You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/block/loop.c

1348 lines
32 KiB

/*
* linux/drivers/block/loop.c
*
* Written by Theodore Ts'o, 3/29/93
*
* Copyright 1993 by Theodore Ts'o. Redistribution of this file is
* permitted under the GNU General Public License.
*
* DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
* more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
*
* Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
* Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
*
* Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
*
* Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
*
* Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
*
* Loadable modules and other fixes by AK, 1998
*
* Make real block number available to downstream transfer functions, enables
* CBC (and relatives) mode encryption requiring unique IVs per data block.
* Reed H. Petty, rhp@draper.net
*
* Maximum number of loop devices now dynamic via max_loop module parameter.
* Russell Kroll <rkroll@exploits.org> 19990701
*
* Maximum number of loop devices when compiled-in now selectable by passing
* max_loop=<1-255> to the kernel on boot.
* Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
*
* Completely rewrite request handling to be make_request_fn style and
* non blocking, pushing work to a helper thread. Lots of fixes from
* Al Viro too.
* Jens Axboe <axboe@suse.de>, Nov 2000
*
* Support up to 256 loop devices
* Heinz Mauelshagen <mge@sistina.com>, Feb 2002
*
* Support for falling back on the write file operation when the address space
* operations prepare_write and/or commit_write are not available on the
* backing filesystem.
* Anton Altaparmakov, 16 Feb 2005
*
* Still To Fix:
* - Advisory locking is ignored here.
* - Should use an own CAP_* category instead of CAP_SYS_ADMIN
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/stat.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/init.h>
#include <linux/devfs_fs_kernel.h>
#include <linux/smp_lock.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/loop.h>
#include <linux/suspend.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h> /* for invalidate_bdev() */
#include <linux/completion.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <asm/uaccess.h>
static int max_loop = 8;
static struct loop_device *loop_dev;
static struct gendisk **disks;
/*
* Transfer functions
*/
static int transfer_none(struct loop_device *lo, int cmd,
struct page *raw_page, unsigned raw_off,
struct page *loop_page, unsigned loop_off,
int size, sector_t real_block)
{
char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
if (cmd == READ)
memcpy(loop_buf, raw_buf, size);
else
memcpy(raw_buf, loop_buf, size);
kunmap_atomic(raw_buf, KM_USER0);
kunmap_atomic(loop_buf, KM_USER1);
cond_resched();
return 0;
}
static int transfer_xor(struct loop_device *lo, int cmd,
struct page *raw_page, unsigned raw_off,
struct page *loop_page, unsigned loop_off,
int size, sector_t real_block)
{
char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
char *in, *out, *key;
int i, keysize;
if (cmd == READ) {
in = raw_buf;
out = loop_buf;
} else {
in = loop_buf;
out = raw_buf;
}
key = lo->lo_encrypt_key;
keysize = lo->lo_encrypt_key_size;
for (i = 0; i < size; i++)
*out++ = *in++ ^ key[(i & 511) % keysize];
kunmap_atomic(raw_buf, KM_USER0);
kunmap_atomic(loop_buf, KM_USER1);
cond_resched();
return 0;
}
static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
{
if (unlikely(info->lo_encrypt_key_size <= 0))
return -EINVAL;
return 0;
}
static struct loop_func_table none_funcs = {
.number = LO_CRYPT_NONE,
.transfer = transfer_none,
};
static struct loop_func_table xor_funcs = {
.number = LO_CRYPT_XOR,
.transfer = transfer_xor,
.init = xor_init
};
/* xfer_funcs[0] is special - its release function is never called */
static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
&none_funcs,
&xor_funcs
};
static loff_t get_loop_size(struct loop_device *lo, struct file *file)
{
loff_t size, offset, loopsize;
/* Compute loopsize in bytes */
size = i_size_read(file->f_mapping->host);
offset = lo->lo_offset;
loopsize = size - offset;
if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
loopsize = lo->lo_sizelimit;
/*
* Unfortunately, if we want to do I/O on the device,
* the number of 512-byte sectors has to fit into a sector_t.
