You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/pnp/pnpacpi/rsparser.c

967 lines
25 KiB

/*
* pnpacpi -- PnP ACPI driver
*
* Copyright (c) 2004 Matthieu Castet <castet.matthieu@free.fr>
* Copyright (c) 2004 Li Shaohua <shaohua.li@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include "pnpacpi.h"
#ifdef CONFIG_IA64
#define valid_IRQ(i) (1)
#else
#define valid_IRQ(i) (((i) != 0) && ((i) != 2))
#endif
/*
* Allocated Resources
*/
static int irq_flags(int triggering, int polarity)
{
int flag;
if (triggering == ACPI_LEVEL_SENSITIVE) {
if (polarity == ACPI_ACTIVE_LOW)
flag = IORESOURCE_IRQ_LOWLEVEL;
else
flag = IORESOURCE_IRQ_HIGHLEVEL;
}
else {
if (polarity == ACPI_ACTIVE_LOW)
flag = IORESOURCE_IRQ_LOWEDGE;
else
flag = IORESOURCE_IRQ_HIGHEDGE;
}
return flag;
}
static void decode_irq_flags(int flag, int *triggering, int *polarity)
{
switch (flag) {
case IORESOURCE_IRQ_LOWLEVEL:
*triggering = ACPI_LEVEL_SENSITIVE;
*polarity = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHLEVEL:
*triggering = ACPI_LEVEL_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
case IORESOURCE_IRQ_LOWEDGE:
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHEDGE:
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
}
}
static void
pnpacpi_parse_allocated_irqresource(struct pnp_resource_table *res, u32 gsi,
int triggering, int polarity, int shareable)
{
int i = 0;
int irq;
if (!valid_IRQ(gsi))
return;
while (!(res->irq_resource[i].flags & IORESOURCE_UNSET) &&
i < PNP_MAX_IRQ)
i++;
if (i >= PNP_MAX_IRQ)
return;
res->irq_resource[i].flags = IORESOURCE_IRQ; // Also clears _UNSET flag
res->irq_resource[i].flags |= irq_flags(triggering, polarity);
irq = acpi_register_gsi(gsi, triggering, polarity);
if (irq < 0) {
res->irq_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
if (shareable)
res->irq_resource[i].flags |= IORESOURCE_IRQ_SHAREABLE;
res->irq_resource[i].start = irq;
res->irq_resource[i].end = irq;
pcibios_penalize_isa_irq(irq, 1);
}
static int dma_flags(int type, int bus_master, int transfer)
{
int flags = 0;
if (bus_master)
flags |= IORESOURCE_DMA_MASTER;
switch (type) {
case ACPI_COMPATIBILITY:
flags |= IORESOURCE_DMA_COMPATIBLE;
break;
case ACPI_TYPE_A:
flags |= IORESOURCE_DMA_TYPEA;
break;
case ACPI_TYPE_B:
flags |= IORESOURCE_DMA_TYPEB;
break;
case ACPI_TYPE_F:
flags |= IORESOURCE_DMA_TYPEF;
break;
default:
/* Set a default value ? */
flags |= IORESOURCE_DMA_COMPATIBLE;
pnp_err("Invalid DMA type");
}
switch (transfer) {
case ACPI_TRANSFER_8:
flags |= IORESOURCE_DMA_8BIT;
break;
case ACPI_TRANSFER_8_16:
flags |= IORESOURCE_DMA_8AND16BIT;
break;
case ACPI_TRANSFER_16:
flags |= IORESOURCE_DMA_16BIT;
break;
default:
/* Set a default value ? */
flags |= IORESOURCE_DMA_8AND16BIT;
pnp_err("Invalid DMA transfer type");
