You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/dma/sa11x0-dma.c

1105 lines
26 KiB

/*
* SA11x0 DMAengine support
*
* Copyright (C) 2012 Russell King
* Derived in part from arch/arm/mach-sa1100/dma.c,
* Copyright (C) 2000, 2001 by Nicolas Pitre
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sa11x0-dma.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "virt-dma.h"
#define NR_PHY_CHAN 6
#define DMA_ALIGN 3
#define DMA_MAX_SIZE 0x1fff
#define DMA_CHUNK_SIZE 0x1000
#define DMA_DDAR 0x00
#define DMA_DCSR_S 0x04
#define DMA_DCSR_C 0x08
#define DMA_DCSR_R 0x0c
#define DMA_DBSA 0x10
#define DMA_DBTA 0x14
#define DMA_DBSB 0x18
#define DMA_DBTB 0x1c
#define DMA_SIZE 0x20
#define DCSR_RUN (1 << 0)
#define DCSR_IE (1 << 1)
#define DCSR_ERROR (1 << 2)
#define DCSR_DONEA (1 << 3)
#define DCSR_STRTA (1 << 4)
#define DCSR_DONEB (1 << 5)
#define DCSR_STRTB (1 << 6)
#define DCSR_BIU (1 << 7)
#define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
#define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
#define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
#define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
#define DDAR_Ser0UDCTr (0x0 << 4)
#define DDAR_Ser0UDCRc (0x1 << 4)
#define DDAR_Ser1SDLCTr (0x2 << 4)
#define DDAR_Ser1SDLCRc (0x3 << 4)
#define DDAR_Ser1UARTTr (0x4 << 4)
#define DDAR_Ser1UARTRc (0x5 << 4)
#define DDAR_Ser2ICPTr (0x6 << 4)
#define DDAR_Ser2ICPRc (0x7 << 4)
#define DDAR_Ser3UARTTr (0x8 << 4)
#define DDAR_Ser3UARTRc (0x9 << 4)
#define DDAR_Ser4MCP0Tr (0xa << 4)
#define DDAR_Ser4MCP0Rc (0xb << 4)
#define DDAR_Ser4MCP1Tr (0xc << 4)
#define DDAR_Ser4MCP1Rc (0xd << 4)
#define DDAR_Ser4SSPTr (0xe << 4)
#define DDAR_Ser4SSPRc (0xf << 4)
struct sa11x0_dma_sg {
u32 addr;
u32 len;
};
struct sa11x0_dma_desc {
struct virt_dma_desc vd;
u32 ddar;
size_t size;
unsigned period;
bool cyclic;
unsigned sglen;
struct sa11x0_dma_sg sg[0];
};
struct sa11x0_dma_phy;
struct sa11x0_dma_chan {
struct virt_dma_chan vc;
/* protected by c->vc.lock */
struct sa11x0_dma_phy *phy;
enum dma_status status;
/* protected by d->lock */
struct list_head node;
u32 ddar;
const char *name;
};
struct sa11x0_dma_phy {
void __iomem *base;
struct sa11x0_dma_dev *dev;
unsigned num;
struct sa11x0_dma_chan *vchan;
/* Protected by c->vc.lock */
unsigned sg_load;
struct sa11x0_dma_desc *txd_load;
unsigned sg_done;
struct sa11x0_dma_desc *txd_done;
#ifdef CONFIG_PM_SLEEP
u32 dbs[2];
u32 dbt[2];
u32 dcsr;
#endif
};
struct sa11x0_dma_dev {
struct dma_device slave;
void __iomem *base;
spinlock_t lock;
struct tasklet_struct task;
struct list_head chan_pending;
struct sa11x0_dma_phy phy[NR_PHY_CHAN];
};
static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
{
return container_of(chan, struct sa11x0_dma_chan, vc.chan);
}
static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
{
return container_of(dmadev, struct sa11x0_dma_dev, slave);
}
static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
{
struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL;
}
static void sa11x0_dma_free_desc(struct virt_dma_desc *vd)
{
kfree(container_of(vd, struct sa11x0_dma_desc, vd));
}
static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
{
list_del(&txd->vd.node);
p->txd_load = txd;
p->sg_load = 0;
dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar);
}
static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
struct sa11x0_dma_chan *c)
{
struct sa11x0_dma_desc *txd = p->txd_load;
struct sa11x0_dma_sg *sg;
void __iomem *base = p->base;
unsigned dbsx, dbtx;
u32 dcsr;
if (!txd)
return;
dcsr = readl_relaxed(base + DMA_DCSR_R);
/* Don't try to load the next transfer if both buffers are started */
if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
return;
if (p->sg_load == txd->sglen) {
if (!txd->cyclic) {
struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
/*
* We have reached the end of the current descriptor.
