You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/kernel/audit_tree.c

902 lines
20 KiB

#include "audit.h"
#include <linux/inotify.h>
#include <linux/namei.h>
#include <linux/mount.h>
struct audit_tree;
struct audit_chunk;
struct audit_tree {
atomic_t count;
int goner;
struct audit_chunk *root;
struct list_head chunks;
struct list_head rules;
struct list_head list;
struct list_head same_root;
struct rcu_head head;
char pathname[];
};
struct audit_chunk {
struct list_head hash;
struct inotify_watch watch;
struct list_head trees; /* with root here */
int dead;
int count;
struct rcu_head head;
struct node {
struct list_head list;
struct audit_tree *owner;
unsigned index; /* index; upper bit indicates 'will prune' */
} owners[];
};
static LIST_HEAD(tree_list);
static LIST_HEAD(prune_list);
/*
* One struct chunk is attached to each inode of interest.
* We replace struct chunk on tagging/untagging.
* Rules have pointer to struct audit_tree.
* Rules have struct list_head rlist forming a list of rules over
* the same tree.
* References to struct chunk are collected at audit_inode{,_child}()
* time and used in AUDIT_TREE rule matching.
* These references are dropped at the same time we are calling
* audit_free_names(), etc.
*
* Cyclic lists galore:
* tree.chunks anchors chunk.owners[].list hash_lock
* tree.rules anchors rule.rlist audit_filter_mutex
* chunk.trees anchors tree.same_root hash_lock
* chunk.hash is a hash with middle bits of watch.inode as
* a hash function. RCU, hash_lock
*
* tree is refcounted; one reference for "some rules on rules_list refer to
* it", one for each chunk with pointer to it.
*
* chunk is refcounted by embedded inotify_watch.
*
* node.index allows to get from node.list to containing chunk.
* MSB of that sucker is stolen to mark taggings that we might have to
* revert - several operations have very unpleasant cleanup logics and
* that makes a difference. Some.
*/
static struct inotify_handle *rtree_ih;
static struct audit_tree *alloc_tree(const char *s)
{
struct audit_tree *tree;
tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
if (tree) {
atomic_set(&tree->count, 1);
tree->goner = 0;
INIT_LIST_HEAD(&tree->chunks);
INIT_LIST_HEAD(&tree->rules);
INIT_LIST_HEAD(&tree->list);
INIT_LIST_HEAD(&tree->same_root);
tree->root = NULL;
strcpy(tree->pathname, s);
}
return tree;
}
static inline void get_tree(struct audit_tree *tree)
{
atomic_inc(&tree->count);
}
static void __put_tree(struct rcu_head *rcu)
{
struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
kfree(tree);
}
static inline void put_tree(struct audit_tree *tree)
{
if (atomic_dec_and_test(&tree->count))
call_rcu(&tree->head, __put_tree);
}
/* to avoid bringing the entire thing in audit.h */
const char *audit_tree_path(struct audit_tree *tree)
{
return tree->pathname;
}
static struct audit_chunk *alloc_chunk(int count)
{
struct audit_chunk *chunk;
size_t size;
int i;
size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
chunk = kzalloc(size, GFP_KERNEL);
if (!chunk)
return NULL;
INIT_LIST_HEAD(&chunk->hash);
INIT_LIST_HEAD(&chunk->trees);
chunk->count = count;
for (i = 0; i < count; i++) {
INIT_LIST_HEAD(&chunk->owners[i].list);
chunk->owners[i].index = i;
}
inotify_init_watch(&chunk->watch);
return chunk;
}