*/
return loopsize >> 9;
}
static int
figure_loop_size(struct loop_device *lo)
{
loff_t size = get_loop_size(lo, lo->lo_backing_file);
sector_t x = (sector_t)size;
if (unlikely((loff_t)x != size))
return -EFBIG;
set_capacity(disks[lo->lo_number], x);
return 0;
}
static inline int
lo_do_transfer(struct loop_device *lo, int cmd,
struct page *rpage, unsigned roffs,
struct page *lpage, unsigned loffs,
int size, sector_t rblock)
{
if (unlikely(!lo->transfer))
return 0;
return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
}
/**
* do_lo_send_aops - helper for writing data to a loop device
*
* This is the fast version for backing filesystems which implement the address
* space operations prepare_write and commit_write.
*/
static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
int bsize, loff_t pos, struct page *page)
{
struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
struct address_space *mapping = file->f_mapping;
struct address_space_operations *aops = mapping->a_ops;
pgoff_t index;
unsigned offset, bv_offs;
int len, ret = 0;
down(&mapping->host->i_sem);
index = pos >> PAGE_CACHE_SHIFT;
offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
bv_offs = bvec->bv_offset;
len = bvec->bv_len;
while (len > 0) {
sector_t IV;
unsigned size;
int transfer_result;
IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
size = PAGE_CACHE_SIZE - offset;
if (size > len)
size = len;
page = grab_cache_page(mapping, index);
if (unlikely(!page))
goto fail;
if (unlikely(aops->prepare_write(file, page, offset,
offset + size)))
goto unlock;
transfer_result = lo_do_transfer(lo, WRITE, page, offset,
bvec->bv_page, bv_offs, size, IV);
if (unlikely(transfer_result)) {
char *kaddr;
/*
* The transfer failed, but we still write the data to
* keep prepare/commit calls balanced.
*/
printk(KERN_ERR "loop: transfer error block %llu\n",
(unsigned long long)index);
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + offset, 0, size);
kunmap_atomic(kaddr, KM_USER0);
}
flush_dcache_page(page);
if (unlikely(aops->commit_write(file, page, offset,
offset + size)))
goto unlock;
if (unlikely(transfer_result))
goto unlock;
bv_offs += size;
len -= size;
offset = 0;
index++;
pos += size;
unlock_page(page);
page_cache_release(page);
}
out:
up(&mapping->host->i_sem);
return ret;
unlock:
unlock_page(page);
page_cache_release(page);
fail:
ret = -1;
goto out;
}
/**
* __do_lo_send_write - helper for writing data to a loop device
*
* This helper just factors out common code between do_lo_send_direct_write()
* and do_lo_send_write().
*/
static inline int __do_lo_send_write(struct file *file,
u8 __user *buf, const int len, loff_t pos)
{
ssize_t bw;
mm_segment_t old_fs = get_fs();
set_fs(get_ds());
bw = file->f_op->write(file, buf, len, &pos);
set_fs(old_fs);
if (likely(bw == len))
return 0;
printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
(unsigned long long)pos, len);
if (bw >= 0)
bw = -EIO;
return bw;
}
/**
* do_lo_send_direct_write - helper for writing data to a loop device
*
* This is the fast, non-transforming version for backing filesystems which do
* not implement the address space operations prepare_write and commit_write.
* It uses the write file operation which should be present on all writeable
* filesystems.
*/
static int do_lo_send_direct_write(struct loop_device *lo,
struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
{
ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
(u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
bvec->bv_len, pos);
kunmap(bvec->bv_page);
cond_resched();
return bw;
}
/**
* do_lo_send_write - helper for writing data to a loop device
*
* This is the slow, transforming version for filesystems which do not
* implement the address space operations prepare_write and commit_write. It
* uses the write file operation which should be present on all writeable
* filesystems.
