You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2695 lines
78 KiB
2695 lines
78 KiB
/*
|
|
* drivers/mtd/nand.c
|
|
*
|
|
* Overview:
|
|
* This is the generic MTD driver for NAND flash devices. It should be
|
|
* capable of working with almost all NAND chips currently available.
|
|
* Basic support for AG-AND chips is provided.
|
|
*
|
|
* Additional technical information is available on
|
|
* http://www.linux-mtd.infradead.org/tech/nand.html
|
|
*
|
|
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
|
|
* 2002 Thomas Gleixner (tglx@linutronix.de)
|
|
*
|
|
* 02-08-2004 tglx: support for strange chips, which cannot auto increment
|
|
* pages on read / read_oob
|
|
*
|
|
* 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
|
|
* pointed this out, as he marked an auto increment capable chip
|
|
* as NOAUTOINCR in the board driver.
|
|
* Make reads over block boundaries work too
|
|
*
|
|
* 04-14-2004 tglx: first working version for 2k page size chips
|
|
*
|
|
* 05-19-2004 tglx: Basic support for Renesas AG-AND chips
|
|
*
|
|
* 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
|
|
* among multiple independend devices. Suggestions and initial patch
|
|
* from Ben Dooks <ben-mtd@fluff.org>
|
|
*
|
|
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
|
|
* Basically, any block not rewritten may lose data when surrounding blocks
|
|
* are rewritten many times. JFFS2 ensures this doesn't happen for blocks
|
|
* it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
|
|
* do not lose data, force them to be rewritten when some of the surrounding
|
|
* blocks are erased. Rather than tracking a specific nearby block (which
|
|
* could itself go bad), use a page address 'mask' to select several blocks
|
|
* in the same area, and rewrite the BBT when any of them are erased.
|
|
*
|
|
* 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
|
|
* AG-AND chips. If there was a sudden loss of power during an erase operation,
|
|
* a "device recovery" operation must be performed when power is restored
|
|
* to ensure correct operation.
|
|
*
|
|
* 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
|
|
* perform extra error status checks on erase and write failures. This required
|
|
* adding a wrapper function for nand_read_ecc.
|
|
*
|
|
* Credits:
|
|
* David Woodhouse for adding multichip support
|
|
*
|
|
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
|
|
* rework for 2K page size chips
|
|
*
|
|
* TODO:
|
|
* Enable cached programming for 2k page size chips
|
|
* Check, if mtd->ecctype should be set to MTD_ECC_HW
|
|
* if we have HW ecc support.
|
|
* The AG-AND chips have nice features for speed improvement,
|
|
* which are not supported yet. Read / program 4 pages in one go.
|
|
*
|
|
* $Id: nand_base.c,v 1.147 2005/07/15 07:18:06 gleixner Exp $
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/compatmac.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/bitops.h>
|
|
#include <asm/io.h>
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
#include <linux/mtd/partitions.h>
|
|
#endif
|
|
|
|
/* Define default oob placement schemes for large and small page devices */
|
|
static struct nand_oobinfo nand_oob_8 = {
|
|
.useecc = MTD_NANDECC_AUTOPLACE,
|
|
.eccbytes = 3,
|
|
.eccpos = {0, 1, 2},
|
|
.oobfree = { {3, 2}, {6, 2} }
|
|
};
|
|
|
|
static struct nand_oobinfo nand_oob_16 = {
|
|
.useecc = MTD_NANDECC_AUTOPLACE,
|
|
.eccbytes = 6,
|
|
.eccpos = {0, 1, 2, 3, 6, 7},
|
|
.oobfree = { {8, 8} }
|
|
};
|
|
|
|
static struct nand_oobinfo nand_oob_64 = {
|
|
.useecc = MTD_NANDECC_AUTOPLACE,
|
|
.eccbytes = 24,
|
|
.eccpos = {
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55,
|
|
56, 57, 58, 59, 60, 61, 62, 63},
|
|
.oobfree = { {2, 38} }
|
|
};
|
|
|
|
/* This is used for padding purposes in nand_write_oob */
|
|
static u_char ffchars[] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
};
|
|
|
|
/*
|
|
* NAND low-level MTD interface functions
|
|
*/
|
|
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
|
|
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
|
|
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
|
|
|
|
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
|
|
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
|
|
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
|
|
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
|
|
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
|
|
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
|
|
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t * retlen);
|
|
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
|
|
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
|
|
static void nand_sync (struct mtd_info *mtd);
|
|
|
|
/* Some internal functions */
|
|
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
|
|
struct nand_oobinfo *oobsel, int mode);
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
|
|
u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
|
|
#else
|
|
#define nand_verify_pages(...) (0)
|
|
#endif
|
|
|
|
static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
|
|
|
|
/**
|
|
* nand_release_device - [GENERIC] release chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Deselect, release chip lock and wake up anyone waiting on the device
|
|
*/
|
|
static void nand_release_device (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
/* De-select the NAND device */
|
|
this->select_chip(mtd, -1);
|
|
|
|
if (this->controller) {
|
|
/* Release the controller and the chip */
|
|
spin_lock(&this->controller->lock);
|
|
this->controller->active = NULL;
|
|
this->state = FL_READY;
|
|
wake_up(&this->controller->wq);
|
|
spin_unlock(&this->controller->lock);
|
|
} else {
|
|
/* Release the chip */
|
|
spin_lock(&this->chip_lock);
|
|
this->state = FL_READY;
|
|
wake_up(&this->wq);
|
|
spin_unlock(&this->chip_lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_read_byte - [DEFAULT] read one byte from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 8bit buswith
|
|
*/
|
|
static u_char nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
return readb(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_write_byte - [DEFAULT] write one byte to the chip
|
|
* @mtd: MTD device structure
|
|
* @byte: pointer to data byte to write
|
|
*
|
|
* Default write function for 8it buswith
|
|
*/
|
|
static void nand_write_byte(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writeb(byte, this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 16bit buswith with
|
|
* endianess conversion
|
|
*/
|
|
static u_char nand_read_byte16(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
|
|
}
|
|
|
|
/**
|
|
* nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
|
|
* @mtd: MTD device structure
|
|
* @byte: pointer to data byte to write
|
|
*
|
|
* Default write function for 16bit buswith with
|
|
* endianess conversion
|
|
*/
|
|
static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_read_word - [DEFAULT] read one word from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 16bit buswith without
|
|
* endianess conversion
|
|
*/
|
|
static u16 nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
return readw(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_write_word - [DEFAULT] write one word to the chip
|
|
* @mtd: MTD device structure
|
|
* @word: data word to write
|
|
*
|
|
* Default write function for 16bit buswith without
|
|
* endianess conversion
|
|
*/
|
|
static void nand_write_word(struct mtd_info *mtd, u16 word)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writew(word, this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_select_chip - [DEFAULT] control CE line
|
|
* @mtd: MTD device structure
|
|
* @chip: chipnumber to select, -1 for deselect
|
|
*
|
|
* Default select function for 1 chip devices.
|
|
*/
|
|
static void nand_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
switch(chip) {
|
|
case -1:
|
|
this->hwcontrol(mtd, NAND_CTL_CLRNCE);
|
|
break;
|
|
case 0:
|
|
this->hwcontrol(mtd, NAND_CTL_SETNCE);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_write_buf - [DEFAULT] write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* Default write function for 8bit buswith
|
|
*/
|
|
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i=0; i<len; i++)
|
|
writeb(buf[i], this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_read_buf - [DEFAULT] read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* Default read function for 8bit buswith
|
|
*/
|
|
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i=0; i<len; i++)
|
|
buf[i] = readb(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_verify_buf - [DEFAULT] Verify chip data against buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer containing the data to compare
|
|
* @len: number of bytes to compare
|
|
*
|
|
* Default verify function for 8bit buswith
|
|
*/
|
|
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i=0; i<len; i++)
|
|
if (buf[i] != readb(this->IO_ADDR_R))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_write_buf16 - [DEFAULT] write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* Default write function for 16bit buswith
|
|
*/
|
|
static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i=0; i<len; i++)
|
|
writew(p[i], this->IO_ADDR_W);
|
|
|
|
}
|
|
|
|
/**
|
|
* nand_read_buf16 - [DEFAULT] read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* Default read function for 16bit buswith
|
|
*/
|
|
static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i=0; i<len; i++)
|
|
p[i] = readw(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer containing the data to compare
|
|
* @len: number of bytes to compare
|
|
*
|
|
* Default verify function for 16bit buswith
|
|
*/
|
|
static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i=0; i<len; i++)
|
|
if (p[i] != readw(this->IO_ADDR_R))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
* @getchip: 0, if the chip is already selected
|
|
*
|
|
* Check, if the block is bad.