static void __free_chunk(struct rcu_head *rcu)
{
struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
int i;
for (i = 0; i < chunk->count; i++) {
if (chunk->owners[i].owner)
put_tree(chunk->owners[i].owner);
}
kfree(chunk);
}
static inline void free_chunk(struct audit_chunk *chunk)
{
call_rcu(&chunk->head, __free_chunk);
}
void audit_put_chunk(struct audit_chunk *chunk)
{
put_inotify_watch(&chunk->watch);
}
enum {HASH_SIZE = 128};
static struct list_head chunk_hash_heads[HASH_SIZE];
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
static inline struct list_head *chunk_hash(const struct inode *inode)
{
unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
return chunk_hash_heads + n % HASH_SIZE;
}
/* hash_lock is held by caller */
static void insert_hash(struct audit_chunk *chunk)
{
struct list_head *list = chunk_hash(chunk->watch.inode);
list_add_rcu(&chunk->hash, list);
}
/* called under rcu_read_lock */
struct audit_chunk *audit_tree_lookup(const struct inode *inode)
{
struct list_head *list = chunk_hash(inode);
struct audit_chunk *p;
list_for_each_entry_rcu(p, list, hash) {
if (p->watch.inode == inode) {
get_inotify_watch(&p->watch);
return p;
}
}
return NULL;
}
int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
{
int n;
for (n = 0; n < chunk->count; n++)
if (chunk->owners[n].owner == tree)
return 1;
return 0;
}
/* tagging and untagging inodes with trees */
static void untag_chunk(struct audit_chunk *chunk, struct node *p)
{
struct audit_chunk *new;
struct audit_tree *owner;
int size = chunk->count - 1;
int i, j;
mutex_lock(&chunk->watch.inode->inotify_mutex);
if (chunk->dead) {
mutex_unlock(&chunk->watch.inode->inotify_mutex);
return;
}
owner = p->owner;
if (!size) {
chunk->dead = 1;
spin_lock(&hash_lock);
list_del_init(&chunk->trees);
if (owner->root == chunk)
owner->root = NULL;
list_del_init(&p->list);
list_del_rcu(&chunk->hash);
spin_unlock(&hash_lock);
inotify_evict_watch(&chunk->watch);
mutex_unlock(&chunk->watch.inode->inotify_mutex);
put_inotify_watch(&chunk->watch);
return;
}
new = alloc_chunk(size);
if (!new)
goto Fallback;
if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
free_chunk(new);
goto Fallback;
}
chunk->dead = 1;
spin_lock(&hash_lock);
list_replace_init(&chunk->trees, &new->trees);
if (owner->root == chunk) {
list_del_init(&owner->same_root);
owner->root = NULL;
}
for (i = j = 0; i < size; i++, j++) {
struct audit_tree *s;
if (&chunk->owners[j] == p) {
list_del_init(&p->list);
i--;
continue;
}
s = chunk->owners[j].owner;
new->owners[i].owner = s;
new->owners[i].index = chunk->owners[j].index - j + i;
if (!s) /* result of earlier fallback */
continue;
get_tree(s);
list_replace_init(&chunk->owners[i].list, &new->owners[j].list);
}
list_replace_rcu(&chunk->hash, &new->hash);
list_for_each_entry(owner, &new->trees, same_root)
owner->root = new;
spin_unlock(&hash_lock);
inotify_evict_watch(&chunk->watch);
mutex_unlock(&chunk->watch.inode->inotify_mutex);
put_inotify_watch(&chunk->watch);
return;
Fallback:
// do the best we can
spin_lock(&hash_lock);
if (owner->root == chunk) {
list_del_init(&owner->same_root);
owner->root = NULL;
}
list_del_init(&p->list);
p->owner = NULL;
put_tree(owner);
spin_unlock(&hash_lock);
mutex_unlock(&chunk->watch.inode->inotify_mutex);
}