}
return flags;
}
static void
pnpacpi_parse_allocated_dmaresource(struct pnp_resource_table *res, u32 dma,
int type, int bus_master, int transfer)
{
int i = 0;
while (i < PNP_MAX_DMA &&
!(res->dma_resource[i].flags & IORESOURCE_UNSET))
i++;
if (i < PNP_MAX_DMA) {
res->dma_resource[i].flags = IORESOURCE_DMA; // Also clears _UNSET flag
res->dma_resource[i].flags |= dma_flags(type, bus_master, transfer);
if (dma == -1) {
res->dma_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
res->dma_resource[i].start = dma;
res->dma_resource[i].end = dma;
}
}
static void
pnpacpi_parse_allocated_ioresource(struct pnp_resource_table *res,
u64 io, u64 len, int io_decode)
{
int i = 0;
while (!(res->port_resource[i].flags & IORESOURCE_UNSET) &&
i < PNP_MAX_PORT)
i++;
if (i < PNP_MAX_PORT) {
res->port_resource[i].flags = IORESOURCE_IO; // Also clears _UNSET flag
if (io_decode == ACPI_DECODE_16)
res->port_resource[i].flags |= PNP_PORT_FLAG_16BITADDR;
if (len <= 0 || (io + len -1) >= 0x10003) {
res->port_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
res->port_resource[i].start = io;
res->port_resource[i].end = io + len - 1;
}
}
static void
pnpacpi_parse_allocated_memresource(struct pnp_resource_table *res,
u64 mem, u64 len, int write_protect)
{
int i = 0;
while (!(res->mem_resource[i].flags & IORESOURCE_UNSET) &&
(i < PNP_MAX_MEM))
i++;
if (i < PNP_MAX_MEM) {
res->mem_resource[i].flags = IORESOURCE_MEM; // Also clears _UNSET flag
if (len <= 0) {
res->mem_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
if(write_protect == ACPI_READ_WRITE_MEMORY)
res->mem_resource[i].flags |= IORESOURCE_MEM_WRITEABLE;
res->mem_resource[i].start = mem;
res->mem_resource[i].end = mem + len - 1;
}
}
static void
pnpacpi_parse_allocated_address_space(struct pnp_resource_table *res_table,
struct acpi_resource *res)
{
struct acpi_resource_address64 addr, *p = &addr;
acpi_status status;
status = acpi_resource_to_address64(res, p);
if (!ACPI_SUCCESS(status)) {
pnp_warn("PnPACPI: failed to convert resource type %d",
res->type);
return;
}
if (p->producer_consumer == ACPI_PRODUCER)
return;
if (p->resource_type == ACPI_MEMORY_RANGE)
pnpacpi_parse_allocated_memresource(res_table,
p->minimum, p->address_length, p->info.mem.write_protect);
else if (p->resource_type == ACPI_IO_RANGE)
pnpacpi_parse_allocated_ioresource(res_table,
p->minimum, p->address_length,
p->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16);
}
static acpi_status pnpacpi_allocated_resource(struct acpi_resource *res,
void *data)
{
struct pnp_resource_table *res_table = (struct pnp_resource_table *)data;
int i;
switch (res->type) {
case ACPI_RESOURCE_TYPE_IRQ:
/*
* Per spec, only one interrupt per descriptor is allowed in
* _CRS, but some firmware violates this, so parse them all.
