You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/isdn/hisax/diva.c

1282 lines
34 KiB

/* $Id: diva.c,v 1.33.2.6 2004/02/11 13:21:33 keil Exp $
*
* low level stuff for Eicon.Diehl Diva Family ISDN cards
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For changes and modifications please read
* Documentation/isdn/HiSax.cert
*
* Thanks to Eicon Technology for documents and information
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "isac.h"
#include "hscx.h"
#include "ipac.h"
#include "ipacx.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/isapnp.h>
static const char *Diva_revision = "$Revision: 1.33.2.6 $";
#define byteout(addr, val) outb(val, addr)
#define bytein(addr) inb(addr)
#define DIVA_HSCX_DATA 0
#define DIVA_HSCX_ADR 4
#define DIVA_ISA_ISAC_DATA 2
#define DIVA_ISA_ISAC_ADR 6
#define DIVA_ISA_CTRL 7
#define DIVA_IPAC_ADR 0
#define DIVA_IPAC_DATA 1
#define DIVA_PCI_ISAC_DATA 8
#define DIVA_PCI_ISAC_ADR 0xc
#define DIVA_PCI_CTRL 0x10
/* SUB Types */
#define DIVA_ISA 1
#define DIVA_PCI 2
#define DIVA_IPAC_ISA 3
#define DIVA_IPAC_PCI 4
#define DIVA_IPACX_PCI 5
/* CTRL (Read) */
#define DIVA_IRQ_STAT 0x01
#define DIVA_EEPROM_SDA 0x02
/* CTRL (Write) */
#define DIVA_IRQ_REQ 0x01
#define DIVA_RESET 0x08
#define DIVA_EEPROM_CLK 0x40
#define DIVA_PCI_LED_A 0x10
#define DIVA_PCI_LED_B 0x20
#define DIVA_ISA_LED_A 0x20
#define DIVA_ISA_LED_B 0x40
#define DIVA_IRQ_CLR 0x80
/* Siemens PITA */
#define PITA_MISC_REG 0x1c
#ifdef __BIG_ENDIAN
#define PITA_PARA_SOFTRESET 0x00000001
#define PITA_SER_SOFTRESET 0x00000002
#define PITA_PARA_MPX_MODE 0x00000004
#define PITA_INT0_ENABLE 0x00000200
#else
#define PITA_PARA_SOFTRESET 0x01000000
#define PITA_SER_SOFTRESET 0x02000000
#define PITA_PARA_MPX_MODE 0x04000000
#define PITA_INT0_ENABLE 0x00020000
#endif
#define PITA_INT0_STATUS 0x02
static inline u_char
readreg(unsigned int ale, unsigned int adr, u_char off)
{
register u_char ret;
byteout(ale, off);
ret = bytein(adr);
return (ret);
}
static inline void
readfifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
byteout(ale, off);
insb(adr, data, size);
}
static inline void
writereg(unsigned int ale, unsigned int adr, u_char off, u_char data)
{
byteout(ale, off);
byteout(adr, data);
}
static inline void
writefifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
byteout(ale, off);
outsb(adr, data, size);
}
static inline u_char
memreadreg(unsigned long adr, u_char off)
{
return (*((unsigned char *)
(((unsigned int *)adr) + off)));
}
static inline void
memwritereg(unsigned long adr, u_char off, u_char data)
{
register u_char *p;
p = (unsigned char *)(((unsigned int *)adr) + off);
*p = data;
}
/* Interface functions */
static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
return (readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset));
}
static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset, value);
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size);
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size);
}
static u_char
ReadISAC_IPAC(struct IsdnCardState *cs, u_char offset)
{
return (readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset + 0x80));
}
static void
WriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset | 0x80, value);
}
static void
ReadISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size);
}
static void
WriteISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size);
}
static u_char
ReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (readreg(cs->hw.diva.hscx_adr,
cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0)));
}
static void
WriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
writereg(cs->hw.diva.hscx_adr,
cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0), value);
}
static u_char