*
* Using fops->write is slower than using aops->{prepare,commit}_write in the
* transforming case because we need to double buffer the data as we cannot do
* the transformations in place as we do not have direct access to the
* destination pages of the backing file.
*/
static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
int bsize, loff_t pos, struct page *page)
{
int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
bvec->bv_offset, bvec->bv_len, pos >> 9);
if (likely(!ret))
return __do_lo_send_write(lo->lo_backing_file,
(u8 __user *)page_address(page), bvec->bv_len,
pos);
printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
"length %i.\n", (unsigned long long)pos, bvec->bv_len);
if (ret > 0)
ret = -EIO;
return ret;
}
static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
loff_t pos)
{
int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
struct page *page);
struct bio_vec *bvec;
struct page *page = NULL;
int i, ret = 0;
do_lo_send = do_lo_send_aops;
if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
do_lo_send = do_lo_send_direct_write;
if (lo->transfer != transfer_none) {
page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
if (unlikely(!page))
goto fail;
kmap(page);
do_lo_send = do_lo_send_write;
}
}
bio_for_each_segment(bvec, bio, i) {
ret = do_lo_send(lo, bvec, bsize, pos, page);
if (ret < 0)
break;
pos += bvec->bv_len;
}
if (page) {
kunmap(page);
__free_page(page);
}
out:
return ret;
fail:
printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
ret = -ENOMEM;
goto out;
}
struct lo_read_data {
struct loop_device *lo;
struct page *page;
unsigned offset;
int bsize;
};
static int
lo_read_actor(read_descriptor_t *desc, struct page *page,
unsigned long offset, unsigned long size)
{
unsigned long count = desc->count;
struct lo_read_data *p = desc->arg.data;
struct loop_device *lo = p->lo;
sector_t IV;
IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
if (size > count)
size = count;
if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
size = 0;
printk(KERN_ERR "loop: transfer error block %ld\n",
page->index);
desc->error = -EINVAL;
}
flush_dcache_page(p->page);
desc->count = count - size;
desc->written += size;
p->offset += size;
return size;
}
static int
do_lo_receive(struct loop_device *lo,
struct bio_vec *bvec, int bsize, loff_t pos)
{
struct lo_read_data cookie;
struct file *file;
int retval;
cookie.lo = lo;
cookie.page = bvec->bv_page;
cookie.offset = bvec->bv_offset;
cookie.bsize = bsize;
file = lo->lo_backing_file;
retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
lo_read_actor, &cookie);
return (retval < 0)? retval: 0;
}
static int
lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
{
struct bio_vec *bvec;
int i, ret = 0;
bio_for_each_segment(bvec, bio, i) {
ret = do_lo_receive(lo, bvec, bsize, pos);
if (ret < 0)
break;
pos += bvec->bv_len;
}
return ret;
}
static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
{
loff_t pos;
int ret;
pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
if (bio_rw(bio) == WRITE)
ret = lo_send(lo, bio, lo->lo_blocksize, pos);
else
ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
return ret;
}
/*
* Add bio to back of pending list
*/
static void loop_add_bio(struct loop_device *lo, struct bio *bio)
{
unsigned long flags;
spin_lock_irqsave(&lo->lo_lock, flags);
if (lo->lo_biotail) {
lo->lo_biotail->bi_next = bio;
lo->lo_biotail = bio;
} else
lo->lo_bio = lo->lo_biotail = bio;
spin_unlock_irqrestore(&lo->lo_lock, flags);
up(&lo->lo_bh_mutex);
}
/*
* Grab first pending buffer
*/
static struct bio *loop_get_bio(struct loop_device *lo)
{
struct bio *bio;
spin_lock_irq(&lo->lo_lock);
if ((bio = lo->lo_bio)) {
if (bio == lo->lo_biotail)
lo->lo_biotail = NULL;
lo->lo_bio = bio->bi_next;
bio->bi_next = NULL;
}
spin_unlock_irq(&lo->lo_lock);
