You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

558 lines
15 KiB

#ifdef __KERNEL__
#ifndef _PPC_IO_H
#define _PPC_IO_H
#include <linux/string.h>
#include <linux/types.h>
#include <asm/page.h>
#include <asm/byteorder.h>
#include <asm/synch.h>
#include <asm/mmu.h>
#define SIO_CONFIG_RA 0x398
#define SIO_CONFIG_RD 0x399
#define SLOW_DOWN_IO
#define PMAC_ISA_MEM_BASE 0
#define PMAC_PCI_DRAM_OFFSET 0
#define CHRP_ISA_IO_BASE 0xf8000000
#define CHRP_ISA_MEM_BASE 0xf7000000
#define CHRP_PCI_DRAM_OFFSET 0
#define PREP_ISA_IO_BASE 0x80000000
#define PREP_ISA_MEM_BASE 0xc0000000
#define PREP_PCI_DRAM_OFFSET 0x80000000
#if defined(CONFIG_4xx)
#include <asm/ibm4xx.h>
#elif defined(CONFIG_8xx)
#include <asm/mpc8xx.h>
#elif defined(CONFIG_8260)
#include <asm/mpc8260.h>
#elif defined(CONFIG_APUS) || !defined(CONFIG_PCI)
#define _IO_BASE 0
#define _ISA_MEM_BASE 0
#define PCI_DRAM_OFFSET 0
#else /* Everyone else */
#define _IO_BASE isa_io_base
#define _ISA_MEM_BASE isa_mem_base
#define PCI_DRAM_OFFSET pci_dram_offset
#endif /* Platform-dependent I/O */
#define ___IO_BASE ((void __iomem *)_IO_BASE)
extern unsigned long isa_io_base;
extern unsigned long isa_mem_base;
extern unsigned long pci_dram_offset;
/*
* 8, 16 and 32 bit, big and little endian I/O operations, with barrier.
*
* Read operations have additional twi & isync to make sure the read
* is actually performed (i.e. the data has come back) before we start
* executing any following instructions.
*/
extern inline int in_8(const volatile unsigned char __iomem *addr)
{
int ret;
__asm__ __volatile__(
"sync; lbz%U1%X1 %0,%1;\n"
"twi 0,%0,0;\n"
"isync" : "=r" (ret) : "m" (*addr));
return ret;
}
extern inline void out_8(volatile unsigned char __iomem *addr, int val)
{
__asm__ __volatile__("stb%U0%X0 %1,%0; eieio" : "=m" (*addr) : "r" (val));
}
extern inline int in_le16(const volatile unsigned short __iomem *addr)
{
int ret;
__asm__ __volatile__("sync; lhbrx %0,0,%1;\n"
"twi 0,%0,0;\n"
"isync" : "=r" (ret) :
"r" (addr), "m" (*addr));
return ret;
}
extern inline int in_be16(const volatile unsigned short __iomem *addr)
{
int ret;
__asm__ __volatile__("sync; lhz%U1%X1 %0,%1;\n"
"twi 0,%0,0;\n"
"isync" : "=r" (ret) : "m" (*addr));
return ret;
}
extern inline void out_le16(volatile unsigned short __iomem *addr, int val)
{
__asm__ __volatile__("sync; sthbrx %1,0,%2" : "=m" (*addr) :
"r" (val), "r" (addr));
}
extern inline void out_be16(volatile unsigned short __iomem *addr, int val)
{
__asm__ __volatile__("sync; sth%U0%X0 %1,%0" : "=m" (*addr) : "r" (val));
}
extern inline unsigned in_le32(const volatile unsigned __iomem *addr)
{
unsigned ret;
__asm__ __volatile__("sync; lwbrx %0,0,%1;\n"
"twi 0,%0,0;\n"
"isync" : "=r" (ret) :
"r" (addr), "m" (*addr));
return ret;
}
extern inline unsigned in_be32(const volatile unsigned __iomem *addr)
{
unsigned ret;
__asm__ __volatile__("sync; lwz%U1%X1 %0,%1;\n"
"twi 0,%0,0;\n"
"isync" : "=r" (ret) : "m" (*addr));
return ret;
}
extern inline void out_le32(volatile unsigned __iomem *addr, int val)
{
__asm__ __volatile__("sync; stwbrx %1,0,%2" : "=m" (*addr) :
"r" (val), "r" (addr));
}
extern inline void out_be32(volatile unsigned __iomem *addr, int val)
{
__asm__ __volatile__("sync; stw%U0%X0 %1,%0" : "=m" (*addr) : "r" (val));
}
#if defined (CONFIG_8260_PCI9)
#define readb(addr) in_8((volatile u8 *)(addr))