*/
for (i = 0; i < res->data.irq.interrupt_count; i++) {
pnpacpi_parse_allocated_irqresource(res_table,
res->data.irq.interrupts[i],
res->data.irq.triggering,
res->data.irq.polarity,
res->data.irq.sharable);
}
break;
case ACPI_RESOURCE_TYPE_DMA:
if (res->data.dma.channel_count > 0)
pnpacpi_parse_allocated_dmaresource(res_table,
res->data.dma.channels[0],
res->data.dma.type,
res->data.dma.bus_master,
res->data.dma.transfer);
break;
case ACPI_RESOURCE_TYPE_IO:
pnpacpi_parse_allocated_ioresource(res_table,
res->data.io.minimum,
res->data.io.address_length,
res->data.io.io_decode);
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
break;
case ACPI_RESOURCE_TYPE_FIXED_IO:
pnpacpi_parse_allocated_ioresource(res_table,
res->data.fixed_io.address,
res->data.fixed_io.address_length,
ACPI_DECODE_10);
break;
case ACPI_RESOURCE_TYPE_VENDOR:
break;
case ACPI_RESOURCE_TYPE_END_TAG:
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
pnpacpi_parse_allocated_memresource(res_table,
res->data.memory24.minimum,
res->data.memory24.address_length,
res->data.memory24.write_protect);
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
pnpacpi_parse_allocated_memresource(res_table,
res->data.memory32.minimum,
res->data.memory32.address_length,
res->data.memory32.write_protect);
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
pnpacpi_parse_allocated_memresource(res_table,
res->data.fixed_memory32.address,
res->data.fixed_memory32.address_length,
res->data.fixed_memory32.write_protect);
break;
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
pnpacpi_parse_allocated_address_space(res_table, res);
break;
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
if (res->data.ext_address64.producer_consumer == ACPI_PRODUCER)
return AE_OK;
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
if (res->data.extended_irq.producer_consumer == ACPI_PRODUCER)
return AE_OK;
for (i = 0; i < res->data.extended_irq.interrupt_count; i++) {
pnpacpi_parse_allocated_irqresource(res_table,
res->data.extended_irq.interrupts[i],
res->data.extended_irq.triggering,
res->data.extended_irq.polarity,
res->data.extended_irq.sharable);
}
break;
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
break;
default:
pnp_warn("PnPACPI: unknown resource type %d", res->type);
return AE_ERROR;
}
return AE_OK;
}
acpi_status pnpacpi_parse_allocated_resource(acpi_handle handle, struct pnp_resource_table *res)
{
/* Blank the resource table values */
pnp_init_resource_table(res);
return acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_allocated_resource, res);
}
static void pnpacpi_parse_dma_option(struct pnp_option *option, struct acpi_resource_dma *p)
{
int i;
struct pnp_dma * dma;
if (p->channel_count == 0)
return;
dma = kzalloc(sizeof(struct pnp_dma), GFP_KERNEL);
if (!dma)
return;
for(i = 0; i < p->channel_count; i++)
dma->map |= 1 << p->channels[i];
dma->flags = dma_flags(p->type, p->bus_master, p->transfer);
pnp_register_dma_resource(option, dma);
return;
}
static void pnpacpi_parse_irq_option(struct pnp_option *option,
struct acpi_resource_irq *p)
{
int i;
struct pnp_irq *irq;
if (p->interrupt_count == 0)
return;
irq = kzalloc(sizeof(struct pnp_irq), GFP_KERNEL);
if (!irq)
return;
for(i = 0; i < p->interrupt_count; i++)
if (p->interrupts[i])
__set_bit(p->interrupts[i], irq->map);
irq->flags = irq_flags(p->triggering, p->polarity);
pnp_register_irq_resource(option, irq);
return;
}
static void pnpacpi_parse_ext_irq_option(struct pnp_option *option,
struct acpi_resource_extended_irq *p)
{
int i;
struct pnp_irq *irq;
if (p->interrupt_count == 0)
return;
irq = kzalloc(sizeof(struct pnp_irq), GFP_KERNEL);
if (!irq)
return;
for(i = 0; i < p->interrupt_count; i++)
if (p->interrupts[i])
__set_bit(p->interrupts[i], irq->map);
irq->flags = irq_flags(p->triggering, p->polarity);
pnp_register_irq_resource(option, irq);
return;
}
static void
pnpacpi_parse_port_option(struct pnp_option *option,
struct acpi_resource_io *io)
{
struct pnp_port *port;
if (io->address_length == 0)
return;
port = kzalloc(sizeof(struct pnp_port), GFP_KERNEL);
if (!port)
return;
port->min = io->minimum;
port->max = io->maximum;
port->align = io->alignment;
port->size = io->address_length;
port->flags = ACPI_DECODE_16 == io->io_decode ?