MemReadISAC_IPAC(struct IsdnCardState *cs, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset + 0x80));
}
static void
MemWriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset | 0x80, value);
}
static void
MemReadISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
*data++ = memreadreg(cs->hw.diva.cfg_reg, 0x80);
}
static void
MemWriteISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
memwritereg(cs->hw.diva.cfg_reg, 0x80, *data++);
}
static u_char
MemReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0)));
}
static void
MemWriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0), value);
}
/* IO-Functions for IPACX type cards */
static u_char
MemReadISAC_IPACX(struct IsdnCardState *cs, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset));
}
static void
MemWriteISAC_IPACX(struct IsdnCardState *cs, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset, value);
}
static void
MemReadISACfifo_IPACX(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
*data++ = memreadreg(cs->hw.diva.cfg_reg, 0);
}
static void
MemWriteISACfifo_IPACX(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
memwritereg(cs->hw.diva.cfg_reg, 0, *data++);
}
static u_char
MemReadHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset +
(hscx ? IPACX_OFF_B2 : IPACX_OFF_B1)));
}
static void
MemWriteHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset +
(hscx ? IPACX_OFF_B2 : IPACX_OFF_B1), value);
}
/*
* fast interrupt HSCX stuff goes here
*/
#define READHSCX(cs, nr, reg) readreg(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, reg + (nr ? 0x40 : 0))
#define WRITEHSCX(cs, nr, reg, data) writereg(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, reg + (nr ? 0x40 : 0), data)
#define READHSCXFIFO(cs, nr, ptr, cnt) readfifo(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt)
#define WRITEHSCXFIFO(cs, nr, ptr, cnt) writefifo(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt)
#include "hscx_irq.c"
static irqreturn_t
diva_interrupt(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char val, sval;
u_long flags;
int cnt = 5;
spin_lock_irqsave(&cs->lock, flags);
while (((sval = bytein(cs->hw.diva.ctrl)) & DIVA_IRQ_REQ) && cnt) {
val = readreg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_ISTA + 0x40);
if (val)
hscx_int_main(cs, val);
val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA);
if (val)
isac_interrupt(cs, val);
cnt--;
}
if (!cnt)
printk(KERN_WARNING "Diva: IRQ LOOP\n");
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0xFF);
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0xFF);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0xFF);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0x0);
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0x0);
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0x0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t
diva_irq_ipac_isa(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char ista, val;
u_long flags;
int icnt = 5;
spin_lock_irqsave(&cs->lock, flags);
ista = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA);
Start_IPACISA:
if (cs->debug & L1_DEB_IPAC)
debugl1(cs, "IPAC ISTA %02X", ista);
if (ista & 0x0f) {
val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, HSCX_ISTA + 0x40);
if (ista & 0x01)
val |= 0x01;
if (ista & 0x04)
val |= 0x02;
if (ista & 0x08)
val |= 0x04;
if (val)
hscx_int_main(cs, val);
}
if (ista & 0x20) {
val = 0xfe & readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA + 0x80);
if (val) {
isac_interrupt(cs, val);
}
}
if (ista & 0x10) {
val = 0x01;
isac_interrupt(cs, val);
}
ista = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA);
if ((ista & 0x3f) && icnt) {
icnt--;
goto Start_IPACISA;
}
if (!icnt)
printk(KERN_WARNING "DIVA IPAC IRQ LOOP\n");