static int create_chunk(struct inode *inode, struct audit_tree *tree)
{
struct audit_chunk *chunk = alloc_chunk(1);
if (!chunk)
return -ENOMEM;
if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
free_chunk(chunk);
return -ENOSPC;
}
mutex_lock(&inode->inotify_mutex);
spin_lock(&hash_lock);
if (tree->goner) {
spin_unlock(&hash_lock);
chunk->dead = 1;
inotify_evict_watch(&chunk->watch);
mutex_unlock(&inode->inotify_mutex);
put_inotify_watch(&chunk->watch);
return 0;
}
chunk->owners[0].index = (1U << 31);
chunk->owners[0].owner = tree;
get_tree(tree);
list_add(&chunk->owners[0].list, &tree->chunks);
if (!tree->root) {
tree->root = chunk;
list_add(&tree->same_root, &chunk->trees);
}
insert_hash(chunk);
spin_unlock(&hash_lock);
mutex_unlock(&inode->inotify_mutex);
return 0;
}
/* the first tagged inode becomes root of tree */
static int tag_chunk(struct inode *inode, struct audit_tree *tree)
{
struct inotify_watch *watch;
struct audit_tree *owner;
struct audit_chunk *chunk, *old;
struct node *p;
int n;
if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
return create_chunk(inode, tree);
old = container_of(watch, struct audit_chunk, watch);
/* are we already there? */
spin_lock(&hash_lock);
for (n = 0; n < old->count; n++) {
if (old->owners[n].owner == tree) {
spin_unlock(&hash_lock);
put_inotify_watch(watch);
return 0;
}
}
spin_unlock(&hash_lock);
chunk = alloc_chunk(old->count + 1);
if (!chunk)
return -ENOMEM;
mutex_lock(&inode->inotify_mutex);
if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
mutex_unlock(&inode->inotify_mutex);
free_chunk(chunk);
return -ENOSPC;
}
spin_lock(&hash_lock);
if (tree->goner) {
spin_unlock(&hash_lock);
chunk->dead = 1;
inotify_evict_watch(&chunk->watch);
mutex_unlock(&inode->inotify_mutex);
put_inotify_watch(&chunk->watch);
return 0;
}
list_replace_init(&old->trees, &chunk->trees);
for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
struct audit_tree *s = old->owners[n].owner;
p->owner = s;
p->index = old->owners[n].index;
if (!s) /* result of fallback in untag */
continue;
get_tree(s);
list_replace_init(&old->owners[n].list, &p->list);
}
p->index = (chunk->count - 1) | (1U<<31);
p->owner = tree;
get_tree(tree);
list_add(&p->list, &tree->chunks);
list_replace_rcu(&old->hash, &chunk->hash);
list_for_each_entry(owner, &chunk->trees, same_root)
owner->root = chunk;
old->dead = 1;
if (!tree->root) {
tree->root = chunk;
list_add(&tree->same_root, &chunk->trees);
}
spin_unlock(&hash_lock);
inotify_evict_watch(&old->watch);
mutex_unlock(&inode->inotify_mutex);
put_inotify_watch(&old->watch);
return 0;
}
static struct audit_chunk *find_chunk(struct node *p)
{
int index = p->index & ~(1U<<31);
p -= index;
return container_of(p, struct audit_chunk, owners[0]);
}
static void kill_rules(struct audit_tree *tree)
{
struct audit_krule *rule, *next;
struct audit_entry *entry;
struct audit_buffer *ab;
list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
entry = container_of(rule, struct audit_entry, rule);
list_del_init(&rule->rlist);
if (rule->tree) {
/* not a half-baked one */
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
audit_log_format(ab, "op=remove rule dir=");
audit_log_untrustedstring(ab, rule->tree->pathname);
if (rule->filterkey) {
audit_log_format(ab, " key=");
audit_log_untrustedstring(ab, rule->filterkey);