|
|
*/
|
|
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
|
|
{
|
|
int page, chipnr, res = 0;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 bad;
|
|
|
|
if (getchip) {
|
|
page = (int)(ofs >> this->page_shift);
|
|
chipnr = (int)(ofs >> this->chip_shift);
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_READING);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
} else
|
|
page = (int) ofs;
|
|
|
|
if (this->options & NAND_BUSWIDTH_16) {
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
|
|
bad = cpu_to_le16(this->read_word(mtd));
|
|
if (this->badblockpos & 0x1)
|
|
bad >>= 1;
|
|
if ((bad & 0xFF) != 0xff)
|
|
res = 1;
|
|
} else {
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
|
|
if (this->read_byte(mtd) != 0xff)
|
|
res = 1;
|
|
}
|
|
|
|
if (getchip) {
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* nand_default_block_markbad - [DEFAULT] mark a block bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
*
|
|
* This is the default implementation, which can be overridden by
|
|
* a hardware specific driver.
|
|
*/
|
|
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char buf[2] = {0, 0};
|
|
size_t retlen;
|
|
int block;
|
|
|
|
/* Get block number */
|
|
block = ((int) ofs) >> this->bbt_erase_shift;
|
|
if (this->bbt)
|
|
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
|
|
|
|
/* Do we have a flash based bad block table ? */
|
|
if (this->options & NAND_USE_FLASH_BBT)
|
|
return nand_update_bbt (mtd, ofs);
|
|
|
|
/* We write two bytes, so we dont have to mess with 16 bit access */
|
|
ofs += mtd->oobsize + (this->badblockpos & ~0x01);
|
|
return nand_write_oob (mtd, ofs , 2, &retlen, buf);
|
|
}
|
|
|
|
/**
|
|
* nand_check_wp - [GENERIC] check if the chip is write protected
|
|
* @mtd: MTD device structure
|
|
* Check, if the device is write protected
|
|
*
|
|
* The function expects, that the device is already selected
|
|
*/
|
|
static int nand_check_wp (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
/* Check the WP bit */
|
|
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
|
|
return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
|
|
}
|
|
|
|
/**
|
|
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
* @getchip: 0, if the chip is already selected
|
|
* @allowbbt: 1, if its allowed to access the bbt area
|
|
*
|
|
* Check, if the block is bad. Either by reading the bad block table or
|
|
* calling of the scan function.
|
|
*/
|
|
static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
if (!this->bbt)
|
|
return this->block_bad(mtd, ofs, getchip);
|
|
|
|
/* Return info from the table */
|
|
return nand_isbad_bbt (mtd, ofs, allowbbt);
|
|
}
|
|
|
|
/*
|
|
* Wait for the ready pin, after a command
|
|
* The timeout is catched later.
|
|
*/
|
|
static void nand_wait_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
unsigned long timeo = jiffies + 2;
|
|
|
|
/* wait until command is processed or timeout occures */
|
|
do {
|
|
if (this->dev_ready(mtd))
|
|
return;
|
|
touch_softlockup_watchdog();
|
|
} while (time_before(jiffies, timeo));
|
|
}
|
|
|
|
/**
|
|
* nand_command - [DEFAULT] Send command to NAND device
|
|
* @mtd: MTD device structure
|
|
* @command: the command to be sent
|
|
* @column: the column address for this command, -1 if none
|
|
* @page_addr: the page address for this command, -1 if none
|
|
*
|
|
* Send command to NAND device. This function is used for small page
|
|
* devices (256/512 Bytes per page)
|
|
*/
|
|
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
|
|
{
|
|
register struct nand_chip *this = mtd->priv;
|
|
|
|
/* Begin command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
/*
|
|
* Write out the command to the device.
|
|
*/
|
|
if (command == NAND_CMD_SEQIN) {
|
|
int readcmd;
|
|
|
|
if (column >= mtd->oobblock) {
|
|
/* OOB area */
|
|
column -= mtd->oobblock;
|
|
readcmd = NAND_CMD_READOOB;
|
|
} else if (column < 256) {
|
|
/* First 256 bytes --> READ0 */
|
|
readcmd = NAND_CMD_READ0;
|
|
} else {
|
|
column -= 256;
|
|
readcmd = NAND_CMD_READ1;
|
|
}
|
|
this->write_byte(mtd, readcmd);
|
|
}
|
|
this->write_byte(mtd, command);
|
|
|
|
/* Set ALE and clear CLE to start address cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
|
|
if (column != -1 || page_addr != -1) {
|
|
this->hwcontrol(mtd, NAND_CTL_SETALE);
|
|
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (this->options & NAND_BUSWIDTH_16)
|
|
column >>= 1;
|
|
this->write_byte(mtd, column);
|
|
}
|
|
if (page_addr != -1) {
|
|
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
|
|
/* One more address cycle for devices > 32MiB */
|
|
if (this->chipsize > (32 << 20))
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
|
|
}
|
|
/* Latch in address */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRALE);
|
|
}
|
|
|
|
/*
|
|
* program and erase have their own busy handlers
|
|
* status and sequential in needs no delay
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
if (this->dev_ready)
|
|
break;
|
|
udelay(this->chip_delay);
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
this->write_byte(mtd, NAND_CMD_STATUS);
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
|
|
return;
|
|
|
|
/* This applies to read commands */
|
|
default:
|
|
/*
|
|
* If we don't have access to the busy pin, we apply the given
|
|
* command delay
|
|
*/
|
|
if (!this->dev_ready) {
|
|
udelay (this->chip_delay);
|
|
return;
|
|
}
|
|
}
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay (100);
|
|
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_command_lp - [DEFAULT] Send command to NAND large page device
|
|
* @mtd: MTD device structure
|
|
* @command: the command to be sent
|
|
* @column: the column address for this command, -1 if none
|
|
* @page_addr: the page address for this command, -1 if none
|
|
*
|
|
* Send command to NAND device. This is the version for the new large page devices
|
|
* We dont have the seperate regions as we have in the small page devices.
|
|
* We must emulate NAND_CMD_READOOB to keep the code compatible.
|
|
*
|
|
*/
|
|
static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
|
|
{
|
|
register struct nand_chip *this = mtd->priv;
|
|
|
|
/* Emulate NAND_CMD_READOOB */
|
|
if (command == NAND_CMD_READOOB) {
|
|
column += mtd->oobblock;
|
|
command = NAND_CMD_READ0;
|
|
}
|
|
|
|
|
|
/* Begin command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
/* Write out the command to the device. */
|
|
this->write_byte(mtd, (command & 0xff));
|
|
/* End command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
|
|
if (column != -1 || page_addr != -1) {
|
|
this->hwcontrol(mtd, NAND_CTL_SETALE);
|
|
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (this->options & NAND_BUSWIDTH_16)
|
|
column >>= 1;
|
|
this->write_byte(mtd, column & 0xff);
|
|
this->write_byte(mtd, column >> 8);
|
|
}
|
|
if (page_addr != -1) {
|
|
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
|
|
/* One more address cycle for devices > 128MiB */
|
|
if (this->chipsize > (128 << 20))
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
|
|
}
|
|
/* Latch in address */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRALE);
|
|
}
|
|
|
|
/*
|
|
* program and erase have their own busy handlers
|
|
* status, sequential in, and deplete1 need no delay
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_CACHEDPROG:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_DEPLETE1:
|
|
return;
|
|
|
|
/*
|
|
* read error status commands require only a short delay
|
|
*/
|
|
case NAND_CMD_STATUS_ERROR:
|
|
case NAND_CMD_STATUS_ERROR0:
|
|
case NAND_CMD_STATUS_ERROR1:
|
|
case NAND_CMD_STATUS_ERROR2:
|
|
case NAND_CMD_STATUS_ERROR3:
|
|
udelay(this->chip_delay);
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
if (this->dev_ready)
|
|
break;
|
|
udelay(this->chip_delay);
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
this->write_byte(mtd, NAND_CMD_STATUS);
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
|
|
return;
|
|
|
|
case NAND_CMD_READ0:
|
|
/* Begin command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
/* Write out the start read command */
|
|
this->write_byte(mtd, NAND_CMD_READSTART);
|
|
/* End command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
/* Fall through into ready check */
|
|
|
|
/* This applies to read commands */
|
|
default:
|
|
/*
|
|
* If we don't have access to the busy pin, we apply the given
|
|
* command delay
|
|
*/
|
|
if (!this->dev_ready) {
|
|
udelay (this->chip_delay);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay (100);
|
|
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_get_device - [GENERIC] Get chip for selected access
|
|
* @this: the nand chip descriptor
|
|
* @mtd: MTD device structure
|
|
* @new_state: the state which is requested
|
|
*
|
|
* Get the device and lock it for exclusive access
|
|
*/
|
|
static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
|
|
{
|
|
struct nand_chip *active;
|
|
spinlock_t *lock;
|
|
wait_queue_head_t *wq;
|
|
DECLARE_WAITQUEUE (wait, current);
|
|
|
|
lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
|
|
wq = (this->controller) ? &this->controller->wq : &this->wq;
|
|
retry:
|
|
active = this;
|
|
spin_lock(lock);
|
|
|
|
/* Hardware controller shared among independend devices */
|
|
if (this->controller) {
|
|
if (this->controller->active)
|
|
active = this->controller->active;
|
|
else
|
|
this->controller->active = this;
|
|
}
|
|
if (active == this && this->state == FL_READY) {
|
|
this->state = new_state;
|
|
spin_unlock(lock);
|
|
return;
|
|
}
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(wq, &wait);
|
|
spin_unlock(lock);
|
|
schedule();
|
|
remove_wait_queue(wq, &wait);
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* nand_wait - [DEFAULT] wait until the command is done
|
|
* @mtd: MTD device structure
|
|
* @this: NAND chip structure
|
|
* @state: state to select the max. timeout value
|
|
*
|
|
* Wait for command done. This applies to erase and program only
|
|
* Erase can take up to 400ms and program up to 20ms according to
|
|
* general NAND and SmartMedia specs
|
|
*
|
|
*/
|
|
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
|
|
{
|
|
|
|
unsigned long timeo = jiffies;
|
|
int status;
|
|
|
|
if (state == FL_ERASING)
|
|
timeo += (HZ * 400) / 1000;
|
|
else
|
|
timeo += (HZ * 20) / 1000;
|
|
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay (100);
|
|
|
|
if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
|
|
this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
|
|
else
|
|
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
|
|
|
|
while (time_before(jiffies, timeo)) {
|
|
/* Check, if we were interrupted */
|
|
if (this->state != state)
|
|
return 0;
|
|
|
|
if (this->dev_ready) {
|
|
if (this->dev_ready(mtd))
|
|
break;
|
|
} else {
|
|
if (this->read_byte(mtd) & NAND_STATUS_READY)
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
status = (int) this->read_byte(mtd);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* nand_write_page - [GENERIC] write one page
|
|
* @mtd: MTD device structure
|
|
* @this: NAND chip structure
|
|
* @page: startpage inside the chip, must be called with (page & this->pagemask)
|
|
* @oob_buf: out of band data buffer
|
|
* @oobsel: out of band selecttion structre
|
|
* @cached: 1 = enable cached programming if supported by chip
|
|
*
|
|
* Nand_page_program function is used for write and writev !