#define writeb(b,addr) out_8((volatile u8 *)(addr), (b))
#else
static inline __u8 readb(const volatile void __iomem *addr)
{
return in_8(addr);
}
static inline void writeb(__u8 b, volatile void __iomem *addr)
{
out_8(addr, b);
}
#endif
#if defined(CONFIG_APUS)
static inline __u16 readw(const volatile void __iomem *addr)
{
return *(__force volatile __u16 *)(addr);
}
static inline __u32 readl(const volatile void __iomem *addr)
{
return *(__force volatile __u32 *)(addr);
}
static inline void writew(__u16 b, volatile void __iomem *addr)
{
*(__force volatile __u16 *)(addr) = b;
}
static inline void writel(__u32 b, volatile void __iomem *addr)
{
*(__force volatile __u32 *)(addr) = b;
}
#elif defined (CONFIG_8260_PCI9)
/* Use macros if PCI9 workaround enabled */
#define readw(addr) in_le16((volatile u16 *)(addr))
#define readl(addr) in_le32((volatile u32 *)(addr))
#define writew(b,addr) out_le16((volatile u16 *)(addr),(b))
#define writel(b,addr) out_le32((volatile u32 *)(addr),(b))
#else
static inline __u16 readw(const volatile void __iomem *addr)
{
return in_le16(addr);
}
static inline __u32 readl(const volatile void __iomem *addr)
{
return in_le32(addr);
}
static inline void writew(__u16 b, volatile void __iomem *addr)
{
out_le16(addr, b);
}
static inline void writel(__u32 b, volatile void __iomem *addr)
{
out_le32(addr, b);
}
#endif /* CONFIG_APUS */
#define readb_relaxed(addr) readb(addr)
#define readw_relaxed(addr) readw(addr)
#define readl_relaxed(addr) readl(addr)
static inline __u8 __raw_readb(const volatile void __iomem *addr)
{
return *(__force volatile __u8 *)(addr);
}
static inline __u16 __raw_readw(const volatile void __iomem *addr)
{
return *(__force volatile __u16 *)(addr);
}
static inline __u32 __raw_readl(const volatile void __iomem *addr)
{
return *(__force volatile __u32 *)(addr);
}
static inline void __raw_writeb(__u8 b, volatile void __iomem *addr)
{
*(__force volatile __u8 *)(addr) = b;
}
static inline void __raw_writew(__u16 b, volatile void __iomem *addr)
{
*(__force volatile __u16 *)(addr) = b;
}
static inline void __raw_writel(__u32 b, volatile void __iomem *addr)
{
*(__force volatile __u32 *)(addr) = b;
}
#define mmiowb()
/*
* The insw/outsw/insl/outsl macros don't do byte-swapping.
* They are only used in practice for transferring buffers which
* are arrays of bytes, and byte-swapping is not appropriate in
* that case. - paulus
*/
#define insb(port, buf, ns) _insb((port)+___IO_BASE, (buf), (ns))
#define outsb(port, buf, ns) _outsb((port)+___IO_BASE, (buf), (ns))
#define insw(port, buf, ns) _insw_ns((port)+___IO_BASE, (buf), (ns))
#define outsw(port, buf, ns) _outsw_ns((port)+___IO_BASE, (buf), (ns))
#define insl(port, buf, nl) _insl_ns((port)+___IO_BASE, (buf), (nl))
#define outsl(port, buf, nl) _outsl_ns((port)+___IO_BASE, (buf), (nl))
#define readsb(a, b, n) _insb((a), (b), (n))
#define readsw(a, b, n) _insw_ns((a), (b), (n))
#define readsl(a, b, n) _insl_ns((a), (b), (n))
#define writesb(a, b, n) _outsb((a),(b),(n))
#define writesw(a, b, n) _outsw_ns((a),(b),(n))
#define writesl(a, b, n) _outsl_ns((a),(b),(n))
/*
* On powermacs and 8xx we will get a machine check exception
* if we try to read data from a non-existent I/O port. Because
* the machine check is an asynchronous exception, it isn't
* well-defined which instruction SRR0 will point to when the
* exception occurs.