} else
audit_log_format(ab, " key=(null)");
audit_log_format(ab, " list=%d res=1", rule->listnr);
audit_log_end(ab);
rule->tree = NULL;
list_del_rcu(&entry->list);
call_rcu(&entry->rcu, audit_free_rule_rcu);
}
}
}
/*
* finish killing struct audit_tree
*/
static void prune_one(struct audit_tree *victim)
{
spin_lock(&hash_lock);
while (!list_empty(&victim->chunks)) {
struct node *p;
struct audit_chunk *chunk;
p = list_entry(victim->chunks.next, struct node, list);
chunk = find_chunk(p);
get_inotify_watch(&chunk->watch);
spin_unlock(&hash_lock);
untag_chunk(chunk, p);
put_inotify_watch(&chunk->watch);
spin_lock(&hash_lock);
}
spin_unlock(&hash_lock);
put_tree(victim);
}
/* trim the uncommitted chunks from tree */
static void trim_marked(struct audit_tree *tree)
{
struct list_head *p, *q;
spin_lock(&hash_lock);
if (tree->goner) {
spin_unlock(&hash_lock);
return;
}
/* reorder */
for (p = tree->chunks.next; p != &tree->chunks; p = q) {
struct node *node = list_entry(p, struct node, list);
q = p->next;
if (node->index & (1U<<31)) {
list_del_init(p);
list_add(p, &tree->chunks);
}
}
while (!list_empty(&tree->chunks)) {
struct node *node;
struct audit_chunk *chunk;
node = list_entry(tree->chunks.next, struct node, list);
/* have we run out of marked? */
if (!(node->index & (1U<<31)))
break;
chunk = find_chunk(node);
get_inotify_watch(&chunk->watch);
spin_unlock(&hash_lock);
untag_chunk(chunk, node);
put_inotify_watch(&chunk->watch);
spin_lock(&hash_lock);
}
if (!tree->root && !tree->goner) {
tree->goner = 1;
spin_unlock(&hash_lock);
mutex_lock(&audit_filter_mutex);
kill_rules(tree);
list_del_init(&tree->list);
mutex_unlock(&audit_filter_mutex);
prune_one(tree);
} else {
spin_unlock(&hash_lock);
}
}
/* called with audit_filter_mutex */
int audit_remove_tree_rule(struct audit_krule *rule)
{
struct audit_tree *tree;
tree = rule->tree;
if (tree) {
spin_lock(&hash_lock);
list_del_init(&rule->rlist);
if (list_empty(&tree->rules) && !tree->goner) {
tree->root = NULL;
list_del_init(&tree->same_root);
tree->goner = 1;
list_move(&tree->list, &prune_list);
rule->tree = NULL;
spin_unlock(&hash_lock);
audit_schedule_prune();
return 1;
}
rule->tree = NULL;
spin_unlock(&hash_lock);
return 1;
}
return 0;
}
void audit_trim_trees(void)
{
struct list_head cursor;
mutex_lock(&audit_filter_mutex);
list_add(&cursor, &tree_list);
while (cursor.next != &tree_list) {
struct audit_tree *tree;
struct nameidata nd;
struct vfsmount *root_mnt;
struct node *node;
struct list_head list;
int err;
tree = container_of(cursor.next, struct audit_tree, list);
get_tree(tree);
list_del(&cursor);
list_add(&cursor, &tree->list);
mutex_unlock(&audit_filter_mutex);
err = path_lookup(tree->pathname, 0, &nd);
if (err)
goto skip_it;
root_mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
path_put(&nd.path);
if (!root_mnt)
goto skip_it;
list_add_tail(&list, &root_mnt->mnt_list);
spin_lock(&hash_lock);
list_for_each_entry(node, &tree->chunks, list) {
struct audit_chunk *chunk = find_chunk(node);
struct inode *inode = chunk->watch.inode;
struct vfsmount *mnt;
node->index |= 1U<<31;
list_for_each_entry(mnt, &list, mnt_list) {
if (mnt->mnt_root->d_inode == inode) {
node->index &= ~(1U<<31);
break;
}
}
}
spin_unlock(&hash_lock);
trim_marked(tree);
put_tree(tree);