|
|
* This function will always program a full page of data
|
|
* If you call it with a non page aligned buffer, you're lost :)
|
|
*
|
|
* Cached programming is not supported yet.
|
|
*/
|
|
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
|
|
u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
|
|
{
|
|
int i, status;
|
|
u_char ecc_code[32];
|
|
int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
|
|
int *oob_config = oobsel->eccpos;
|
|
int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
|
|
int eccbytes = 0;
|
|
|
|
/* FIXME: Enable cached programming */
|
|
cached = 0;
|
|
|
|
/* Send command to begin auto page programming */
|
|
this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
|
|
/* Write out complete page of data, take care of eccmode */
|
|
switch (eccmode) {
|
|
/* No ecc, write all */
|
|
case NAND_ECC_NONE:
|
|
printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
|
|
this->write_buf(mtd, this->data_poi, mtd->oobblock);
|
|
break;
|
|
|
|
/* Software ecc 3/256, write all */
|
|
case NAND_ECC_SOFT:
|
|
for (; eccsteps; eccsteps--) {
|
|
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
|
|
for (i = 0; i < 3; i++, eccidx++)
|
|
oob_buf[oob_config[eccidx]] = ecc_code[i];
|
|
datidx += this->eccsize;
|
|
}
|
|
this->write_buf(mtd, this->data_poi, mtd->oobblock);
|
|
break;
|
|
default:
|
|
eccbytes = this->eccbytes;
|
|
for (; eccsteps; eccsteps--) {
|
|
/* enable hardware ecc logic for write */
|
|
this->enable_hwecc(mtd, NAND_ECC_WRITE);
|
|
this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
|
|
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
|
|
for (i = 0; i < eccbytes; i++, eccidx++)
|
|
oob_buf[oob_config[eccidx]] = ecc_code[i];
|
|
/* If the hardware ecc provides syndromes then
|
|
* the ecc code must be written immidiately after
|
|
* the data bytes (words) */
|
|
if (this->options & NAND_HWECC_SYNDROME)
|
|
this->write_buf(mtd, ecc_code, eccbytes);
|
|
datidx += this->eccsize;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Write out OOB data */
|
|
if (this->options & NAND_HWECC_SYNDROME)
|
|
this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
|
|
else
|
|
this->write_buf(mtd, oob_buf, mtd->oobsize);
|
|
|
|
/* Send command to actually program the data */
|
|
this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
if (!cached) {
|
|
/* call wait ready function */
|
|
status = this->waitfunc (mtd, this, FL_WRITING);
|
|
|
|
/* See if operation failed and additional status checks are available */
|
|
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
|
|
status = this->errstat(mtd, this, FL_WRITING, status, page);
|
|
}
|
|
|
|
/* See if device thinks it succeeded */
|
|
if (status & NAND_STATUS_FAIL) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
|
|
return -EIO;
|
|
}
|
|
} else {
|
|
/* FIXME: Implement cached programming ! */
|
|
/* wait until cache is ready*/
|
|
// status = this->waitfunc (mtd, this, FL_CACHEDRPG);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
/**
|
|
* nand_verify_pages - [GENERIC] verify the chip contents after a write
|
|
* @mtd: MTD device structure
|
|
* @this: NAND chip structure
|
|
* @page: startpage inside the chip, must be called with (page & this->pagemask)
|
|
* @numpages: number of pages to verify
|
|
* @oob_buf: out of band data buffer
|
|
* @oobsel: out of band selecttion structre
|
|
* @chipnr: number of the current chip
|
|
* @oobmode: 1 = full buffer verify, 0 = ecc only
|
|
*
|
|
* The NAND device assumes that it is always writing to a cleanly erased page.
|
|
* Hence, it performs its internal write verification only on bits that
|
|
* transitioned from 1 to 0. The device does NOT verify the whole page on a
|
|
* byte by byte basis. It is possible that the page was not completely erased
|
|
* or the page is becoming unusable due to wear. The read with ECC would catch
|
|
* the error later when the ECC page check fails, but we would rather catch
|
|
* it early in the page write stage. Better to write no data than invalid data.
|
|
*/
|
|
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
|
|
u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
|
|
{
|
|
int i, j, datidx = 0, oobofs = 0, res = -EIO;
|
|
int eccsteps = this->eccsteps;
|
|
int hweccbytes;
|
|
u_char oobdata[64];
|
|
|
|
hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
|
|
|
|
/* Send command to read back the first page */
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
|
|
|
|
for(;;) {
|
|
for (j = 0; j < eccsteps; j++) {
|
|
/* Loop through and verify the data */
|
|
if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
|
|
goto out;
|
|
}
|
|
datidx += mtd->eccsize;
|
|
/* Have we a hw generator layout ? */
|
|
if (!hweccbytes)
|
|
continue;
|
|
if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
|
|
goto out;
|
|
}
|
|
oobofs += hweccbytes;
|
|
}
|
|
|
|
/* check, if we must compare all data or if we just have to
|
|
* compare the ecc bytes
|
|
*/
|
|
if (oobmode) {
|
|
if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* Read always, else autoincrement fails */
|
|
this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
|
|
|
|
if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
|
|
int ecccnt = oobsel->eccbytes;
|
|
|
|
for (i = 0; i < ecccnt; i++) {
|
|
int idx = oobsel->eccpos[i];
|
|
if (oobdata[idx] != oob_buf[oobofs + idx] ) {
|
|
DEBUG (MTD_DEBUG_LEVEL0,
|
|
"%s: Failed ECC write "
|
|
"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
oobofs += mtd->oobsize - hweccbytes * eccsteps;
|
|
page++;
|
|
numpages--;
|
|
|
|
/* Apply delay or wait for ready/busy pin
|
|
* Do this before the AUTOINCR check, so no problems
|
|
* arise if a chip which does auto increment
|
|
* is marked as NOAUTOINCR by the board driver.
|
|
* Do this also before returning, so the chip is
|
|
* ready for the next command.
|
|
*/
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
/* All done, return happy */
|
|
if (!numpages)
|
|
return 0;
|
|
|
|
|
|
/* Check, if the chip supports auto page increment */
|
|
if (!NAND_CANAUTOINCR(this))
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
|
|
}
|
|
/*
|
|
* Terminate the read command. We come here in case of an error
|
|
* So we must issue a reset command.