return bio;
}
static int loop_make_request(request_queue_t *q, struct bio *old_bio)
{
struct loop_device *lo = q->queuedata;
int rw = bio_rw(old_bio);
if (!lo)
goto out;
spin_lock_irq(&lo->lo_lock);
if (lo->lo_state != Lo_bound)
goto inactive;
atomic_inc(&lo->lo_pending);
spin_unlock_irq(&lo->lo_lock);
if (rw == WRITE) {
if (lo->lo_flags & LO_FLAGS_READ_ONLY)
goto err;
} else if (rw == READA) {
rw = READ;
} else if (rw != READ) {
printk(KERN_ERR "loop: unknown command (%x)\n", rw);
goto err;
}
loop_add_bio(lo, old_bio);
return 0;
err:
if (atomic_dec_and_test(&lo->lo_pending))
up(&lo->lo_bh_mutex);
out:
bio_io_error(old_bio, old_bio->bi_size);
return 0;
inactive:
spin_unlock_irq(&lo->lo_lock);
goto out;
}
/*
* kick off io on the underlying address space
*/
static void loop_unplug(request_queue_t *q)
{
struct loop_device *lo = q->queuedata;
clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
blk_run_address_space(lo->lo_backing_file->f_mapping);
}
struct switch_request {
struct file *file;
struct completion wait;
};
static void do_loop_switch(struct loop_device *, struct switch_request *);
static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
{
int ret;
if (unlikely(!bio->bi_bdev)) {
do_loop_switch(lo, bio->bi_private);
bio_put(bio);
} else {
ret = do_bio_filebacked(lo, bio);
bio_endio(bio, bio->bi_size, ret);
}
}
/*
* worker thread that handles reads/writes to file backed loop devices,
* to avoid blocking in our make_request_fn. it also does loop decrypting
* on reads for block backed loop, as that is too heavy to do from
* b_end_io context where irqs may be disabled.
*/
static int loop_thread(void *data)
{
struct loop_device *lo = data;
struct bio *bio;
daemonize("loop%d", lo->lo_number);
/*
* loop can be used in an encrypted device,
* hence, it mustn't be stopped at all
* because it could be indirectly used during suspension
*/
current->flags |= PF_NOFREEZE;
set_user_nice(current, -20);
lo->lo_state = Lo_bound;
atomic_inc(&lo->lo_pending);
/*
* up sem, we are running
*/
up(&lo->lo_sem);
for (;;) {
down_interruptible(&lo->lo_bh_mutex);
/*
* could be upped because of tear-down, not because of
* pending work
*/
if (!atomic_read(&lo->lo_pending))
break;
bio = loop_get_bio(lo);
if (!bio) {
printk("loop: missing bio\n");
continue;
}
loop_handle_bio(lo, bio);
/*
* upped both for pending work and tear-down, lo_pending
* will hit zero then
*/
if (atomic_dec_and_test(&lo->lo_pending))
break;
}
up(&lo->lo_sem);
return 0;
}
/*
* loop_switch performs the hard work of switching a backing store.
* First it needs to flush existing IO, it does this by sending a magic
* BIO down the pipe. The completion of this BIO does the actual switch.
*/
static int loop_switch(struct loop_device *lo, struct file *file)
{
struct switch_request w;
struct bio *bio = bio_alloc(GFP_KERNEL, 1);
if (!bio)
return -ENOMEM;
init_completion(&w.wait);
w.file = file;
bio->bi_private = &w;
bio->bi_bdev = NULL;
loop_make_request(lo->lo_queue, bio);
wait_for_completion(&w.wait);
return 0;
}
/*
* Do the actual switch; called from the BIO completion routine
*/
static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
{
struct file *file = p->file;
struct file *old_file = lo->lo_backing_file;
struct address_space *mapping = file->f_mapping;
mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
lo->lo_backing_file = file;
lo->lo_blocksize = mapping->host->i_blksize;
lo->old_gfp_mask = mapping_gfp_mask(mapping);
mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
complete(&p->wait);
}
/*
* loop_change_fd switched the backing store of a loopback device to
* a new file. This is useful for operating system installers to free up
* the original file and in High Availability environments to switch to
* an alternative location for the content in case of server meltdown.