list_del_init(&list);
drop_collected_mounts(root_mnt);
skip_it:
mutex_lock(&audit_filter_mutex);
}
list_del(&cursor);
mutex_unlock(&audit_filter_mutex);
}
static int is_under(struct vfsmount *mnt, struct dentry *dentry,
struct nameidata *nd)
{
if (mnt != nd->path.mnt) {
for (;;) {
if (mnt->mnt_parent == mnt)
return 0;
if (mnt->mnt_parent == nd->path.mnt)
break;
mnt = mnt->mnt_parent;
}
dentry = mnt->mnt_mountpoint;
}
return is_subdir(dentry, nd->path.dentry);
}
int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
{
if (pathname[0] != '/' ||
rule->listnr != AUDIT_FILTER_EXIT ||
op & ~AUDIT_EQUAL ||
rule->inode_f || rule->watch || rule->tree)
return -EINVAL;
rule->tree = alloc_tree(pathname);
if (!rule->tree)
return -ENOMEM;
return 0;
}
void audit_put_tree(struct audit_tree *tree)
{
put_tree(tree);
}
/* called with audit_filter_mutex */
int audit_add_tree_rule(struct audit_krule *rule)
{
struct audit_tree *seed = rule->tree, *tree;
struct nameidata nd;
struct vfsmount *mnt, *p;
struct list_head list;
int err;
list_for_each_entry(tree, &tree_list, list) {
if (!strcmp(seed->pathname, tree->pathname)) {
put_tree(seed);
rule->tree = tree;
list_add(&rule->rlist, &tree->rules);
return 0;
}
}
tree = seed;
list_add(&tree->list, &tree_list);
list_add(&rule->rlist, &tree->rules);
/* do not set rule->tree yet */
mutex_unlock(&audit_filter_mutex);
err = path_lookup(tree->pathname, 0, &nd);
if (err)
goto Err;
mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
path_put(&nd.path);
if (!mnt) {
err = -ENOMEM;
goto Err;
}
list_add_tail(&list, &mnt->mnt_list);
get_tree(tree);
list_for_each_entry(p, &list, mnt_list) {
err = tag_chunk(p->mnt_root->d_inode, tree);
if (err)
break;
}
list_del(&list);
drop_collected_mounts(mnt);
if (!err) {
struct node *node;
spin_lock(&hash_lock);
list_for_each_entry(node, &tree->chunks, list)
node->index &= ~(1U<<31);
spin_unlock(&hash_lock);
} else {
trim_marked(tree);
goto Err;
}
mutex_lock(&audit_filter_mutex);
if (list_empty(&rule->rlist)) {
put_tree(tree);
return -ENOENT;
}
rule->tree = tree;
put_tree(tree);
return 0;
Err:
mutex_lock(&audit_filter_mutex);
list_del_init(&tree->list);
list_del_init(&tree->rules);
put_tree(tree);
return err;
}
int audit_tag_tree(char *old, char *new)
{
struct list_head cursor, barrier;
int failed = 0;
struct nameidata nd;
struct vfsmount *tagged;
struct list_head list;
struct vfsmount *mnt;
struct dentry *dentry;
int err;
err = path_lookup(new, 0, &nd);
if (err)
return err;
tagged = collect_mounts(nd.path.mnt, nd.path.dentry);
path_put(&nd.path);
if (!tagged)
return -ENOMEM;
err = path_lookup(old, 0, &nd);
if (err) {
drop_collected_mounts(tagged);
return err;
}
mnt = mntget(nd.path.mnt);
dentry = dget(nd.path.dentry);
path_put(&nd.path);
if (dentry == tagged->mnt_root && dentry == mnt->mnt_root)
follow_up(&mnt, &dentry);
list_add_tail(&list, &tagged->mnt_list);
mutex_lock(&audit_filter_mutex);
list_add(&barrier, &tree_list);
list_add(&cursor, &barrier);
while (cursor.next != &tree_list) {
struct audit_tree *tree;
struct vfsmount *p;
tree = container_of(cursor.next, struct audit_tree, list);
get_tree(tree);
list_del(&cursor);
list_add(&cursor, &tree->list);
mutex_unlock(&audit_filter_mutex);
err = path_lookup(tree->pathname, 0, &nd);
if (err) {
put_tree(tree);
mutex_lock(&audit_filter_mutex);