* With the sequence below (twi; isync; nop), we have found that
* the machine check occurs on one of the three instructions on
* all PPC implementations tested so far. The twi and isync are
* needed on the 601 (in fact twi; sync works too), the isync and
* nop are needed on 604[e|r], and any of twi, sync or isync will
* work on 603[e], 750, 74xx.
* The twi creates an explicit data dependency on the returned
* value which seems to be needed to make the 601 wait for the
* load to finish.
*/
#define __do_in_asm(name, op) \
extern __inline__ unsigned int name(unsigned int port) \
{ \
unsigned int x; \
__asm__ __volatile__( \
"sync\n" \
"0:" op " %0,0,%1\n" \
"1: twi 0,%0,0\n" \
"2: isync\n" \
"3: nop\n" \
"4:\n" \
".section .fixup,\"ax\"\n" \
"5: li %0,-1\n" \
" b 4b\n" \
".previous\n" \
".section __ex_table,\"a\"\n" \
" .align 2\n" \
" .long 0b,5b\n" \
" .long 1b,5b\n" \
" .long 2b,5b\n" \
" .long 3b,5b\n" \
".previous" \
: "=&r" (x) \
: "r" (port + ___IO_BASE)); \
return x; \
}
#define __do_out_asm(name, op) \
extern __inline__ void name(unsigned int val, unsigned int port) \
{ \
__asm__ __volatile__( \
"sync\n" \
"0:" op " %0,0,%1\n" \
"1: sync\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .align 2\n" \
" .long 0b,2b\n" \
" .long 1b,2b\n" \
".previous" \
: : "r" (val), "r" (port + ___IO_BASE)); \
}
__do_out_asm(outb, "stbx")
#ifdef CONFIG_APUS
__do_in_asm(inb, "lbzx")
__do_in_asm(inw, "lhz%U1%X1")
__do_in_asm(inl, "lwz%U1%X1")
__do_out_asm(outl,"stw%U0%X0")
__do_out_asm(outw, "sth%U0%X0")
#elif defined (CONFIG_8260_PCI9)
/* in asm cannot be defined if PCI9 workaround is used */
#define inb(port) in_8((port)+___IO_BASE)
#define inw(port) in_le16((port)+___IO_BASE)
#define inl(port) in_le32((port)+___IO_BASE)
__do_out_asm(outw, "sthbrx")
__do_out_asm(outl, "stwbrx")
#else
__do_in_asm(inb, "lbzx")
__do_in_asm(inw, "lhbrx")
__do_in_asm(inl, "lwbrx")
__do_out_asm(outw, "sthbrx")
__do_out_asm(outl, "stwbrx")
#endif
#define inb_p(port) inb((port))
#define outb_p(val, port) outb((val), (port))
#define inw_p(port) inw((port))
#define outw_p(val, port) outw((val), (port))
#define inl_p(port) inl((port))
#define outl_p(val, port) outl((val), (port))
extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
#define IO_SPACE_LIMIT ~0
#if defined (CONFIG_8260_PCI9)
#define memset_io(a,b,c) memset((void *)(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c))
#define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c))
#else
static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
{
memset((void __force *)addr, val, count);
}
static inline void memcpy_fromio(void *dst,const volatile void __iomem *src, int count)
{
memcpy(dst, (void __force *) src, count);
}
static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
{
memcpy((void __force *) dst, src, count);
}
#endif
#define eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(void __force *)(void __iomem *)(b),(c),(d))
/*
* Map in an area of physical address space, for accessing
* I/O devices etc.
