cmd->device->lun);
acb->num_aborts++;
/*
************************************************
** the all interrupt service routine is locked
** we need to handle it as soon as possible and exit
************************************************
*/
if (!atomic_read(&acb->ccboutstandingcount))
return SUCCESS;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START && ccb->pcmd == cmd) {
arcmsr_abort_one_cmd(acb, ccb);
break;
}
}
return SUCCESS;
}
static const char *arcmsr_info(struct Scsi_Host *host)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
static char buf[256];
char *type;
int raid6 = 1;
switch (acb->pdev->device) {
case PCI_DEVICE_ID_ARECA_1110:
case PCI_DEVICE_ID_ARECA_1200:
case PCI_DEVICE_ID_ARECA_1202:
case PCI_DEVICE_ID_ARECA_1210:
raid6 = 0;
/*FALLTHRU*/
case PCI_DEVICE_ID_ARECA_1120:
case PCI_DEVICE_ID_ARECA_1130:
case PCI_DEVICE_ID_ARECA_1160:
case PCI_DEVICE_ID_ARECA_1170:
case PCI_DEVICE_ID_ARECA_1201:
case PCI_DEVICE_ID_ARECA_1220:
case PCI_DEVICE_ID_ARECA_1230:
case PCI_DEVICE_ID_ARECA_1260:
case PCI_DEVICE_ID_ARECA_1270:
case PCI_DEVICE_ID_ARECA_1280:
type = "SATA";
break;
case PCI_DEVICE_ID_ARECA_1380:
case PCI_DEVICE_ID_ARECA_1381:
case PCI_DEVICE_ID_ARECA_1680:
case PCI_DEVICE_ID_ARECA_1681:
type = "SAS";
break;
default:
type = "X-TYPE";
break;
}
sprintf(buf, "Areca %s Host Adapter RAID Controller%s\n %s",
type, raid6 ? "( RAID6 capable)" : "",
ARCMSR_DRIVER_VERSION);
return buf;
}
#ifdef CONFIG_SCSI_ARCMSR_AER
static pci_ers_result_t arcmsr_pci_slot_reset(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
uint32_t intmask_org;
int i, j;
if (pci_enable_device(pdev)) {
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
intmask_org = arcmsr_disable_outbound_ints(acb);
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER;
for (i = 0; i < ARCMSR_MAX_TARGETID; i++)
for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++)
acb->devstate[i][j] = ARECA_RAID_GONE;
arcmsr_wait_firmware_ready(acb);
arcmsr_iop_confirm(acb);
/* disable all outbound interrupt */
arcmsr_get_firmware_spec(acb);
/*start background rebuild*/
arcmsr_start_adapter_bgrb(acb);
/* empty doorbell Qbuffer if door bell ringed */
arcmsr_clear_doorbell_queue_buffer(acb);
arcmsr_enable_eoi_mode(acb);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
acb->acb_flags |= ACB_F_IOP_INITED;
pci_enable_pcie_error_reporting(pdev);
return PCI_ERS_RESULT_RECOVERED;
}
static void arcmsr_pci_ers_need_reset_forepart(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb = (struct AdapterControlBlock *)host->hostdata;
struct CommandControlBlock *ccb;
uint32_t intmask_org;
int i = 0;
if (atomic_read(&acb->ccboutstandingcount) != 0) {
/* talk to iop 331 outstanding command aborted */
arcmsr_abort_allcmd(acb);
/* wait for 3 sec for all command aborted*/
ssleep(3);
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
/* clear all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
ccb->startdone = ARCMSR_CCB_ABORTED;
arcmsr_ccb_complete(ccb, 1);
}
}
/* enable all outbound interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
}
pci_disable_device(pdev);
}
static void arcmsr_pci_ers_disconnect_forepart(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb = \
(struct AdapterControlBlock *)host->hostdata;
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
}
static pci_ers_result_t arcmsr_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
switch (state) {
case pci_channel_io_frozen:
arcmsr_pci_ers_need_reset_forepart(pdev);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
arcmsr_pci_ers_disconnect_forepart(pdev);
return PCI_ERS_RESULT_DISCONNECT;
break;
default:
return PCI_ERS_RESULT_NEED_RESET;
}
}
#endif