PNP_PORT_FLAG_16BITADDR : 0;
pnp_register_port_resource(option, port);
return;
}
static void
pnpacpi_parse_fixed_port_option(struct pnp_option *option,
struct acpi_resource_fixed_io *io)
{
struct pnp_port *port;
if (io->address_length == 0)
return;
port = kzalloc(sizeof(struct pnp_port), GFP_KERNEL);
if (!port)
return;
port->min = port->max = io->address;
port->size = io->address_length;
port->align = 0;
port->flags = PNP_PORT_FLAG_FIXED;
pnp_register_port_resource(option, port);
return;
}
static void
pnpacpi_parse_mem24_option(struct pnp_option *option,
struct acpi_resource_memory24 *p)
{
struct pnp_mem *mem;
if (p->address_length == 0)
return;
mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL);
if (!mem)
return;
mem->min = p->minimum;
mem->max = p->maximum;
mem->align = p->alignment;
mem->size = p->address_length;
mem->flags = (ACPI_READ_WRITE_MEMORY == p->write_protect) ?
IORESOURCE_MEM_WRITEABLE : 0;
pnp_register_mem_resource(option, mem);
return;
}
static void
pnpacpi_parse_mem32_option(struct pnp_option *option,
struct acpi_resource_memory32 *p)
{
struct pnp_mem *mem;
if (p->address_length == 0)
return;
mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL);
if (!mem)
return;
mem->min = p->minimum;
mem->max = p->maximum;
mem->align = p->alignment;
mem->size = p->address_length;
mem->flags = (ACPI_READ_WRITE_MEMORY == p->write_protect) ?
IORESOURCE_MEM_WRITEABLE : 0;
pnp_register_mem_resource(option, mem);
return;
}
static void
pnpacpi_parse_fixed_mem32_option(struct pnp_option *option,
struct acpi_resource_fixed_memory32 *p)
{
struct pnp_mem *mem;
if (p->address_length == 0)
return;
mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL);
if (!mem)
return;
mem->min = mem->max = p->address;
mem->size = p->address_length;
mem->align = 0;
mem->flags = (ACPI_READ_WRITE_MEMORY == p->write_protect) ?
IORESOURCE_MEM_WRITEABLE : 0;
pnp_register_mem_resource(option, mem);
return;
}
static void
pnpacpi_parse_address_option(struct pnp_option *option, struct acpi_resource *r)
{
struct acpi_resource_address64 addr, *p = &addr;
acpi_status status;
struct pnp_mem *mem;
struct pnp_port *port;
status = acpi_resource_to_address64(r, p);
if (!ACPI_SUCCESS(status)) {
pnp_warn("PnPACPI: failed to convert resource type %d", r->type);
return;
}
if (p->address_length == 0)
return;
if (p->resource_type == ACPI_MEMORY_RANGE) {
mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL);
if (!mem)
return;
mem->min = mem->max = p->minimum;
mem->size = p->address_length;
mem->align = 0;
mem->flags = (p->info.mem.write_protect ==
ACPI_READ_WRITE_MEMORY) ? IORESOURCE_MEM_WRITEABLE : 0;
pnp_register_mem_resource(option, mem);
} else if (p->resource_type == ACPI_IO_RANGE) {
port = kzalloc(sizeof(struct pnp_port), GFP_KERNEL);
if (!port)
return;
port->min = port->max = p->minimum;
port->size = p->address_length;
port->align = 0;
port->flags = PNP_PORT_FLAG_FIXED;
pnp_register_port_resource(option, port);
}
}
struct acpipnp_parse_option_s {
struct pnp_option *option;
struct pnp_option *option_independent;
struct pnp_dev *dev;
};
static acpi_status pnpacpi_option_resource(struct acpi_resource *res,
void *data)
{
int priority = 0;
struct acpipnp_parse_option_s *parse_data = (struct acpipnp_parse_option_s *)data;