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xFF);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xC0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static inline void
MemwaitforCEC(struct IsdnCardState *cs, int hscx)
{
int to = 50;
while ((MemReadHSCX(cs, hscx, HSCX_STAR) & 0x04) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: waitforCEC timeout\n");
}
static inline void
MemwaitforXFW(struct IsdnCardState *cs, int hscx)
{
int to = 50;
while (((MemReadHSCX(cs, hscx, HSCX_STAR) & 0x44) != 0x40) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: waitforXFW timeout\n");
}
static inline void
MemWriteHSCXCMDR(struct IsdnCardState *cs, int hscx, u_char data)
{
MemwaitforCEC(cs, hscx);
MemWriteHSCX(cs, hscx, HSCX_CMDR, data);
}
static void
Memhscx_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr;
struct IsdnCardState *cs = bcs->cs;
int cnt;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hscx_empty_fifo");
if (bcs->hw.hscx.rcvidx + count > HSCX_BUFMAX) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hscx_empty_fifo: incoming packet too large");
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80);
bcs->hw.hscx.rcvidx = 0;
return;
}
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
cnt = count;
while (cnt--)
*ptr++ = memreadreg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0);
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80);
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
bcs->hw.hscx.rcvidx += count;
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "hscx_empty_fifo %c cnt %d",
bcs->hw.hscx.hscx ? 'B' : 'A', count);
QuickHex(t, ptr, count);
debugl1(cs, bcs->blog);
}
}
static void
Memhscx_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int more, count, cnt;
int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags) ? 64 : 32;
u_char *ptr, *p;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hscx_fill_fifo");
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0;
if (bcs->tx_skb->len > fifo_size) {
more = !0;
count = fifo_size;
} else
count = bcs->tx_skb->len;
cnt = count;
MemwaitforXFW(cs, bcs->hw.hscx.hscx);
p = ptr = bcs->tx_skb->data;
skb_pull(bcs->tx_skb, count);
bcs->tx_cnt -= count;
bcs->hw.hscx.count += count;
while (cnt--)
memwritereg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0,
*p++);
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, more ? 0x8 : 0xa);
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "hscx_fill_fifo %c cnt %d",
bcs->hw.hscx.hscx ? 'B' : 'A', count);
QuickHex(t, ptr, count);
debugl1(cs, bcs->blog);
}
}
static void
Memhscx_interrupt(struct IsdnCardState *cs, u_char val, u_char hscx)
{
u_char r;
struct BCState *bcs = cs->bcs + hscx;
struct sk_buff *skb;
int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags) ? 64 : 32;
int count;
if (!test_bit(BC_FLG_INIT, &bcs->Flag))
return;
if (val & 0x80) { /* RME */
r = MemReadHSCX(cs, hscx, HSCX_RSTA);
if ((r & 0xf0) != 0xa0) {
if (!(r & 0x80))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX invalid frame");
if ((r & 0x40) && bcs->mode)
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX RDO mode=%d",
bcs->mode);
if (!(r & 0x20))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX CRC error");
MemWriteHSCXCMDR(cs, hscx, 0x80);
} else {
count = MemReadHSCX(cs, hscx, HSCX_RBCL) & (
test_bit(HW_IPAC, &cs->HW_Flags) ? 0x3f : 0x1f);
if (count == 0)
count = fifo_size;
Memhscx_empty_fifo(bcs, count);
if ((count = bcs->hw.hscx.rcvidx - 1) > 0) {
if (cs->debug & L1_DEB_HSCX_FIFO)
debugl1(cs, "HX Frame %d", count);
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HSCX: receive out of memory\n");
else {
memcpy(skb_put(skb, count), bcs->hw.hscx.rcvbuf, count);
skb_queue_tail(&bcs->rqueue, skb);
}
}
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