* This can only work if the loop device is used read-only, and if the
* new backing store is the same size and type as the old backing store.
*/
static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
struct block_device *bdev, unsigned int arg)
{
struct file *file, *old_file;
struct inode *inode;
int error;
error = -ENXIO;
if (lo->lo_state != Lo_bound)
goto out;
/* the loop device has to be read-only */
error = -EINVAL;
if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
goto out;
error = -EBADF;
file = fget(arg);
if (!file)
goto out;
inode = file->f_mapping->host;
old_file = lo->lo_backing_file;
error = -EINVAL;
if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
goto out_putf;
/* new backing store needs to support loop (eg sendfile) */
if (!inode->i_fop->sendfile)
goto out_putf;
/* size of the new backing store needs to be the same */
if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
goto out_putf;
/* and ... switch */
error = loop_switch(lo, file);
if (error)
goto out_putf;
fput(old_file);
return 0;
out_putf:
fput(file);
out:
return error;
}
static inline int is_loop_device(struct file *file)
{
struct inode *i = file->f_mapping->host;
return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
}
static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
struct block_device *bdev, unsigned int arg)
{
struct file *file, *f;
struct inode *inode;
struct address_space *mapping;
unsigned lo_blocksize;
int lo_flags = 0;
int error;
loff_t size;
/* This is safe, since we have a reference from open(). */
__module_get(THIS_MODULE);
error = -EBADF;
file = fget(arg);
if (!file)
goto out;
error = -EBUSY;
if (lo->lo_state != Lo_unbound)
goto out_putf;
/* Avoid recursion */
f = file;
while (is_loop_device(f)) {
struct loop_device *l;
if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
goto out_putf;
l = f->f_mapping->host->i_bdev->bd_disk->private_data;
if (l->lo_state == Lo_unbound) {
error = -EINVAL;
goto out_putf;
}
f = l->lo_backing_file;
}
mapping = file->f_mapping;
inode = mapping->host;
if (!(file->f_mode & FMODE_WRITE))
lo_flags |= LO_FLAGS_READ_ONLY;
error = -EINVAL;
if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
struct address_space_operations *aops = mapping->a_ops;
/*
* If we can't read - sorry. If we only can't write - well,
* it's going to be read-only.
*/
if (!file->f_op->sendfile)
goto out_putf;
if (aops->prepare_write && aops->commit_write)
lo_flags |= LO_FLAGS_USE_AOPS;
if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
lo_flags |= LO_FLAGS_READ_ONLY;
lo_blocksize = inode->i_blksize;
error = 0;
} else {
goto out_putf;
}
size = get_loop_size(lo, file);
if ((loff_t)(sector_t)size != size) {
error = -EFBIG;
goto out_putf;
}
if (!(lo_file->f_mode & FMODE_WRITE))
lo_flags |= LO_FLAGS_READ_ONLY;
set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
lo->lo_blocksize = lo_blocksize;
lo->lo_device = bdev;
lo->lo_flags = lo_flags;
lo->lo_backing_file = file;
lo->transfer = NULL;
lo->ioctl = NULL;
lo->lo_sizelimit = 0;
lo->old_gfp_mask = mapping_gfp_mask(mapping);
mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
lo->lo_bio = lo->lo_biotail = NULL;
/*
* set queue make_request_fn, and add limits based on lower level
* device
*/
blk_queue_make_request(lo->lo_queue, loop_make_request);
lo->lo_queue->queuedata = lo;
lo->lo_queue->unplug_fn = loop_unplug;
set_capacity(disks[lo->lo_number], size);
bd_set_size(bdev, size << 9);
set_blocksize(bdev, lo_blocksize);
kernel_thread(loop_thread, lo, CLONE_KERNEL);
down(&lo->lo_sem);
return 0;
out_putf:
fput(file);
out:
/* This is safe: open() is still holding a reference. */
module_put(THIS_MODULE);
return error;
}
static int
loop_release_xfer(struct loop_device *lo)
{
int err = 0;
struct loop_func_table *xfer = lo->lo_encryption;
if (xfer) {
if (xfer->release)