|
|
*/
|
|
out:
|
|
this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
*
|
|
* This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
|
|
* and flags = 0xff
|
|
*/
|
|
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
|
|
{
|
|
return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
* @oob_buf: filesystem supplied oob data buffer
|
|
* @oobsel: oob selection structure
|
|
*
|
|
* This function simply calls nand_do_read_ecc with flags = 0xff
|
|
*/
|
|
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
|
|
{
|
|
/* use userspace supplied oobinfo, if zero */
|
|
if (oobsel == NULL)
|
|
oobsel = &mtd->oobinfo;
|
|
return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_do_read_ecc - [MTD Interface] Read data with ECC
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
* @oob_buf: filesystem supplied oob data buffer (can be NULL)
|
|
* @oobsel: oob selection structure
|
|
* @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
|
|
* and how many corrected error bits are acceptable:
|
|
* bits 0..7 - number of tolerable errors
|
|
* bit 8 - 0 == do not get/release chip, 1 == get/release chip
|
|
*
|
|
* NAND read with ECC
|
|
*/
|
|
int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf, u_char * oob_buf,
|
|
struct nand_oobinfo *oobsel, int flags)
|
|
{
|
|
|
|
int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
|
|
int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char *data_poi, *oob_data = oob_buf;
|
|
u_char ecc_calc[32];
|
|
u_char ecc_code[32];
|
|
int eccmode, eccsteps;
|
|
int *oob_config, datidx;
|
|
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
|
|
int eccbytes;
|
|
int compareecc = 1;
|
|
int oobreadlen;
|
|
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((from + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
|
|
*retlen = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
if (flags & NAND_GET_DEVICE)
|
|
nand_get_device (this, mtd, FL_READING);
|
|
|
|
/* Autoplace of oob data ? Use the default placement scheme */
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
|
|
oobsel = this->autooob;
|
|
|
|
eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
|
|
oob_config = oobsel->eccpos;
|
|
|
|
/* Select the NAND device */
|
|
chipnr = (int)(from >> this->chip_shift);
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* First we calculate the starting page */
|
|
realpage = (int) (from >> this->page_shift);
|
|
page = realpage & this->pagemask;
|
|
|
|
/* Get raw starting column */
|
|
col = from & (mtd->oobblock - 1);
|
|
|
|
end = mtd->oobblock;
|
|
ecc = this->eccsize;
|
|
eccbytes = this->eccbytes;
|
|
|
|
if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
|
|
compareecc = 0;
|
|
|
|
oobreadlen = mtd->oobsize;
|
|
if (this->options & NAND_HWECC_SYNDROME)
|
|
oobreadlen -= oobsel->eccbytes;
|
|
|
|
/* Loop until all data read */
|
|
while (read < len) {
|
|
|
|
int aligned = (!col && (len - read) >= end);
|
|
/*
|
|
* If the read is not page aligned, we have to read into data buffer
|
|
* due to ecc, else we read into return buffer direct
|
|
*/
|
|
if (aligned)
|
|
data_poi = &buf[read];
|
|
else
|
|
data_poi = this->data_buf;
|
|
|
|
/* Check, if we have this page in the buffer
|
|
*
|
|
* FIXME: Make it work when we must provide oob data too,
|
|
* check the usage of data_buf oob field
|
|
*/
|
|
if (realpage == this->pagebuf && !oob_buf) {
|
|
/* aligned read ? */
|
|
if (aligned)
|
|
memcpy (data_poi, this->data_buf, end);
|
|
goto readdata;
|
|
}
|
|
|
|
/* Check, if we must send the read command */
|
|
if (sndcmd) {
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
|
|
sndcmd = 0;
|
|
}
|
|
|
|
/* get oob area, if we have no oob buffer from fs-driver */
|
|
if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
|
|
oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
|
|
oob_data = &this->data_buf[end];
|
|
|
|
eccsteps = this->eccsteps;
|
|
|
|
switch (eccmode) {
|
|
case NAND_ECC_NONE: { /* No ECC, Read in a page */
|
|
static unsigned long lastwhinge = 0;
|
|
if ((lastwhinge / HZ) != (jiffies / HZ)) {
|
|
printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
|
|
lastwhinge = jiffies;
|
|
}
|
|
this->read_buf(mtd, data_poi, end);
|
|
break;
|
|
}
|
|
|
|
case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
|
|
this->read_buf(mtd, data_poi, end);
|
|
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
|
|
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
|
|
break;
|
|
|
|
default:
|
|
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
|
|
this->enable_hwecc(mtd, NAND_ECC_READ);
|
|
this->read_buf(mtd, &data_poi[datidx], ecc);
|
|
|
|
/* HW ecc with syndrome calculation must read the
|
|
* syndrome from flash immidiately after the data */
|
|
if (!compareecc) {
|
|
/* Some hw ecc generators need to know when the
|
|
* syndrome is read from flash */
|
|
this->enable_hwecc(mtd, NAND_ECC_READSYN);
|
|
this->read_buf(mtd, &oob_data[i], eccbytes);
|
|
/* We calc error correction directly, it checks the hw
|
|
* generator for an error, reads back the syndrome and
|
|
* does the error correction on the fly */
|
|
ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
|
|
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
|
|
"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
|
|
ecc_failed++;
|
|
}
|
|
} else {
|
|
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* read oobdata */
|
|
this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
|
|
|
|
/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
|
|
if (!compareecc)
|
|
goto readoob;
|
|
|
|
/* Pick the ECC bytes out of the oob data */
|
|
for (j = 0; j < oobsel->eccbytes; j++)
|
|
ecc_code[j] = oob_data[oob_config[j]];
|
|
|
|
/* correct data, if neccecary */
|
|
for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
|
|
ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
|
|
|
|
/* Get next chunk of ecc bytes */
|
|
j += eccbytes;
|
|
|
|
/* Check, if we have a fs supplied oob-buffer,
|
|
* This is the legacy mode. Used by YAFFS1
|
|
* Should go away some day
|
|
*/
|
|
if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
|
|
int *p = (int *)(&oob_data[mtd->oobsize]);
|
|
p[i] = ecc_status;
|
|
}
|
|
|
|
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
|
|
ecc_failed++;
|
|
}
|
|
}
|
|
|
|
readoob:
|
|
/* check, if we have a fs supplied oob-buffer */
|
|
if (oob_buf) {
|
|
/* without autoplace. Legacy mode used by YAFFS1 */
|
|
switch(oobsel->useecc) {
|
|
case MTD_NANDECC_AUTOPLACE:
|
|
case MTD_NANDECC_AUTOPL_USR:
|
|
/* Walk through the autoplace chunks */
|
|
for (i = 0; oobsel->oobfree[i][1]; i++) {
|
|
int from = oobsel->oobfree[i][0];
|
|
int num = oobsel->oobfree[i][1];
|
|
memcpy(&oob_buf[oob], &oob_data[from], num);
|
|
oob += num;
|
|
}
|
|
break;
|
|
case MTD_NANDECC_PLACE:
|
|
/* YAFFS1 legacy mode */
|
|
oob_data += this->eccsteps * sizeof (int);
|
|
default:
|
|
oob_data += mtd->oobsize;
|
|
}
|
|
}
|
|
readdata:
|
|
/* Partial page read, transfer data into fs buffer */
|
|
if (!aligned) {
|
|
for (j = col; j < end && read < len; j++)
|
|
buf[read++] = data_poi[j];
|
|
this->pagebuf = realpage;
|
|
} else
|
|
read += mtd->oobblock;
|
|
|
|
/* Apply delay or wait for ready/busy pin
|
|
* Do this before the AUTOINCR check, so no problems
|
|
* arise if a chip which does auto increment
|
|
* is marked as NOAUTOINCR by the board driver.
|
|
*/
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
if (read == len)
|
|
break;
|
|
|
|
/* For subsequent reads align to page boundary. */
|
|
col = 0;
|
|
/* Increment page address */
|
|
realpage++;
|
|
|
|
page = realpage & this->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
/* Check, if the chip supports auto page increment
|
|
* or if we have hit a block boundary.
|
|
*/
|
|
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
|
|
sndcmd = 1;
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
if (flags & NAND_GET_DEVICE)
|
|
nand_release_device(mtd);
|
|
|
|
/*
|
|
* Return success, if no ECC failures, else -EBADMSG
|
|
* fs driver will take care of that, because
|
|
* retlen == desired len and result == -EBADMSG
|
|
*/
|
|
*retlen = read;
|
|
return ecc_failed ? -EBADMSG : 0;
|
|
}
|
|
|
|
/**
|
|
* nand_read_oob - [MTD Interface] NAND read out-of-band
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
*
|
|
* NAND read out-of-band data from the spare area
|
|
*/
|
|
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
|
|
{
|
|
int i, col, page, chipnr;
|
|
struct nand_chip *this = mtd->priv;
|
|
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
|
|
|
|
/* Shift to get page */
|
|
page = (int)(from >> this->page_shift);
|
|
chipnr = (int)(from >> this->chip_shift);
|
|
|
|
/* Mask to get column */
|
|
col = from & (mtd->oobsize - 1);
|
|
|
|
/* Initialize return length value */
|
|
*retlen = 0;
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((from + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
|
|
*retlen = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd , FL_READING);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Send the read command */
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
|
|
/*
|
|
* Read the data, if we read more than one page
|
|
* oob data, let the device transfer the data !