if (val & 0x40) { /* RPF */
Memhscx_empty_fifo(bcs, fifo_size);
if (bcs->mode == L1_MODE_TRANS) {
/* receive audio data */
if (!(skb = dev_alloc_skb(fifo_size)))
printk(KERN_WARNING "HiSax: receive out of memory\n");
else {
memcpy(skb_put(skb, fifo_size), bcs->hw.hscx.rcvbuf, fifo_size);
skb_queue_tail(&bcs->rqueue, skb);
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
}
if (val & 0x10) { /* XPR */
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
Memhscx_fill_fifo(bcs);
return;
} else {
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.hscx.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_irq(bcs->tx_skb);
bcs->hw.hscx.count = 0;
bcs->tx_skb = NULL;
}
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hscx.count = 0;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
Memhscx_fill_fifo(bcs);
} else {
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
static inline void
Memhscx_int_main(struct IsdnCardState *cs, u_char val)
{
u_char exval;
struct BCState *bcs;
if (val & 0x01) { // EXB
bcs = cs->bcs + 1;
exval = MemReadHSCX(cs, 1, HSCX_EXIR);
if (exval & 0x40) {
if (bcs->mode == 1)
Memhscx_fill_fifo(bcs);
else {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bcs->tx_skb) {
skb_push(bcs->tx_skb, bcs->hw.hscx.count);
bcs->tx_cnt += bcs->hw.hscx.count;
bcs->hw.hscx.count = 0;
}
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX B EXIR %x Lost TX", exval);
}
} else if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX B EXIR %x", exval);
}
if (val & 0xf8) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX B interrupt %x", val);
Memhscx_interrupt(cs, val, 1);
}
if (val & 0x02) { // EXA
bcs = cs->bcs;
exval = MemReadHSCX(cs, 0, HSCX_EXIR);
if (exval & 0x40) {
if (bcs->mode == L1_MODE_TRANS)
Memhscx_fill_fifo(bcs);
else {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bcs->tx_skb) {
skb_push(bcs->tx_skb, bcs->hw.hscx.count);
bcs->tx_cnt += bcs->hw.hscx.count;
bcs->hw.hscx.count = 0;
}
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX A EXIR %x Lost TX", exval);
}
} else if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX A EXIR %x", exval);
}
if (val & 0x04) { // ICA
exval = MemReadHSCX(cs, 0, HSCX_ISTA);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX A interrupt %x", exval);
Memhscx_interrupt(cs, exval, 0);
}
}
static irqreturn_t
diva_irq_ipac_pci(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char ista, val;
int icnt = 5;
u_char *cfg;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
cfg = (u_char *) cs->hw.diva.pci_cfg;
val = *cfg;
if (!(val & PITA_INT0_STATUS)) {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE; /* other shared IRQ */
}
*cfg = PITA_INT0_STATUS; /* Reset pending INT0 */
ista = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA);
Start_IPACPCI:
if (cs->debug & L1_DEB_IPAC)
debugl1(cs, "IPAC ISTA %02X", ista);
if (ista & 0x0f) {
val = memreadreg(cs->hw.diva.cfg_reg, HSCX_ISTA + 0x40);
if (ista & 0x01)
val |= 0x01;
if (ista & 0x04)
val |= 0x02;
if (ista & 0x08)
val |= 0x04;
if (val)
Memhscx_int_main(cs, val);
}
if (ista & 0x20) {
val = 0xfe & memreadreg(cs->hw.diva.cfg_reg, ISAC_ISTA + 0x80);
if (val) {
isac_interrupt(cs, val);
}
}
if (ista & 0x10) {
val = 0x01;
isac_interrupt(cs, val);
}
ista = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA);
if ((ista & 0x3f) && icnt) {
icnt--;
goto Start_IPACPCI;
}
if (!icnt)
printk(KERN_WARNING "DIVA IPAC PCI IRQ LOOP\n");
memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xFF);
memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xC0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t
diva_irq_ipacx_pci(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char val;
u_char *cfg;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
cfg = (u_char *) cs->hw.diva.pci_cfg;