*/
extern void __iomem *__ioremap(phys_addr_t address, unsigned long size,
unsigned long flags);
extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
#ifdef CONFIG_44x
extern void __iomem *ioremap64(unsigned long long address, unsigned long size);
#endif
#define ioremap_nocache(addr, size) ioremap((addr), (size))
extern void iounmap(volatile void __iomem *addr);
extern unsigned long iopa(unsigned long addr);
extern unsigned long mm_ptov(unsigned long addr) __attribute_const__;
extern void io_block_mapping(unsigned long virt, phys_addr_t phys,
unsigned int size, int flags);
/*
* The PCI bus is inherently Little-Endian. The PowerPC is being
* run Big-Endian. Thus all values which cross the [PCI] barrier
* must be endian-adjusted. Also, the local DRAM has a different
* address from the PCI point of view, thus buffer addresses also
* have to be modified [mapped] appropriately.
*/
extern inline unsigned long virt_to_bus(volatile void * address)
{
#ifndef CONFIG_APUS
if (address == (void *)0)
return 0;
return (unsigned long)address - KERNELBASE + PCI_DRAM_OFFSET;
#else
return iopa ((unsigned long) address);
#endif
}
extern inline void * bus_to_virt(unsigned long address)
{
#ifndef CONFIG_APUS
if (address == 0)
return NULL;
return (void *)(address - PCI_DRAM_OFFSET + KERNELBASE);
#else
return (void*) mm_ptov (address);
#endif
}
/*
* Change virtual addresses to physical addresses and vv, for
* addresses in the area where the kernel has the RAM mapped.
*/
extern inline unsigned long virt_to_phys(volatile void * address)
{
#ifndef CONFIG_APUS
return (unsigned long) address - KERNELBASE;
#else
return iopa ((unsigned long) address);
#endif
}
extern inline void * phys_to_virt(unsigned long address)
{
#ifndef CONFIG_APUS
return (void *) (address + KERNELBASE);
#else
return (void*) mm_ptov (address);
#endif
}
/*
* Change "struct page" to physical address.
*/
#define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT)
#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
/* Enforce in-order execution of data I/O.
* No distinction between read/write on PPC; use eieio for all three.
*/
#define iobarrier_rw() eieio()
#define iobarrier_r() eieio()
#define iobarrier_w() eieio()
/*
* Here comes the ppc implementation of the IOMAP
* interfaces.
*/
static inline unsigned int ioread8(void __iomem *addr)
{
return readb(addr);
}
static inline unsigned int ioread16(void __iomem *addr)
{
return readw(addr);
}
static inline unsigned int ioread32(void __iomem *addr)
{
return readl(addr);
}
static inline void iowrite8(u8 val, void __iomem *addr)
{
writeb(val, addr);
}
static inline void iowrite16(u16 val, void __iomem *addr)
{
writew(val, addr);
}
static inline void iowrite32(u32 val, void __iomem *addr)
{
writel(val, addr);
}
static inline void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
{
_insb(addr, dst, count);
}
static inline void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
{
_insw_ns(addr, dst, count);
}
static inline void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
{
_insl_ns(addr, dst, count);
}
static inline void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
{
_outsb(addr, src, count);
}
static inline void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
{
_outsw_ns(addr, src, count);
}
static inline void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
{
_outsl_ns(addr, src, count);
}
/* Create a virtual mapping cookie for an IO port range */
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
extern void ioport_unmap(void __iomem *);
/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
struct pci_dev;
extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max);
extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
#endif /* _PPC_IO_H */
#ifdef CONFIG_8260_PCI9
#include <asm/mpc8260_pci9.h>
#endif
#ifdef CONFIG_NOT_COHERENT_CACHE
#define dma_cache_inv(_start,_size) \
invalidate_dcache_range(_start, (_start + _size))
#define dma_cache_wback(_start,_size) \
clean_dcache_range(_start, (_start + _size))
#define dma_cache_wback_inv(_start,_size) \
flush_dcache_range(_start, (_start + _size))
#else
#define dma_cache_inv(_start,_size) do { } while (0)
#define dma_cache_wback(_start,_size) do { } while (0)
#define dma_cache_wback_inv(_start,_size) do { } while (0)
#endif
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
/* access ports */
#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
#endif /* __KERNEL__ */