struct pnp_dev *dev = parse_data->dev;
struct pnp_option *option = parse_data->option;
switch (res->type) {
case ACPI_RESOURCE_TYPE_IRQ:
pnpacpi_parse_irq_option(option, &res->data.irq);
break;
case ACPI_RESOURCE_TYPE_DMA:
pnpacpi_parse_dma_option(option, &res->data.dma);
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
switch (res->data.start_dpf.compatibility_priority) {
case ACPI_GOOD_CONFIGURATION:
priority = PNP_RES_PRIORITY_PREFERRED;
break;
case ACPI_ACCEPTABLE_CONFIGURATION:
priority = PNP_RES_PRIORITY_ACCEPTABLE;
break;
case ACPI_SUB_OPTIMAL_CONFIGURATION:
priority = PNP_RES_PRIORITY_FUNCTIONAL;
break;
default:
priority = PNP_RES_PRIORITY_INVALID;
break;
}
/* TBD: Considering performace/robustness bits */
option = pnp_register_dependent_option(dev, priority);
if (!option)
return AE_ERROR;
parse_data->option = option;
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
/*only one EndDependentFn is allowed*/
if (!parse_data->option_independent) {
pnp_warn("PnPACPI: more than one EndDependentFn");
return AE_ERROR;
}
parse_data->option = parse_data->option_independent;
parse_data->option_independent = NULL;
break;
case ACPI_RESOURCE_TYPE_IO:
pnpacpi_parse_port_option(option, &res->data.io);
break;
case ACPI_RESOURCE_TYPE_FIXED_IO:
pnpacpi_parse_fixed_port_option(option,
&res->data.fixed_io);
break;
case ACPI_RESOURCE_TYPE_VENDOR:
case ACPI_RESOURCE_TYPE_END_TAG:
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
pnpacpi_parse_mem24_option(option, &res->data.memory24);
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
pnpacpi_parse_mem32_option(option, &res->data.memory32);
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
pnpacpi_parse_fixed_mem32_option(option,
&res->data.fixed_memory32);
break;
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
pnpacpi_parse_address_option(option, res);
break;
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
pnpacpi_parse_ext_irq_option(option,
&res->data.extended_irq);
break;
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
break;
default:
pnp_warn("PnPACPI: unknown resource type %d", res->type);
return AE_ERROR;
}
return AE_OK;
}
acpi_status pnpacpi_parse_resource_option_data(acpi_handle handle,
struct pnp_dev *dev)
{
acpi_status status;
struct acpipnp_parse_option_s parse_data;
parse_data.option = pnp_register_independent_option(dev);
if (!parse_data.option)
return AE_ERROR;
parse_data.option_independent = parse_data.option;
parse_data.dev = dev;
status = acpi_walk_resources(handle, METHOD_NAME__PRS,
pnpacpi_option_resource, &parse_data);
return status;
}
static int pnpacpi_supported_resource(struct acpi_resource *res)
{
switch (res->type) {
case ACPI_RESOURCE_TYPE_IRQ:
case ACPI_RESOURCE_TYPE_DMA:
case ACPI_RESOURCE_TYPE_IO:
case ACPI_RESOURCE_TYPE_FIXED_IO:
case ACPI_RESOURCE_TYPE_MEMORY24:
case ACPI_RESOURCE_TYPE_MEMORY32:
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
return 1;
}
return 0;
}
/*
* Set resource
*/
static acpi_status pnpacpi_count_resources(struct acpi_resource *res,
void *data)
{
int *res_cnt = (int *)data;
if (pnpacpi_supported_resource(res))
(*res_cnt)++;
return AE_OK;
}
static acpi_status pnpacpi_type_resources(struct acpi_resource *res, void *data)
{
struct acpi_resource **resource = (struct acpi_resource **)data;