val = *cfg;
if (!(val & PITA_INT0_STATUS)) {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE; // other shared IRQ
}
interrupt_ipacx(cs); // handler for chip
*cfg = PITA_INT0_STATUS; // Reset PLX interrupt
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static void
release_io_diva(struct IsdnCardState *cs)
{
int bytecnt;
if ((cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI)) {
u_int *cfg = (unsigned int *)cs->hw.diva.pci_cfg;
*cfg = 0; /* disable INT0/1 */
*cfg = 2; /* reset pending INT0 */
if (cs->hw.diva.cfg_reg)
iounmap((void *)cs->hw.diva.cfg_reg);
if (cs->hw.diva.pci_cfg)
iounmap((void *)cs->hw.diva.pci_cfg);
return;
} else if (cs->subtyp != DIVA_IPAC_ISA) {
del_timer(&cs->hw.diva.tl);
if (cs->hw.diva.cfg_reg)
byteout(cs->hw.diva.ctrl, 0); /* LED off, Reset */
}
if ((cs->subtyp == DIVA_ISA) || (cs->subtyp == DIVA_IPAC_ISA))
bytecnt = 8;
else
bytecnt = 32;
if (cs->hw.diva.cfg_reg) {
release_region(cs->hw.diva.cfg_reg, bytecnt);
}
}
static void
iounmap_diva(struct IsdnCardState *cs)
{
if ((cs->subtyp == DIVA_IPAC_PCI) || (cs->subtyp == DIVA_IPACX_PCI)) {
if (cs->hw.diva.cfg_reg) {
iounmap((void *)cs->hw.diva.cfg_reg);
cs->hw.diva.cfg_reg = 0;
}
if (cs->hw.diva.pci_cfg) {
iounmap((void *)cs->hw.diva.pci_cfg);
cs->hw.diva.pci_cfg = 0;
}
}
return;
}
static void
reset_diva(struct IsdnCardState *cs)
{
if (cs->subtyp == DIVA_IPAC_ISA) {
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x20);
mdelay(10);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x00);
mdelay(10);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xc0);
} else if (cs->subtyp == DIVA_IPAC_PCI) {
unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg +
PITA_MISC_REG);
*ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE;
mdelay(10);
*ireg = PITA_PARA_MPX_MODE;
mdelay(10);
memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xc0);
} else if (cs->subtyp == DIVA_IPACX_PCI) {
unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg +
PITA_MISC_REG);
*ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE;
mdelay(10);
*ireg = PITA_PARA_MPX_MODE | PITA_SER_SOFTRESET;
mdelay(10);
MemWriteISAC_IPACX(cs, IPACX_MASK, 0xff); // Interrupts off
} else { /* DIVA 2.0 */
cs->hw.diva.ctrl_reg = 0; /* Reset On */
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
mdelay(10);
cs->hw.diva.ctrl_reg |= DIVA_RESET; /* Reset Off */
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
mdelay(10);
if (cs->subtyp == DIVA_ISA)
cs->hw.diva.ctrl_reg |= DIVA_ISA_LED_A;
else {
/* Workaround PCI9060 */
byteout(cs->hw.diva.pci_cfg + 0x69, 9);
cs->hw.diva.ctrl_reg |= DIVA_PCI_LED_A;
}
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
}
}
#define DIVA_ASSIGN 1
static void
diva_led_handler(struct IsdnCardState *cs)
{
int blink = 0;
if ((cs->subtyp == DIVA_IPAC_ISA) ||
(cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI))
return;
del_timer(&cs->hw.diva.tl);
if (cs->hw.diva.status & DIVA_ASSIGN)
cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_A : DIVA_PCI_LED_A;
else {
cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_A : DIVA_PCI_LED_A;
blink = 250;
}
if (cs->hw.diva.status & 0xf000)
cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_B : DIVA_PCI_LED_B;
else if (cs->hw.diva.status & 0x0f00) {
cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_B : DIVA_PCI_LED_B;
blink = 500;
} else
cs->hw.diva.ctrl_reg &= ~((DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_B : DIVA_PCI_LED_B);
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
if (blink) {
init_timer(&cs->hw.diva.tl);
cs->hw.diva.tl.expires = jiffies + ((blink * HZ) / 1000);
add_timer(&cs->hw.diva.tl);
}
}
static int
Diva_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_int *ireg;
u_long flags;