|
|
*/
|
|
i = 0;
|
|
while (i < len) {
|
|
int thislen = mtd->oobsize - col;
|
|
thislen = min_t(int, thislen, len);
|
|
this->read_buf(mtd, &buf[i], thislen);
|
|
i += thislen;
|
|
|
|
/* Read more ? */
|
|
if (i < len) {
|
|
page++;
|
|
col = 0;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
if (!(page & this->pagemask)) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
|
|
/* Apply delay or wait for ready/busy pin
|
|
* Do this before the AUTOINCR check, so no problems
|
|
* arise if a chip which does auto increment
|
|
* is marked as NOAUTOINCR by the board driver.
|
|
*/
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
/* Check, if the chip supports auto page increment
|
|
* or if we have hit a block boundary.
|
|
*/
|
|
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
|
|
/* For subsequent page reads set offset to 0 */
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
/* Return happy */
|
|
*retlen = len;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_read_raw - [GENERIC] Read raw data including oob into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: temporary buffer
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @ooblen: number of oob data bytes to read
|
|
*
|
|
* Read raw data including oob into buffer
|
|
*/
|
|
int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
int page = (int) (from >> this->page_shift);
|
|
int chip = (int) (from >> this->chip_shift);
|
|
int sndcmd = 1;
|
|
int cnt = 0;
|
|
int pagesize = mtd->oobblock + mtd->oobsize;
|
|
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((from + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd , FL_READING);
|
|
|
|
this->select_chip (mtd, chip);
|
|
|
|
/* Add requested oob length */
|
|
len += ooblen;
|
|
|
|
while (len) {
|
|
if (sndcmd)
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
|
|
sndcmd = 0;
|
|
|
|
this->read_buf (mtd, &buf[cnt], pagesize);
|
|
|
|
len -= pagesize;
|
|
cnt += pagesize;
|
|
page++;
|
|
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
/* Check, if the chip supports auto page increment */
|
|
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
|
|
sndcmd = 1;
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
|
|
* @mtd: MTD device structure
|
|
* @fsbuf: buffer given by fs driver
|
|
* @oobsel: out of band selection structre
|
|
* @autoplace: 1 = place given buffer into the oob bytes
|
|
* @numpages: number of pages to prepare
|
|
*
|
|
* Return:
|
|
* 1. Filesystem buffer available and autoplacement is off,
|
|
* return filesystem buffer
|
|
* 2. No filesystem buffer or autoplace is off, return internal
|
|
* buffer
|
|
* 3. Filesystem buffer is given and autoplace selected
|
|
* put data from fs buffer into internal buffer and
|
|
* retrun internal buffer
|
|
*
|
|
* Note: The internal buffer is filled with 0xff. This must
|
|
* be done only once, when no autoplacement happens
|
|
* Autoplacement sets the buffer dirty flag, which
|
|
* forces the 0xff fill before using the buffer again.
|
|
*
|
|
*/
|
|
static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
|
|
int autoplace, int numpages)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
int i, len, ofs;
|
|
|
|
/* Zero copy fs supplied buffer */
|
|
if (fsbuf && !autoplace)
|
|
return fsbuf;
|
|
|
|
/* Check, if the buffer must be filled with ff again */
|
|
if (this->oobdirty) {
|
|
memset (this->oob_buf, 0xff,
|
|
mtd->oobsize << (this->phys_erase_shift - this->page_shift));
|
|
this->oobdirty = 0;
|
|
}
|
|
|
|
/* If we have no autoplacement or no fs buffer use the internal one */
|
|
if (!autoplace || !fsbuf)
|
|
return this->oob_buf;
|
|
|
|
/* Walk through the pages and place the data */
|
|
this->oobdirty = 1;
|
|
ofs = 0;
|
|
while (numpages--) {
|
|
for (i = 0, len = 0; len < mtd->oobavail; i++) {
|
|
int to = ofs + oobsel->oobfree[i][0];
|
|
int num = oobsel->oobfree[i][1];
|
|
memcpy (&this->oob_buf[to], fsbuf, num);
|
|
len += num;
|
|
fsbuf += num;
|
|
}
|
|
ofs += mtd->oobavail;
|
|
}
|
|
return this->oob_buf;
|
|
}
|
|
|
|
#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
|
|
|
|
/**
|
|
* nand_write - [MTD Interface] compability function for nand_write_ecc
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
*
|
|
* This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
|
|
*
|
|
*/
|
|
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
|
|
{
|
|
return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
|
|
}
|
|
|
|
/**
|
|
* nand_write_ecc - [MTD Interface] NAND write with ECC
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
* @eccbuf: filesystem supplied oob data buffer
|
|
* @oobsel: oob selection structure
|
|
*
|
|
* NAND write with ECC
|
|
*/
|
|
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
|
|
{
|
|
int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
|
|
int autoplace = 0, numpages, totalpages;
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char *oobbuf, *bufstart;
|
|
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
|
|
|
|
/* Initialize retlen, in case of early exit */
|
|
*retlen = 0;
|
|
|
|
/* Do not allow write past end of device */
|
|
if ((to + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* reject writes, which are not page aligned */
|
|
if (NOTALIGNED (to) || NOTALIGNED(len)) {
|
|
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_WRITING);
|
|
|
|
/* Calculate chipnr */
|
|
chipnr = (int)(to >> this->chip_shift);
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd))
|
|
goto out;
|
|
|
|
/* if oobsel is NULL, use chip defaults */
|
|
if (oobsel == NULL)
|
|
oobsel = &mtd->oobinfo;
|
|
|
|
/* Autoplace of oob data ? Use the default placement scheme */
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
|
|
oobsel = this->autooob;
|
|
autoplace = 1;
|
|
}
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
|
|
autoplace = 1;
|
|
|
|
/* Setup variables and oob buffer */
|
|
totalpages = len >> this->page_shift;
|
|
page = (int) (to >> this->page_shift);
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
|
|
this->pagebuf = -1;
|
|
|
|
/* Set it relative to chip */
|
|
page &= this->pagemask;
|
|
startpage = page;
|
|
/* Calc number of pages we can write in one go */
|
|
numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
|
|
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
|
|
bufstart = (u_char *)buf;
|
|
|
|
/* Loop until all data is written */
|
|
while (written < len) {
|
|
|
|
this->data_poi = (u_char*) &buf[written];
|
|
/* Write one page. If this is the last page to write
|
|
* or the last page in this block, then use the
|
|
* real pageprogram command, else select cached programming
|
|
* if supported by the chip.
|
|
*/
|
|
ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
|
|
if (ret) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
|
|
goto out;
|
|
}
|
|
/* Next oob page */
|
|
oob += mtd->oobsize;
|
|
/* Update written bytes count */
|
|
written += mtd->oobblock;
|
|
if (written == len)
|
|
goto cmp;
|
|
|
|
/* Increment page address */
|
|
page++;
|
|
|
|
/* Have we hit a block boundary ? Then we have to verify and
|
|
* if verify is ok, we have to setup the oob buffer for
|
|
* the next pages.