if (pnpacpi_supported_resource(res)) {
(*resource)->type = res->type;
(*resource)->length = sizeof(struct acpi_resource);
(*resource)++;
}
return AE_OK;
}
int pnpacpi_build_resource_template(acpi_handle handle,
struct acpi_buffer *buffer)
{
struct acpi_resource *resource;
int res_cnt = 0;
acpi_status status;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_count_resources, &res_cnt);
if (ACPI_FAILURE(status)) {
pnp_err("Evaluate _CRS failed");
return -EINVAL;
}
if (!res_cnt)
return -EINVAL;
buffer->length = sizeof(struct acpi_resource) * (res_cnt + 1) + 1;
buffer->pointer = kzalloc(buffer->length - 1, GFP_KERNEL);
if (!buffer->pointer)
return -ENOMEM;
pnp_dbg("Res cnt %d", res_cnt);
resource = (struct acpi_resource *)buffer->pointer;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_type_resources, &resource);
if (ACPI_FAILURE(status)) {
kfree(buffer->pointer);
pnp_err("Evaluate _CRS failed");
return -EINVAL;
}
/* resource will pointer the end resource now */
resource->type = ACPI_RESOURCE_TYPE_END_TAG;
return 0;
}
static void pnpacpi_encode_irq(struct acpi_resource *resource,
struct resource *p)
{
int triggering, polarity;
decode_irq_flags(p->flags & IORESOURCE_BITS, &triggering, &polarity);
resource->data.irq.triggering = triggering;
resource->data.irq.polarity = polarity;
if (triggering == ACPI_EDGE_SENSITIVE)
resource->data.irq.sharable = ACPI_EXCLUSIVE;
else
resource->data.irq.sharable = ACPI_SHARED;
resource->data.irq.interrupt_count = 1;
resource->data.irq.interrupts[0] = p->start;
}
static void pnpacpi_encode_ext_irq(struct acpi_resource *resource,
struct resource *p)
{
int triggering, polarity;
decode_irq_flags(p->flags & IORESOURCE_BITS, &triggering, &polarity);
resource->data.extended_irq.producer_consumer = ACPI_CONSUMER;
resource->data.extended_irq.triggering = triggering;
resource->data.extended_irq.polarity = polarity;
if (triggering == ACPI_EDGE_SENSITIVE)
resource->data.irq.sharable = ACPI_EXCLUSIVE;
else
resource->data.irq.sharable = ACPI_SHARED;
resource->data.extended_irq.interrupt_count = 1;
resource->data.extended_irq.interrupts[0] = p->start;
}
static void pnpacpi_encode_dma(struct acpi_resource *resource,
struct resource *p)
{
/* Note: pnp_assign_dma will copy pnp_dma->flags into p->flags */
switch (p->flags & IORESOURCE_DMA_SPEED_MASK) {
case IORESOURCE_DMA_TYPEA:
resource->data.dma.type = ACPI_TYPE_A;
break;
case IORESOURCE_DMA_TYPEB:
resource->data.dma.type = ACPI_TYPE_B;
break;
case IORESOURCE_DMA_TYPEF:
resource->data.dma.type = ACPI_TYPE_F;
break;
default:
resource->data.dma.type = ACPI_COMPATIBILITY;
}
switch (p->flags & IORESOURCE_DMA_TYPE_MASK) {
case IORESOURCE_DMA_8BIT:
resource->data.dma.transfer = ACPI_TRANSFER_8;
break;
case IORESOURCE_DMA_8AND16BIT:
resource->data.dma.transfer = ACPI_TRANSFER_8_16;
break;
default:
resource->data.dma.transfer = ACPI_TRANSFER_16;
}
resource->data.dma.bus_master = !!(p->flags & IORESOURCE_DMA_MASTER);
resource->data.dma.channel_count = 1;
resource->data.dma.channels[0] = p->start;
}
static void pnpacpi_encode_io(struct acpi_resource *resource,
struct resource *p)
{
/* Note: pnp_assign_port will copy pnp_port->flags into p->flags */
resource->data.io.io_decode = (p->flags & PNP_PORT_FLAG_16BITADDR)?