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_diva(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_diva(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
reset_diva(cs);
if (cs->subtyp == DIVA_IPACX_PCI) {
ireg = (unsigned int *)cs->hw.diva.pci_cfg;
*ireg = PITA_INT0_ENABLE;
init_ipacx(cs, 3); // init chip and enable interrupts
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
}
if (cs->subtyp == DIVA_IPAC_PCI) {
ireg = (unsigned int *)cs->hw.diva.pci_cfg;
*ireg = PITA_INT0_ENABLE;
}
inithscxisac(cs, 3);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
return (0);
case (MDL_REMOVE | REQUEST):
cs->hw.diva.status = 0;
break;
case (MDL_ASSIGN | REQUEST):
cs->hw.diva.status |= DIVA_ASSIGN;
break;
case MDL_INFO_SETUP:
if ((long)arg)
cs->hw.diva.status |= 0x0200;
else
cs->hw.diva.status |= 0x0100;
break;
case MDL_INFO_CONN:
if ((long)arg)
cs->hw.diva.status |= 0x2000;
else
cs->hw.diva.status |= 0x1000;
break;
case MDL_INFO_REL:
if ((long)arg) {
cs->hw.diva.status &= ~0x2000;
cs->hw.diva.status &= ~0x0200;
} else {
cs->hw.diva.status &= ~0x1000;
cs->hw.diva.status &= ~0x0100;
}
break;
}
if ((cs->subtyp != DIVA_IPAC_ISA) &&
(cs->subtyp != DIVA_IPAC_PCI) &&
(cs->subtyp != DIVA_IPACX_PCI)) {
spin_lock_irqsave(&cs->lock, flags);
diva_led_handler(cs);
spin_unlock_irqrestore(&cs->lock, flags);
}
return (0);
}
static int setup_diva_common(struct IsdnCardState *cs)
{
int bytecnt;
u_char val;
if ((cs->subtyp == DIVA_ISA) || (cs->subtyp == DIVA_IPAC_ISA))
bytecnt = 8;
else
bytecnt = 32;
printk(KERN_INFO
"Diva: %s card configured at %#lx IRQ %d\n",
(cs->subtyp == DIVA_PCI) ? "PCI" :
(cs->subtyp == DIVA_ISA) ? "ISA" :
(cs->subtyp == DIVA_IPAC_ISA) ? "IPAC ISA" :
(cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI",
cs->hw.diva.cfg_reg, cs->irq);
if ((cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI) ||
(cs->subtyp == DIVA_PCI))
printk(KERN_INFO "Diva: %s space at %#lx\n",
(cs->subtyp == DIVA_PCI) ? "PCI" :
(cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI",
cs->hw.diva.pci_cfg);
if ((cs->subtyp != DIVA_IPAC_PCI) &&
(cs->subtyp != DIVA_IPACX_PCI)) {
if (!request_region(cs->hw.diva.cfg_reg, bytecnt, "diva isdn")) {
printk(KERN_WARNING
"HiSax: %s config port %lx-%lx already in use\n",
"diva",
cs->hw.diva.cfg_reg,
cs->hw.diva.cfg_reg + bytecnt);
iounmap_diva(cs);
return (0);
}
}
cs->BC_Read_Reg = &ReadHSCX;
cs->BC_Write_Reg = &WriteHSCX;
cs->BC_Send_Data = &hscx_fill_fifo;
cs->cardmsg = &Diva_card_msg;
setup_isac(cs);
if (cs->subtyp == DIVA_IPAC_ISA) {
cs->readisac = &ReadISAC_IPAC;
cs->writeisac = &WriteISAC_IPAC;
cs->readisacfifo = &ReadISACfifo_IPAC;
cs->writeisacfifo = &WriteISACfifo_IPAC;
cs->irq_func = &diva_irq_ipac_isa;
val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ID);
printk(KERN_INFO "Diva: IPAC version %x\n", val);
} else if (cs->subtyp == DIVA_IPAC_PCI) {
cs->readisac = &MemReadISAC_IPAC;
cs->writeisac = &MemWriteISAC_IPAC;
cs->readisacfifo = &MemReadISACfifo_IPAC;
cs->writeisacfifo = &MemWriteISACfifo_IPAC;
cs->BC_Read_Reg = &MemReadHSCX;
cs->BC_Write_Reg = &MemWriteHSCX;
cs->BC_Send_Data = &Memhscx_fill_fifo;
cs->irq_func = &diva_irq_ipac_pci;
val = memreadreg(cs->hw.diva.cfg_reg, IPAC_ID);
printk(KERN_INFO "Diva: IPAC version %x\n", val);
} else if (cs->subtyp == DIVA_IPACX_PCI) {
cs->readisac = &MemReadISAC_IPACX;
cs->writeisac = &MemWriteISAC_IPACX;
cs->readisacfifo = &MemReadISACfifo_IPACX;
cs->writeisacfifo = &MemWriteISACfifo_IPACX;
cs->BC_Read_Reg = &MemReadHSCX_IPACX;
cs->BC_Write_Reg = &MemWriteHSCX_IPACX;
cs->BC_Send_Data = NULL; // function located in ipacx module
cs->irq_func = &diva_irq_ipacx_pci;
printk(KERN_INFO "Diva: IPACX Design Id: %x\n",
MemReadISAC_IPACX(cs, IPACX_ID) & 0x3F);
} else { /* DIVA 2.0 */
cs->hw.diva.tl.function = (void *) diva_led_handler;
cs->hw.diva.tl.data = (long) cs;