|
|
*/
|
|
if (!(page & (ppblock - 1))){
|
|
int ofs;
|
|
this->data_poi = bufstart;
|
|
ret = nand_verify_pages (mtd, this, startpage,
|
|
page - startpage,
|
|
oobbuf, oobsel, chipnr, (eccbuf != NULL));
|
|
if (ret) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
|
|
goto out;
|
|
}
|
|
*retlen = written;
|
|
|
|
ofs = autoplace ? mtd->oobavail : mtd->oobsize;
|
|
if (eccbuf)
|
|
eccbuf += (page - startpage) * ofs;
|
|
totalpages -= page - startpage;
|
|
numpages = min (totalpages, ppblock);
|
|
page &= this->pagemask;
|
|
startpage = page;
|
|
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
|
|
autoplace, numpages);
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
}
|
|
/* Verify the remaining pages */
|
|
cmp:
|
|
this->data_poi = bufstart;
|
|
ret = nand_verify_pages (mtd, this, startpage, totalpages,
|
|
oobbuf, oobsel, chipnr, (eccbuf != NULL));
|
|
if (!ret)
|
|
*retlen = written;
|
|
else
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
|
|
|
|
out:
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_write_oob - [MTD Interface] NAND write out-of-band
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
*
|
|
* NAND write out-of-band
|
|
*/
|
|
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
|
|
{
|
|
int column, page, status, ret = -EIO, chipnr;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
|
|
|
|
/* Shift to get page */
|
|
page = (int) (to >> this->page_shift);
|
|
chipnr = (int) (to >> this->chip_shift);
|
|
|
|
/* Mask to get column */
|
|
column = to & (mtd->oobsize - 1);
|
|
|
|
/* Initialize return length value */
|
|
*retlen = 0;
|
|
|
|
/* Do not allow write past end of page */
|
|
if ((column + len) > mtd->oobsize) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_WRITING);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Reset the chip. Some chips (like the Toshiba TC5832DC found
|
|
in one of my DiskOnChip 2000 test units) will clear the whole
|
|
data page too if we don't do this. I have no clue why, but
|
|
I seem to have 'fixed' it in the doc2000 driver in
|
|
August 1999. dwmw2. */
|
|
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd))
|
|
goto out;
|
|
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page == this->pagebuf)
|
|
this->pagebuf = -1;
|
|
|
|
if (NAND_MUST_PAD(this)) {
|
|
/* Write out desired data */
|
|
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
|
|
/* prepad 0xff for partial programming */
|
|
this->write_buf(mtd, ffchars, column);
|
|
/* write data */
|
|
this->write_buf(mtd, buf, len);
|
|
/* postpad 0xff for partial programming */
|
|
this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
|
|
} else {
|
|
/* Write out desired data */
|
|
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
|
|
/* write data */
|
|
this->write_buf(mtd, buf, len);
|
|
}
|
|
/* Send command to program the OOB data */
|
|
this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
status = this->waitfunc (mtd, this, FL_WRITING);
|
|
|
|
/* See if device thinks it succeeded */
|
|
if (status & NAND_STATUS_FAIL) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
/* Return happy */
|
|
*retlen = len;
|
|
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
/* Send command to read back the data */
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
|
|
|
|
if (this->verify_buf(mtd, buf, len)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
#endif
|
|
ret = 0;
|
|
out:
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
|
|
* @mtd: MTD device structure
|
|
* @vecs: the iovectors to write
|
|
* @count: number of vectors
|
|
* @to: offset to write to
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
*
|
|
* NAND write with kvec. This just calls the ecc function
|
|
*/
|
|
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
|
|
loff_t to, size_t * retlen)
|
|
{
|
|
return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
|
|
}
|
|
|
|
/**
|
|
* nand_writev_ecc - [MTD Interface] write with iovec with ecc
|
|
* @mtd: MTD device structure
|
|
* @vecs: the iovectors to write
|
|
* @count: number of vectors
|
|
* @to: offset to write to
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @eccbuf: filesystem supplied oob data buffer
|
|
* @oobsel: oob selection structure
|
|
*
|
|
* NAND write with iovec with ecc
|
|
*/
|
|
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
|
|
loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
|
|
{
|
|
int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
|
|
int oob, numpages, autoplace = 0, startpage;
|
|
struct nand_chip *this = mtd->priv;
|
|
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
|
|
u_char *oobbuf, *bufstart;
|
|
|
|
/* Preset written len for early exit */
|
|
*retlen = 0;
|
|
|
|
/* Calculate total length of data */
|
|
total_len = 0;
|
|
for (i = 0; i < count; i++)
|
|
total_len += (int) vecs[i].iov_len;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3,
|
|
"nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
|
|
|
|
/* Do not allow write past end of page */
|
|
if ((to + total_len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* reject writes, which are not page aligned */
|
|
if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
|
|
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_WRITING);
|
|
|
|
/* Get the current chip-nr */
|
|
chipnr = (int) (to >> this->chip_shift);
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd))
|
|
goto out;
|
|
|
|
/* if oobsel is NULL, use chip defaults */
|
|
if (oobsel == NULL)
|
|
oobsel = &mtd->oobinfo;
|
|
|
|
/* Autoplace of oob data ? Use the default placement scheme */
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
|
|
oobsel = this->autooob;
|
|
autoplace = 1;
|
|
}
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
|
|
autoplace = 1;
|
|
|
|
/* Setup start page */
|
|
page = (int) (to >> this->page_shift);
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
|
|
this->pagebuf = -1;
|
|
|
|
startpage = page & this->pagemask;
|
|
|
|
/* Loop until all kvec' data has been written */
|
|
len = 0;
|
|
while (count) {
|
|
/* If the given tuple is >= pagesize then
|
|
* write it out from the iov
|
|
*/
|
|
if ((vecs->iov_len - len) >= mtd->oobblock) {
|
|
/* Calc number of pages we can write
|
|
* out of this iov in one go */
|
|
numpages = (vecs->iov_len - len) >> this->page_shift;
|
|
/* Do not cross block boundaries */
|
|
numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
|
|
oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
|
|
bufstart = (u_char *)vecs->iov_base;
|
|
bufstart += len;
|
|
this->data_poi = bufstart;
|
|
oob = 0;
|
|
for (i = 1; i <= numpages; i++) {
|
|
/* Write one page. If this is the last page to write
|
|
* then use the real pageprogram command, else select
|
|
* cached programming if supported by the chip.
|
|
*/
|
|
ret = nand_write_page (mtd, this, page & this->pagemask,
|
|
&oobbuf[oob], oobsel, i != numpages);
|
|
if (ret)
|
|
goto out;
|
|
this->data_poi += mtd->oobblock;
|
|
len += mtd->oobblock;
|
|
oob += mtd->oobsize;
|
|
page++;
|
|
}
|
|
/* Check, if we have to switch to the next tuple */
|
|
if (len >= (int) vecs->iov_len) {
|
|
vecs++;
|
|
len = 0;
|
|
count--;
|
|
}
|
|
} else {
|
|
/* We must use the internal buffer, read data out of each
|
|
* tuple until we have a full page to write
|
|
*/
|
|
int cnt = 0;
|
|
while (cnt < mtd->oobblock) {
|
|
if (vecs->iov_base != NULL && vecs->iov_len)
|
|
this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
|
|
/* Check, if we have to switch to the next tuple */
|
|
if (len >= (int) vecs->iov_len) {
|
|
vecs++;
|
|
len = 0;
|
|
count--;
|
|
}
|
|
}
|
|
this->pagebuf = page;
|
|
this->data_poi = this->data_buf;
|
|
bufstart = this->data_poi;
|
|
numpages = 1;
|
|
oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
|
|
ret = nand_write_page (mtd, this, page & this->pagemask,
|
|
oobbuf, oobsel, 0);
|
|
if (ret)
|
|
goto out;
|
|
page++;
|
|
}
|
|
|
|
this->data_poi = bufstart;
|
|
ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
|
|
if (ret)
|
|
goto out;
|
|
|
|
written += mtd->oobblock * numpages;
|
|
/* All done ? */
|
|
if (!count)
|
|
break;
|
|
|
|
startpage = page & this->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!startpage) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
ret = 0;
|
|
out:
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
*retlen = written;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* single_erease_cmd - [GENERIC] NAND standard block erase command function
|
|
* @mtd: MTD device structure
|
|
* @page: the page address of the block which will be erased
|
|
*
|
|
* Standard erase command for NAND chips
|
|
*/
|
|
static void single_erase_cmd (struct mtd_info *mtd, int page)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
/* Send commands to erase a block */
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
|
|
}
|
|
|
|
/**
|
|
* multi_erease_cmd - [GENERIC] AND specific block erase command function
|
|
* @mtd: MTD device structure
|
|
* @page: the page address of the block which will be erased
|
|
*
|
|
* AND multi block erase command function
|
|
* Erase 4 consecutive blocks
|
|
*/
|
|
static void multi_erase_cmd (struct mtd_info *mtd, int page)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
/* Send commands to erase a block */
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
|
|
}
|
|
|
|
/**
|
|
* nand_erase - [MTD Interface] erase block(s)
|
|
* @mtd: MTD device structure
|
|
* @instr: erase instruction
|
|
*
|
|
* Erase one ore more blocks
|
|
*/
|
|
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
return nand_erase_nand (mtd, instr, 0);
|
|
}
|
|
|
|
#define BBT_PAGE_MASK 0xffffff3f
|
|
/**
|
|
* nand_erase_intern - [NAND Interface] erase block(s)
|
|
* @mtd: MTD device structure
|
|
* @instr: erase instruction
|
|
* @allowbbt: allow erasing the bbt area
|
|
*
|
|
* Erase one ore more blocks