err = xfer->release(lo);
lo->transfer = NULL;
lo->lo_encryption = NULL;
module_put(xfer->owner);
}
return err;
}
static int
loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
const struct loop_info64 *i)
{
int err = 0;
if (xfer) {
struct module *owner = xfer->owner;
if (!try_module_get(owner))
return -EINVAL;
if (xfer->init)
err = xfer->init(lo, i);
if (err)
module_put(owner);
else
lo->lo_encryption = xfer;
}
return err;
}
static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
{
struct file *filp = lo->lo_backing_file;
int gfp = lo->old_gfp_mask;
if (lo->lo_state != Lo_bound)
return -ENXIO;
if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
return -EBUSY;
if (filp == NULL)
return -EINVAL;
spin_lock_irq(&lo->lo_lock);
lo->lo_state = Lo_rundown;
if (atomic_dec_and_test(&lo->lo_pending))
up(&lo->lo_bh_mutex);
spin_unlock_irq(&lo->lo_lock);
down(&lo->lo_sem);
lo->lo_backing_file = NULL;
loop_release_xfer(lo);
lo->transfer = NULL;
lo->ioctl = NULL;
lo->lo_device = NULL;
lo->lo_encryption = NULL;
lo->lo_offset = 0;
lo->lo_sizelimit = 0;
lo->lo_encrypt_key_size = 0;
lo->lo_flags = 0;
memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
memset(lo->lo_file_name, 0, LO_NAME_SIZE);
invalidate_bdev(bdev, 0);
set_capacity(disks[lo->lo_number], 0);
bd_set_size(bdev, 0);
mapping_set_gfp_mask(filp->f_mapping, gfp);
lo->lo_state = Lo_unbound;
fput(filp);
/* This is safe: open() is still holding a reference. */
module_put(THIS_MODULE);
return 0;
}
static int
loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
{
int err;
struct loop_func_table *xfer;
if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
if (lo->lo_state != Lo_bound)
return -ENXIO;
if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
return -EINVAL;
err = loop_release_xfer(lo);
if (err)
return err;
if (info->lo_encrypt_type) {
unsigned int type = info->lo_encrypt_type;
if (type >= MAX_LO_CRYPT)
return -EINVAL;
xfer = xfer_funcs[type];
if (xfer == NULL)
return -EINVAL;
} else
xfer = NULL;
err = loop_init_xfer(lo, xfer, info);
if (err)
return err;
if (lo->lo_offset != info->lo_offset ||
lo->lo_sizelimit != info->lo_sizelimit) {
lo->lo_offset = info->lo_offset;
lo->lo_sizelimit = info->lo_sizelimit;
if (figure_loop_size(lo))
return -EFBIG;
}
memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
lo->lo_file_name[LO_NAME_SIZE-1] = 0;
lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
if (!xfer)
xfer = &none_funcs;
lo->transfer = xfer->transfer;
lo->ioctl = xfer->ioctl;
lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
lo->lo_init[0] = info->lo_init[0];
lo->lo_init[1] = info->lo_init[1];
if (info->lo_encrypt_key_size) {
memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
info->lo_encrypt_key_size);
lo->lo_key_owner = current->uid;
}
return 0;
}
static int
loop_get_status(struct loop_device *lo, struct loop_info64 *info)
{
struct file *file = lo->lo_backing_file;
struct kstat stat;
int error;
if (lo->lo_state != Lo_bound)
return -ENXIO;
error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
if (error)
return error;
memset(info, 0, sizeof(*info));
info->lo_number = lo->lo_number;
info->lo_device = huge_encode_dev(stat.dev);
info->lo_inode = stat.ino;
info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
info->lo_offset = lo->lo_offset;
info->lo_sizelimit = lo->lo_sizelimit;
info->lo_flags = lo->lo_flags;
memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
info->lo_encrypt_type =
lo->lo_encryption ? lo->lo_encryption->number : 0;
if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
lo->lo_encrypt_key_size);
}
return 0;
}
static void
loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
{
memset(info64, 0, sizeof(*info64));
info64->lo_number = info->lo_number;
info64->lo_device = info->lo_device;
info64->lo_inode = info->lo_inode;