init_timer(&cs->hw.diva.tl);
cs->readisac = &ReadISAC;
cs->writeisac = &WriteISAC;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->irq_func = &diva_interrupt;
ISACVersion(cs, "Diva:");
if (HscxVersion(cs, "Diva:")) {
printk(KERN_WARNING
"Diva: wrong HSCX versions check IO address\n");
release_io_diva(cs);
return (0);
}
}
return (1);
}
#ifdef CONFIG_ISA
static int setup_diva_isa(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
u_char val;
if (!card->para[1])
return (-1); /* card not found; continue search */
cs->hw.diva.ctrl_reg = 0;
cs->hw.diva.cfg_reg = card->para[1];
val = readreg(cs->hw.diva.cfg_reg + DIVA_IPAC_ADR,
cs->hw.diva.cfg_reg + DIVA_IPAC_DATA, IPAC_ID);
printk(KERN_INFO "Diva: IPAC version %x\n", val);
if ((val == 1) || (val == 2)) {
cs->subtyp = DIVA_IPAC_ISA;
cs->hw.diva.ctrl = 0;
cs->hw.diva.isac = card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.hscx = card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.isac_adr = card->para[1] + DIVA_IPAC_ADR;
cs->hw.diva.hscx_adr = card->para[1] + DIVA_IPAC_ADR;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
} else {
cs->subtyp = DIVA_ISA;
cs->hw.diva.ctrl = card->para[1] + DIVA_ISA_CTRL;
cs->hw.diva.isac = card->para[1] + DIVA_ISA_ISAC_DATA;
cs->hw.diva.hscx = card->para[1] + DIVA_HSCX_DATA;
cs->hw.diva.isac_adr = card->para[1] + DIVA_ISA_ISAC_ADR;
cs->hw.diva.hscx_adr = card->para[1] + DIVA_HSCX_ADR;
}
cs->irq = card->para[0];
return (1); /* card found */
}
#else /* if !CONFIG_ISA */
static int setup_diva_isa(struct IsdnCard *card)
{
return (-1); /* card not found; continue search */
}
#endif /* CONFIG_ISA */
#ifdef __ISAPNP__
static struct isapnp_device_id diva_ids[] = {
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
(unsigned long) "Diva picola" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x51),
(unsigned long) "Diva picola" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
(unsigned long) "Diva 2.0" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x71),
(unsigned long) "Diva 2.0" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
(unsigned long) "Diva 2.01" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0xA1),
(unsigned long) "Diva 2.01" },
{ 0, }
};
static struct isapnp_device_id *ipid = &diva_ids[0];
static struct pnp_card *pnp_c = NULL;
static int setup_diva_isapnp(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
struct pnp_dev *pnp_d;
if (!isapnp_present())
return (-1); /* card not found; continue search */
while (ipid->card_vendor) {
if ((pnp_c = pnp_find_card(ipid->card_vendor,
ipid->card_device, pnp_c))) {
pnp_d = NULL;
if ((pnp_d = pnp_find_dev(pnp_c,
ipid->vendor, ipid->function, pnp_d))) {
int err;
printk(KERN_INFO "HiSax: %s detected\n",
(char *)ipid->driver_data);
pnp_disable_dev(pnp_d);
err = pnp_activate_dev(pnp_d);
if (err < 0) {
printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
__func__, err);
return (0);
}
card->para[1] = pnp_port_start(pnp_d, 0);
card->para[0] = pnp_irq(pnp_d, 0);
if (!card->para[0] || !card->para[1]) {
printk(KERN_ERR "Diva PnP:some resources are missing %ld/%lx\n",
card->para[0], card->para[1]);
pnp_disable_dev(pnp_d);
return (0);
}
cs->hw.diva.cfg_reg = card->para[1];
cs->irq = card->para[0];
if (ipid->function == ISAPNP_FUNCTION(0xA1)) {
cs->subtyp = DIVA_IPAC_ISA;
cs->hw.diva.ctrl = 0;
cs->hw.diva.isac =
card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.hscx =
card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.isac_adr =
card->para[1] + DIVA_IPAC_ADR;
cs->hw.diva.hscx_adr =
card->para[1] + DIVA_IPAC_ADR;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
} else {
cs->subtyp = DIVA_ISA;
cs->hw.diva.ctrl =
card->para[1] + DIVA_ISA_CTRL;
cs->hw.diva.isac =
card->para[1] + DIVA_ISA_ISAC_DATA;
cs->hw.diva.hscx =