|
|
*/
|
|
int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
|
|
{
|
|
int page, len, status, pages_per_block, ret, chipnr;
|
|
struct nand_chip *this = mtd->priv;
|
|
int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
|
|
unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
|
|
/* It is used to see if the current page is in the same */
|
|
/* 256 block group and the same bank as the bbt. */
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3,
|
|
"nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
|
|
|
|
/* Start address must align on block boundary */
|
|
if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Length must align on block boundary */
|
|
if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Do not allow erase past end of device */
|
|
if ((instr->len + instr->addr) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
instr->fail_addr = 0xffffffff;
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_ERASING);
|
|
|
|
/* Shift to get first page */
|
|
page = (int) (instr->addr >> this->page_shift);
|
|
chipnr = (int) (instr->addr >> this->chip_shift);
|
|
|
|
/* Calculate pages in each block */
|
|
pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Check the WP bit */
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
|
|
instr->state = MTD_ERASE_FAILED;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
|
|
if (this->options & BBT_AUTO_REFRESH) {
|
|
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
|
|
} else {
|
|
bbt_masked_page = 0xffffffff; /* should not match anything */
|
|
}
|
|
|
|
/* Loop through the pages */
|
|
len = instr->len;
|
|
|
|
instr->state = MTD_ERASING;
|
|
|
|
while (len) {
|
|
/* Check if we have a bad block, we do not erase bad blocks ! */
|
|
if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
|
|
printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* Invalidate the page cache, if we erase the block which contains
|
|
the current cached page */
|
|
if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
|
|
this->pagebuf = -1;
|
|
|
|
this->erase_cmd (mtd, page & this->pagemask);
|
|
|
|
status = this->waitfunc (mtd, this, FL_ERASING);
|
|
|
|
/* See if operation failed and additional status checks are available */
|
|
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
|
|
status = this->errstat(mtd, this, FL_ERASING, status, page);
|
|
}
|
|
|
|
/* See if block erase succeeded */
|
|
if (status & NAND_STATUS_FAIL) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
instr->fail_addr = (page << this->page_shift);
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
|
|
if (this->options & BBT_AUTO_REFRESH) {
|
|
if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
|
|
(page != this->bbt_td->pages[chipnr])) {
|
|
rewrite_bbt[chipnr] = (page << this->page_shift);
|
|
}
|
|
}
|
|
|
|
/* Increment page address and decrement length */
|
|
len -= (1 << this->phys_erase_shift);
|
|
page += pages_per_block;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
if (len && !(page & this->pagemask)) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* if BBT requires refresh and BBT-PERCHIP,
|
|
* set the BBT page mask to see if this BBT should be rewritten */
|
|
if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
|
|
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
|
|
}
|
|
|
|
}
|
|
}
|
|
instr->state = MTD_ERASE_DONE;
|
|
|
|
erase_exit:
|
|
|
|
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
|
|
/* Do call back function */
|
|
if (!ret)
|
|
mtd_erase_callback(instr);
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
/* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
|
|
if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
|
|
for (chipnr = 0; chipnr < this->numchips; chipnr++) {
|
|
if (rewrite_bbt[chipnr]) {
|
|
/* update the BBT for chip */
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
|
|
chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
|
|
nand_update_bbt (mtd, rewrite_bbt[chipnr]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return more or less happy */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_sync - [MTD Interface] sync
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Sync is actually a wait for chip ready function
|
|
*/
|
|
static void nand_sync (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_SYNCING);
|
|
/* Release it and go back */
|
|
nand_release_device (mtd);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
/* Check for invalid offset */
|
|
if (ofs > mtd->size)
|
|
return -EINVAL;
|
|
|
|
return nand_block_checkbad (mtd, ofs, 1, 0);
|
|
}
|
|
|
|
/**
|
|
* nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
int ret;
|
|
|
|
if ((ret = nand_block_isbad(mtd, ofs))) {
|
|
/* If it was bad already, return success and do nothing. */
|
|
if (ret > 0)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
return this->block_markbad(mtd, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_scan - [NAND Interface] Scan for the NAND device
|
|
* @mtd: MTD device structure
|
|
* @maxchips: Number of chips to scan for
|
|
*
|
|
* This fills out all the not initialized function pointers
|
|
* with the defaults.
|
|
* The flash ID is read and the mtd/chip structures are
|
|
* filled with the appropriate values. Buffers are allocated if
|
|
* they are not provided by the board driver
|
|
*
|
|
*/
|
|
int nand_scan (struct mtd_info *mtd, int maxchips)
|
|
{
|
|
int i, nand_maf_id, nand_dev_id, busw, maf_id;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
/* Get buswidth to select the correct functions*/
|
|
busw = this->options & NAND_BUSWIDTH_16;
|
|
|
|
/* check for proper chip_delay setup, set 20us if not */
|
|
if (!this->chip_delay)
|
|
this->chip_delay = 20;
|
|
|
|
/* check, if a user supplied command function given */
|
|
if (this->cmdfunc == NULL)
|
|
this->cmdfunc = nand_command;
|
|
|
|
/* check, if a user supplied wait function given */
|
|
if (this->waitfunc == NULL)
|
|
this->waitfunc = nand_wait;
|
|
|
|
if (!this->select_chip)
|
|
this->select_chip = nand_select_chip;
|
|
if (!this->write_byte)
|
|
this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
|
|
if (!this->read_byte)
|
|
this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
|
|
if (!this->write_word)
|
|
this->write_word = nand_write_word;
|
|
if (!this->read_word)
|
|
this->read_word = nand_read_word;
|
|
if (!this->block_bad)
|
|
this->block_bad = nand_block_bad;
|
|
if (!this->block_markbad)
|
|
this->block_markbad = nand_default_block_markbad;
|
|
if (!this->write_buf)
|
|
this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
|
|
if (!this->read_buf)
|
|
this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
|
|
if (!this->verify_buf)
|
|
this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
|
|
if (!this->scan_bbt)
|
|
this->scan_bbt = nand_default_bbt;
|
|
|
|
/* Select the device */
|
|
this->select_chip(mtd, 0);
|
|
|
|
/* Send the command for reading device ID */
|
|
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
|
|
|
|
/* Read manufacturer and device IDs */
|
|
nand_maf_id = this->read_byte(mtd);
|
|
nand_dev_id = this->read_byte(mtd);
|
|
|
|
/* Print and store flash device information */
|
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
|
|
|
if (nand_dev_id != nand_flash_ids[i].id)
|
|
continue;
|
|
|
|
if (!mtd->name) mtd->name = nand_flash_ids[i].name;
|
|
this->chipsize = nand_flash_ids[i].chipsize << 20;
|
|
|
|
/* New devices have all the information in additional id bytes */
|
|
if (!nand_flash_ids[i].pagesize) {
|
|
int extid;
|
|
/* The 3rd id byte contains non relevant data ATM */
|
|
extid = this->read_byte(mtd);
|
|
/* The 4th id byte is the important one */
|
|
extid = this->read_byte(mtd);
|
|
/* Calc pagesize */
|
|
mtd->oobblock = 1024 << (extid & 0x3);
|
|
extid >>= 2;
|
|
/* Calc oobsize */
|
|
mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
|
|
extid >>= 2;
|
|
/* Calc blocksize. Blocksize is multiples of 64KiB */
|
|
mtd->erasesize = (64 * 1024) << (extid & 0x03);
|
|
extid >>= 2;
|
|
/* Get buswidth information */
|
|
busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
|
|
|
|
} else {
|
|
/* Old devices have this data hardcoded in the
|
|
* device id table */
|
|
mtd->erasesize = nand_flash_ids[i].erasesize;
|
|
mtd->oobblock = nand_flash_ids[i].pagesize;
|
|
mtd->oobsize = mtd->oobblock / 32;
|
|
busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
|
|
}
|
|
|
|
/* Try to identify manufacturer */
|
|
for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
|
|
if (nand_manuf_ids[maf_id].id == nand_maf_id)
|
|
break;
|
|
}
|
|
|
|
/* Check, if buswidth is correct. Hardware drivers should set
|
|
* this correct ! */
|
|
if (busw != (this->options & NAND_BUSWIDTH_16)) {
|
|
printk (KERN_INFO "NAND device: Manufacturer ID:"
|
|
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
|
|
nand_manuf_ids[maf_id].name , mtd->name);
|
|
printk (KERN_WARNING
|
|
"NAND bus width %d instead %d bit\n",
|
|
(this->options & NAND_BUSWIDTH_16) ? 16 : 8,
|
|
busw ? 16 : 8);
|
|
this->select_chip(mtd, -1);
|
|
return 1;
|
|
}
|
|
|
|
/* Calculate the address shift from the page size */
|
|
this->page_shift = ffs(mtd->oobblock) - 1;
|
|
this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
|
|
this->chip_shift = ffs(this->chipsize) - 1;
|
|
|
|
/* Set the bad block position */
|
|
this->badblockpos = mtd->oobblock > 512 ?
|
|
NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
|
|
|
|
/* Get chip options, preserve non chip based options */
|
|
this->options &= ~NAND_CHIPOPTIONS_MSK;
|
|
this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
|
|
/* Set this as a default. Board drivers can override it, if neccecary */
|
|
this->options |= NAND_NO_AUTOINCR;
|
|
/* Check if this is a not a samsung device. Do not clear the options
|
|
* for chips which are not having an extended id.