ACPI_DECODE_16 : ACPI_DECODE_10;
resource->data.io.minimum = p->start;
resource->data.io.maximum = p->end;
resource->data.io.alignment = 0; /* Correct? */
resource->data.io.address_length = p->end - p->start + 1;
}
static void pnpacpi_encode_fixed_io(struct acpi_resource *resource,
struct resource *p)
{
resource->data.fixed_io.address = p->start;
resource->data.fixed_io.address_length = p->end - p->start + 1;
}
static void pnpacpi_encode_mem24(struct acpi_resource *resource,
struct resource *p)
{
/* Note: pnp_assign_mem will copy pnp_mem->flags into p->flags */
resource->data.memory24.write_protect =
(p->flags & IORESOURCE_MEM_WRITEABLE) ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
resource->data.memory24.minimum = p->start;
resource->data.memory24.maximum = p->end;
resource->data.memory24.alignment = 0;
resource->data.memory24.address_length = p->end - p->start + 1;
}
static void pnpacpi_encode_mem32(struct acpi_resource *resource,
struct resource *p)
{
resource->data.memory32.write_protect =
(p->flags & IORESOURCE_MEM_WRITEABLE) ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
resource->data.memory32.minimum = p->start;
resource->data.memory32.maximum = p->end;
resource->data.memory32.alignment = 0;
resource->data.memory32.address_length = p->end - p->start + 1;
}
static void pnpacpi_encode_fixed_mem32(struct acpi_resource *resource,
struct resource *p)
{
resource->data.fixed_memory32.write_protect =
(p->flags & IORESOURCE_MEM_WRITEABLE) ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
resource->data.fixed_memory32.address = p->start;
resource->data.fixed_memory32.address_length = p->end - p->start + 1;
}
int pnpacpi_encode_resources(struct pnp_resource_table *res_table,
struct acpi_buffer *buffer)
{
int i = 0;
/* pnpacpi_build_resource_template allocates extra mem */
int res_cnt = (buffer->length - 1)/sizeof(struct acpi_resource) - 1;
struct acpi_resource *resource = (struct acpi_resource*)buffer->pointer;
int port = 0, irq = 0, dma = 0, mem = 0;
pnp_dbg("res cnt %d", res_cnt);
while (i < res_cnt) {
switch(resource->type) {
case ACPI_RESOURCE_TYPE_IRQ:
pnp_dbg("Encode irq");
pnpacpi_encode_irq(resource,
&res_table->irq_resource[irq]);
irq++;
break;
case ACPI_RESOURCE_TYPE_DMA:
pnp_dbg("Encode dma");
pnpacpi_encode_dma(resource,
&res_table->dma_resource[dma]);
dma++;
break;
case ACPI_RESOURCE_TYPE_IO:
pnp_dbg("Encode io");
pnpacpi_encode_io(resource,
&res_table->port_resource[port]);
port++;
break;
case ACPI_RESOURCE_TYPE_FIXED_IO:
pnp_dbg("Encode fixed io");
pnpacpi_encode_fixed_io(resource,
&res_table->port_resource[port]);
port++;
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
pnp_dbg("Encode mem24");
pnpacpi_encode_mem24(resource,
&res_table->mem_resource[mem]);
mem++;
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
pnp_dbg("Encode mem32");
pnpacpi_encode_mem32(resource,
&res_table->mem_resource[mem]);
mem++;
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
pnp_dbg("Encode fixed mem32");
pnpacpi_encode_fixed_mem32(resource,
&res_table->mem_resource[mem]);
mem++;
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
pnp_dbg("Encode ext irq");
pnpacpi_encode_ext_irq(resource,
&res_table->irq_resource[irq]);
irq++;
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
case ACPI_RESOURCE_TYPE_VENDOR:
case ACPI_RESOURCE_TYPE_END_TAG:
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
default: /* other type */
pnp_warn("unknown resource type %d", resource->type);
return -EINVAL;
}
resource++;
i++;
}
return 0;
}