card->para[1] + DIVA_HSCX_DATA;
cs->hw.diva.isac_adr =
card->para[1] + DIVA_ISA_ISAC_ADR;
cs->hw.diva.hscx_adr =
card->para[1] + DIVA_HSCX_ADR;
}
return (1); /* card found */
} else {
printk(KERN_ERR "Diva PnP: PnP error card found, no device\n");
return (0);
}
}
ipid++;
pnp_c = NULL;
}
return (-1); /* card not found; continue search */
}
#else /* if !ISAPNP */
static int setup_diva_isapnp(struct IsdnCard *card)
{
return (-1); /* card not found; continue search */
}
#endif /* ISAPNP */
#ifdef CONFIG_PCI
static struct pci_dev *dev_diva = NULL;
static struct pci_dev *dev_diva_u = NULL;
static struct pci_dev *dev_diva201 = NULL;
static struct pci_dev *dev_diva202 = NULL;
static int setup_diva_pci(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
cs->subtyp = 0;
if ((dev_diva = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA20, dev_diva))) {
if (pci_enable_device(dev_diva))
return (0);
cs->subtyp = DIVA_PCI;
cs->irq = dev_diva->irq;
cs->hw.diva.cfg_reg = pci_resource_start(dev_diva, 2);
} else if ((dev_diva_u = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA20_U, dev_diva_u))) {
if (pci_enable_device(dev_diva_u))
return (0);
cs->subtyp = DIVA_PCI;
cs->irq = dev_diva_u->irq;
cs->hw.diva.cfg_reg = pci_resource_start(dev_diva_u, 2);
} else if ((dev_diva201 = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA201, dev_diva201))) {
if (pci_enable_device(dev_diva201))
return (0);
cs->subtyp = DIVA_IPAC_PCI;
cs->irq = dev_diva201->irq;
cs->hw.diva.pci_cfg =
(ulong) ioremap(pci_resource_start(dev_diva201, 0), 4096);
cs->hw.diva.cfg_reg =
(ulong) ioremap(pci_resource_start(dev_diva201, 1), 4096);
} else if ((dev_diva202 = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA202, dev_diva202))) {
if (pci_enable_device(dev_diva202))
return (0);
cs->subtyp = DIVA_IPACX_PCI;
cs->irq = dev_diva202->irq;
cs->hw.diva.pci_cfg =
(ulong) ioremap(pci_resource_start(dev_diva202, 0), 4096);
cs->hw.diva.cfg_reg =
(ulong) ioremap(pci_resource_start(dev_diva202, 1), 4096);
} else {
return (-1); /* card not found; continue search */
}
if (!cs->irq) {
printk(KERN_WARNING "Diva: No IRQ for PCI card found\n");
iounmap_diva(cs);
return (0);
}
if (!cs->hw.diva.cfg_reg) {
printk(KERN_WARNING "Diva: No IO-Adr for PCI card found\n");
iounmap_diva(cs);
return (0);
}
cs->irq_flags |= IRQF_SHARED;
if ((cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI)) {
cs->hw.diva.ctrl = 0;
cs->hw.diva.isac = 0;
cs->hw.diva.hscx = 0;
cs->hw.diva.isac_adr = 0;
cs->hw.diva.hscx_adr = 0;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
} else {
cs->hw.diva.ctrl = cs->hw.diva.cfg_reg + DIVA_PCI_CTRL;
cs->hw.diva.isac = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_DATA;
cs->hw.diva.hscx = cs->hw.diva.cfg_reg + DIVA_HSCX_DATA;
cs->hw.diva.isac_adr = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_ADR;
cs->hw.diva.hscx_adr = cs->hw.diva.cfg_reg + DIVA_HSCX_ADR;
}
return (1); /* card found */
}
#else /* if !CONFIG_PCI */
static int setup_diva_pci(struct IsdnCard *card)
{
return (-1); /* card not found; continue search */
}
#endif /* CONFIG_PCI */
int setup_diva(struct IsdnCard *card)
{
int rc, have_card = 0;
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, Diva_revision);
printk(KERN_INFO "HiSax: Eicon.Diehl Diva driver Rev. %s\n", HiSax_getrev(tmp));
if (cs->typ != ISDN_CTYPE_DIEHLDIVA)
return (0);
cs->hw.diva.status = 0;
rc = setup_diva_isa(card);
if (!rc)
return rc;
if (rc > 0) {
have_card = 1;
goto ready;
}
rc = setup_diva_isapnp(card);
if (!rc)
return rc;
if (rc > 0) {
have_card = 1;
goto ready;
}
rc = setup_diva_pci(card);
if (!rc)
return rc;
if (rc > 0)
have_card = 1;
ready:
if (!have_card) {
printk(KERN_WARNING "Diva: No ISA, ISAPNP or PCI card found\n");
return (0);
}
return setup_diva_common(card->cs);
}