info64->lo_rdevice = info->lo_rdevice;
info64->lo_offset = info->lo_offset;
info64->lo_sizelimit = 0;
info64->lo_encrypt_type = info->lo_encrypt_type;
info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
info64->lo_flags = info->lo_flags;
info64->lo_init[0] = info->lo_init[0];
info64->lo_init[1] = info->lo_init[1];
if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
else
memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
}
static int
loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
{
memset(info, 0, sizeof(*info));
info->lo_number = info64->lo_number;
info->lo_device = info64->lo_device;
info->lo_inode = info64->lo_inode;
info->lo_rdevice = info64->lo_rdevice;
info->lo_offset = info64->lo_offset;
info->lo_encrypt_type = info64->lo_encrypt_type;
info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
info->lo_flags = info64->lo_flags;
info->lo_init[0] = info64->lo_init[0];
info->lo_init[1] = info64->lo_init[1];
if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
else
memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
/* error in case values were truncated */
if (info->lo_device != info64->lo_device ||
info->lo_rdevice != info64->lo_rdevice ||
info->lo_inode != info64->lo_inode ||
info->lo_offset != info64->lo_offset)
return -EOVERFLOW;
return 0;
}
static int
loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
{
struct loop_info info;
struct loop_info64 info64;
if (copy_from_user(&info, arg, sizeof (struct loop_info)))
return -EFAULT;
loop_info64_from_old(&info, &info64);
return loop_set_status(lo, &info64);
}
static int
loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
{
struct loop_info64 info64;
if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
return -EFAULT;
return loop_set_status(lo, &info64);
}
static int
loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
struct loop_info info;
struct loop_info64 info64;
int err = 0;
if (!arg)
err = -EINVAL;
if (!err)
err = loop_get_status(lo, &info64);
if (!err)
err = loop_info64_to_old(&info64, &info);
if (!err && copy_to_user(arg, &info, sizeof(info)))
err = -EFAULT;
return err;
}
static int
loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
struct loop_info64 info64;
int err = 0;
if (!arg)
err = -EINVAL;
if (!err)
err = loop_get_status(lo, &info64);
if (!err && copy_to_user(arg, &info64, sizeof(info64)))
err = -EFAULT;
return err;
}
static int lo_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)
{
struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
int err;
down(&lo->lo_ctl_mutex);
switch (cmd) {
case LOOP_SET_FD:
err = loop_set_fd(lo, file, inode->i_bdev, arg);
break;
case LOOP_CHANGE_FD:
err = loop_change_fd(lo, file, inode->i_bdev, arg);
break;
case LOOP_CLR_FD:
err = loop_clr_fd(lo, inode->i_bdev);
break;
case LOOP_SET_STATUS:
err = loop_set_status_old(lo, (struct loop_info __user *) arg);
break;
case LOOP_GET_STATUS:
err = loop_get_status_old(lo, (struct loop_info __user *) arg);
break;
case LOOP_SET_STATUS64:
err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
break;
case LOOP_GET_STATUS64:
err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
break;
default:
err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
}
up(&lo->lo_ctl_mutex);
return err;
}
static int lo_open(struct inode *inode, struct file *file)
{
struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
down(&lo->lo_ctl_mutex);
lo->lo_refcnt++;
up(&lo->lo_ctl_mutex);
return 0;
}
static int lo_release(struct inode *inode, struct file *file)
{
struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
down(&lo->lo_ctl_mutex);
--lo->lo_refcnt;
up(&lo->lo_ctl_mutex);
return 0;
}
static struct block_device_operations lo_fops = {
.owner = THIS_MODULE,
.open = lo_open,
.release = lo_release,
.ioctl = lo_ioctl,
};
/*
* And now the modules code and kernel interface.