|
|
*/
|
|
if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
|
|
this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
|
|
|
|
/* Check for AND chips with 4 page planes */
|
|
if (this->options & NAND_4PAGE_ARRAY)
|
|
this->erase_cmd = multi_erase_cmd;
|
|
else
|
|
this->erase_cmd = single_erase_cmd;
|
|
|
|
/* Do not replace user supplied command function ! */
|
|
if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
|
|
this->cmdfunc = nand_command_lp;
|
|
|
|
printk (KERN_INFO "NAND device: Manufacturer ID:"
|
|
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
|
|
nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
|
|
break;
|
|
}
|
|
|
|
if (!nand_flash_ids[i].name) {
|
|
printk (KERN_WARNING "No NAND device found!!!\n");
|
|
this->select_chip(mtd, -1);
|
|
return 1;
|
|
}
|
|
|
|
for (i=1; i < maxchips; i++) {
|
|
this->select_chip(mtd, i);
|
|
|
|
/* Send the command for reading device ID */
|
|
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
|
|
|
|
/* Read manufacturer and device IDs */
|
|
if (nand_maf_id != this->read_byte(mtd) ||
|
|
nand_dev_id != this->read_byte(mtd))
|
|
break;
|
|
}
|
|
if (i > 1)
|
|
printk(KERN_INFO "%d NAND chips detected\n", i);
|
|
|
|
/* Allocate buffers, if neccecary */
|
|
if (!this->oob_buf) {
|
|
size_t len;
|
|
len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
|
|
this->oob_buf = kmalloc (len, GFP_KERNEL);
|
|
if (!this->oob_buf) {
|
|
printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
|
|
return -ENOMEM;
|
|
}
|
|
this->options |= NAND_OOBBUF_ALLOC;
|
|
}
|
|
|
|
if (!this->data_buf) {
|
|
size_t len;
|
|
len = mtd->oobblock + mtd->oobsize;
|
|
this->data_buf = kmalloc (len, GFP_KERNEL);
|
|
if (!this->data_buf) {
|
|
if (this->options & NAND_OOBBUF_ALLOC)
|
|
kfree (this->oob_buf);
|
|
printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
|
|
return -ENOMEM;
|
|
}
|
|
this->options |= NAND_DATABUF_ALLOC;
|
|
}
|
|
|
|
/* Store the number of chips and calc total size for mtd */
|
|
this->numchips = i;
|
|
mtd->size = i * this->chipsize;
|
|
/* Convert chipsize to number of pages per chip -1. */
|
|
this->pagemask = (this->chipsize >> this->page_shift) - 1;
|
|
/* Preset the internal oob buffer */
|
|
memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
|
|
|
|
/* If no default placement scheme is given, select an
|
|
* appropriate one */
|
|
if (!this->autooob) {
|
|
/* Select the appropriate default oob placement scheme for
|
|
* placement agnostic filesystems */
|
|
switch (mtd->oobsize) {
|
|
case 8:
|
|
this->autooob = &nand_oob_8;
|
|
break;
|
|
case 16:
|
|
this->autooob = &nand_oob_16;
|
|
break;
|
|
case 64:
|
|
this->autooob = &nand_oob_64;
|
|
break;
|
|
default:
|
|
printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* The number of bytes available for the filesystem to place fs dependend
|
|
* oob data */
|
|
mtd->oobavail = 0;
|
|
for (i = 0; this->autooob->oobfree[i][1]; i++)
|
|
mtd->oobavail += this->autooob->oobfree[i][1];
|
|
|
|
/*
|
|
* check ECC mode, default to software
|
|
* if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
|
|
* fallback to software ECC
|
|
*/
|
|
this->eccsize = 256; /* set default eccsize */
|
|
this->eccbytes = 3;
|
|
|
|
switch (this->eccmode) {
|
|
case NAND_ECC_HW12_2048:
|
|
if (mtd->oobblock < 2048) {
|
|
printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
|
|
mtd->oobblock);
|
|
this->eccmode = NAND_ECC_SOFT;
|
|
this->calculate_ecc = nand_calculate_ecc;
|
|
this->correct_data = nand_correct_data;
|
|
} else
|
|
this->eccsize = 2048;
|
|
break;
|
|
|
|
case NAND_ECC_HW3_512:
|
|
case NAND_ECC_HW6_512:
|
|
case NAND_ECC_HW8_512:
|
|
if (mtd->oobblock == 256) {
|
|
printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
|
|
this->eccmode = NAND_ECC_SOFT;
|
|
this->calculate_ecc = nand_calculate_ecc;
|
|
this->correct_data = nand_correct_data;
|
|
} else
|
|
this->eccsize = 512; /* set eccsize to 512 */
|
|
break;
|
|
|
|
case NAND_ECC_HW3_256:
|
|
break;
|
|
|
|
case NAND_ECC_NONE:
|
|
printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
|
|
this->eccmode = NAND_ECC_NONE;
|
|
break;
|
|
|
|
case NAND_ECC_SOFT:
|
|
this->calculate_ecc = nand_calculate_ecc;
|
|
this->correct_data = nand_correct_data;
|
|
break;
|
|
|
|
default:
|
|
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
|
|
BUG();
|
|
}
|
|
|
|
/* Check hardware ecc function availability and adjust number of ecc bytes per
|
|
* calculation step
|
|
*/
|
|
switch (this->eccmode) {
|
|
case NAND_ECC_HW12_2048:
|
|
this->eccbytes += 4;
|
|
case NAND_ECC_HW8_512:
|
|
this->eccbytes += 2;
|
|
case NAND_ECC_HW6_512:
|
|
this->eccbytes += 3;
|
|
case NAND_ECC_HW3_512:
|
|
case NAND_ECC_HW3_256:
|
|
if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
|
|
break;
|
|
printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
|
|
BUG();
|
|
}
|
|
|
|
mtd->eccsize = this->eccsize;
|
|
|
|
/* Set the number of read / write steps for one page to ensure ECC generation */
|
|
switch (this->eccmode) {
|
|
case NAND_ECC_HW12_2048:
|
|
this->eccsteps = mtd->oobblock / 2048;
|
|
break;
|
|
case NAND_ECC_HW3_512:
|
|
case NAND_ECC_HW6_512:
|
|
case NAND_ECC_HW8_512:
|
|
this->eccsteps = mtd->oobblock / 512;
|
|
break;
|
|
case NAND_ECC_HW3_256:
|
|
case NAND_ECC_SOFT:
|
|
this->eccsteps = mtd->oobblock / 256;
|
|
break;
|
|
|
|
case NAND_ECC_NONE:
|
|
this->eccsteps = 1;
|
|
break;
|
|
}
|
|
|
|
/* Initialize state, waitqueue and spinlock */
|
|
this->state = FL_READY;
|
|
init_waitqueue_head (&this->wq);
|
|
spin_lock_init (&this->chip_lock);
|
|
|
|
/* De-select the device */
|
|
this->select_chip(mtd, -1);
|
|
|
|
/* Invalidate the pagebuffer reference */
|
|
this->pagebuf = -1;
|
|
|
|
/* Fill in remaining MTD driver data */
|
|
mtd->type = MTD_NANDFLASH;
|
|
mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
|
|
mtd->ecctype = MTD_ECC_SW;
|
|
mtd->erase = nand_erase;
|
|
mtd->point = NULL;
|
|
mtd->unpoint = NULL;
|
|
mtd->read = nand_read;
|
|
mtd->write = nand_write;
|
|
mtd->read_ecc = nand_read_ecc;
|
|
mtd->write_ecc = nand_write_ecc;
|
|
mtd->read_oob = nand_read_oob;
|
|
mtd->write_oob = nand_write_oob;
|
|
mtd->readv = NULL;
|
|
mtd->writev = nand_writev;
|
|
mtd->writev_ecc = nand_writev_ecc;
|
|
mtd->sync = nand_sync;
|
|
mtd->lock = NULL;
|
|
mtd->unlock = NULL;
|
|
mtd->suspend = NULL;
|
|
mtd->resume = NULL;
|
|
mtd->block_isbad = nand_block_isbad;
|
|
mtd->block_markbad = nand_block_markbad;
|
|
|
|
/* and make the autooob the default one */
|
|
memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
|
|
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
/* Check, if we should skip the bad block table scan */
|
|
if (this->options & NAND_SKIP_BBTSCAN)
|
|
return 0;
|
|
|
|
/* Build bad block table */
|
|
return this->scan_bbt (mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_release - [NAND Interface] Free resources held by the NAND device
|
|
* @mtd: MTD device structure
|
|
*/
|
|
void nand_release (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
/* Deregister partitions */
|
|
del_mtd_partitions (mtd);
|
|
#endif
|
|
/* Deregister the device */
|
|
del_mtd_device (mtd);
|
|
|
|
/* Free bad block table memory, if allocated */
|
|
if (this->bbt)
|
|
kfree (this->bbt);
|
|
/* Buffer allocated by nand_scan ? */
|
|
if (this->options & NAND_OOBBUF_ALLOC)
|
|
kfree (this->oob_buf);
|
|
/* Buffer allocated by nand_scan ? */
|
|
if (this->options & NAND_DATABUF_ALLOC)
|
|
kfree (this->data_buf);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL (nand_scan);
|
|
EXPORT_SYMBOL_GPL (nand_release);
|
|
|
|
MODULE_LICENSE ("GPL");
|
|
MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
|
|
MODULE_DESCRIPTION ("Generic NAND flash driver code");
|
|
|