continue;
}
spin_lock(&vfsmount_lock);
if (!is_under(mnt, dentry, &nd)) {
spin_unlock(&vfsmount_lock);
path_put(&nd.path);
put_tree(tree);
mutex_lock(&audit_filter_mutex);
continue;
}
spin_unlock(&vfsmount_lock);
path_put(&nd.path);
list_for_each_entry(p, &list, mnt_list) {
failed = tag_chunk(p->mnt_root->d_inode, tree);
if (failed)
break;
}
if (failed) {
put_tree(tree);
mutex_lock(&audit_filter_mutex);
break;
}
mutex_lock(&audit_filter_mutex);
spin_lock(&hash_lock);
if (!tree->goner) {
list_del(&tree->list);
list_add(&tree->list, &tree_list);
}
spin_unlock(&hash_lock);
put_tree(tree);
}
while (barrier.prev != &tree_list) {
struct audit_tree *tree;
tree = container_of(barrier.prev, struct audit_tree, list);
get_tree(tree);
list_del(&tree->list);
list_add(&tree->list, &barrier);
mutex_unlock(&audit_filter_mutex);
if (!failed) {
struct node *node;
spin_lock(&hash_lock);
list_for_each_entry(node, &tree->chunks, list)
node->index &= ~(1U<<31);
spin_unlock(&hash_lock);
} else {
trim_marked(tree);
}
put_tree(tree);
mutex_lock(&audit_filter_mutex);
}
list_del(&barrier);
list_del(&cursor);
list_del(&list);
mutex_unlock(&audit_filter_mutex);
dput(dentry);
mntput(mnt);
drop_collected_mounts(tagged);
return failed;
}
/*
* That gets run when evict_chunk() ends up needing to kill audit_tree.
* Runs from a separate thread, with audit_cmd_mutex held.
*/
void audit_prune_trees(void)
{
mutex_lock(&audit_filter_mutex);
while (!list_empty(&prune_list)) {
struct audit_tree *victim;
victim = list_entry(prune_list.next, struct audit_tree, list);
list_del_init(&victim->list);
mutex_unlock(&audit_filter_mutex);
prune_one(victim);
mutex_lock(&audit_filter_mutex);
}
mutex_unlock(&audit_filter_mutex);
}
/*
* Here comes the stuff asynchronous to auditctl operations
*/
/* inode->inotify_mutex is locked */
static void evict_chunk(struct audit_chunk *chunk)
{
struct audit_tree *owner;
int n;
if (chunk->dead)
return;
chunk->dead = 1;
mutex_lock(&audit_filter_mutex);
spin_lock(&hash_lock);
while (!list_empty(&chunk->trees)) {
owner = list_entry(chunk->trees.next,
struct audit_tree, same_root);
owner->goner = 1;
owner->root = NULL;
list_del_init(&owner->same_root);
spin_unlock(&hash_lock);
kill_rules(owner);
list_move(&owner->list, &prune_list);
audit_schedule_prune();
spin_lock(&hash_lock);
}
list_del_rcu(&chunk->hash);
for (n = 0; n < chunk->count; n++)
list_del_init(&chunk->owners[n].list);
spin_unlock(&hash_lock);
mutex_unlock(&audit_filter_mutex);
}
static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
u32 cookie, const char *dname, struct inode *inode)
{
struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
if (mask & IN_IGNORED) {
evict_chunk(chunk);
put_inotify_watch(watch);
}
}
static void destroy_watch(struct inotify_watch *watch)
{
struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
free_chunk(chunk);
}
static const struct inotify_operations rtree_inotify_ops = {
.handle_event = handle_event,
.destroy_watch = destroy_watch,
};
static int __init audit_tree_init(void)
{
int i;
rtree_ih = inotify_init(&rtree_inotify_ops);
if (IS_ERR(rtree_ih))
audit_panic("cannot initialize inotify handle for rectree watches");
for (i = 0; i < HASH_SIZE; i++)
INIT_LIST_HEAD(&chunk_hash_heads[i]);
return 0;
}
__initcall(audit_tree_init);