*/
module_param(max_loop, int, 0);
MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
int loop_register_transfer(struct loop_func_table *funcs)
{
unsigned int n = funcs->number;
if (n >= MAX_LO_CRYPT || xfer_funcs[n])
return -EINVAL;
xfer_funcs[n] = funcs;
return 0;
}
int loop_unregister_transfer(int number)
{
unsigned int n = number;
struct loop_device *lo;
struct loop_func_table *xfer;
if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
return -EINVAL;
xfer_funcs[n] = NULL;
for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
down(&lo->lo_ctl_mutex);
if (lo->lo_encryption == xfer)
loop_release_xfer(lo);
up(&lo->lo_ctl_mutex);
}
return 0;
}
EXPORT_SYMBOL(loop_register_transfer);
EXPORT_SYMBOL(loop_unregister_transfer);
static int __init loop_init(void)
{
int i;
if (max_loop < 1 || max_loop > 256) {
printk(KERN_WARNING "loop: invalid max_loop (must be between"
" 1 and 256), using default (8)\n");
max_loop = 8;
}
if (register_blkdev(LOOP_MAJOR, "loop"))
return -EIO;
loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
if (!loop_dev)
goto out_mem1;
memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
if (!disks)
goto out_mem2;
for (i = 0; i < max_loop; i++) {
disks[i] = alloc_disk(1);
if (!disks[i])
goto out_mem3;
}
devfs_mk_dir("loop");
for (i = 0; i < max_loop; i++) {
struct loop_device *lo = &loop_dev[i];
struct gendisk *disk = disks[i];
memset(lo, 0, sizeof(*lo));
lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
if (!lo->lo_queue)
goto out_mem4;
init_MUTEX(&lo->lo_ctl_mutex);
init_MUTEX_LOCKED(&lo->lo_sem);
init_MUTEX_LOCKED(&lo->lo_bh_mutex);
lo->lo_number = i;
spin_lock_init(&lo->lo_lock);
disk->major = LOOP_MAJOR;
disk->first_minor = i;
disk->fops = &lo_fops;
sprintf(disk->disk_name, "loop%d", i);
sprintf(disk->devfs_name, "loop/%d", i);
disk->private_data = lo;
disk->queue = lo->lo_queue;
}
/* We cannot fail after we call this, so another loop!*/
for (i = 0; i < max_loop; i++)
add_disk(disks[i]);
printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
return 0;
out_mem4:
while (i--)
blk_put_queue(loop_dev[i].lo_queue);
devfs_remove("loop");
i = max_loop;
out_mem3:
while (i--)
put_disk(disks[i]);
kfree(disks);
out_mem2:
kfree(loop_dev);
out_mem1:
unregister_blkdev(LOOP_MAJOR, "loop");
printk(KERN_ERR "loop: ran out of memory\n");
return -ENOMEM;
}
static void loop_exit(void)
{
int i;
for (i = 0; i < max_loop; i++) {
del_gendisk(disks[i]);
blk_put_queue(loop_dev[i].lo_queue);
put_disk(disks[i]);
}
devfs_remove("loop");
if (unregister_blkdev(LOOP_MAJOR, "loop"))
printk(KERN_WARNING "loop: cannot unregister blkdev\n");
kfree(disks);
kfree(loop_dev);
}
module_init(loop_init);
module_exit(loop_exit);
#ifndef MODULE
static int __init max_loop_setup(char *str)
{
max_loop = simple_strtol(str, NULL, 0);
return 1;
}
__setup("max_loop=", max_loop_setup);
#endif