* Peek at the next descriptor, and if compatible with
* the current, start processing it.
*/
if (txn && txn->ddar == txd->ddar) {
txd = txn;
sa11x0_dma_start_desc(p, txn);
} else {
p->txd_load = NULL;
return;
}
} else {
/* Cyclic: reset back to beginning */
p->sg_load = 0;
}
}
sg = &txd->sg[p->sg_load++];
/* Select buffer to load according to channel status */
if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
dbsx = DMA_DBSA;
dbtx = DMA_DBTA;
dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
} else {
dbsx = DMA_DBSB;
dbtx = DMA_DBTB;
dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
}
writel_relaxed(sg->addr, base + dbsx);
writel_relaxed(sg->len, base + dbtx);
writel(dcsr, base + DMA_DCSR_S);
dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
p->num, dcsr,
'A' + (dbsx == DMA_DBSB), sg->addr,
'A' + (dbtx == DMA_DBTB), sg->len);
}
static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
struct sa11x0_dma_chan *c)
{
struct sa11x0_dma_desc *txd = p->txd_done;
if (++p->sg_done == txd->sglen) {
if (!txd->cyclic) {
vchan_cookie_complete(&txd->vd);
p->sg_done = 0;
p->txd_done = p->txd_load;
if (!p->txd_done)
tasklet_schedule(&p->dev->task);
} else {
if ((p->sg_done % txd->period) == 0)
vchan_cyclic_callback(&txd->vd);
/* Cyclic: reset back to beginning */
p->sg_done = 0;
}
}
sa11x0_dma_start_sg(p, c);
}
static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
{
struct sa11x0_dma_phy *p = dev_id;
struct sa11x0_dma_dev *d = p->dev;
struct sa11x0_dma_chan *c;
u32 dcsr;
dcsr = readl_relaxed(p->base + DMA_DCSR_R);
if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
return IRQ_NONE;
/* Clear reported status bits */
writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
p->base + DMA_DCSR_C);
dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
if (dcsr & DCSR_ERROR) {
dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
p->num, dcsr,
readl_relaxed(p->base + DMA_DDAR),
readl_relaxed(p->base + DMA_DBSA),
readl_relaxed(p->base + DMA_DBTA),
readl_relaxed(p->base + DMA_DBSB),
readl_relaxed(p->base + DMA_DBTB));
}
c = p->vchan;
if (c) {
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
/*
* Now that we're holding the lock, check that the vchan
* really is associated with this pchan before touching the
* hardware. This should always succeed, because we won't
* change p->vchan or c->phy while the channel is actively
* transferring.
*/
if (c->phy == p) {
if (dcsr & DCSR_DONEA)
sa11x0_dma_complete(p, c);
if (dcsr & DCSR_DONEB)
sa11x0_dma_complete(p, c);
}
spin_unlock_irqrestore(&c->vc.lock, flags);
}
return IRQ_HANDLED;
}
static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
{
struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
/* If the issued list is empty, we have no further txds to process */
if (txd) {
struct sa11x0_dma_phy *p = c->phy;
sa11x0_dma_start_desc(p, txd);
p->txd_done = txd;
p->sg_done = 0;
/* The channel should not have any transfers started */
WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
(DCSR_STRTA | DCSR_STRTB));
/* Clear the run and start bits before changing DDAR */
writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
p->base + DMA_DCSR_C);
writel_relaxed(txd->ddar, p->base + DMA_DDAR);
/* Try to start both buffers */
sa11x0_dma_start_sg(p, c);
sa11x0_dma_start_sg(p, c);
}
}
static void sa11x0_dma_tasklet(unsigned long arg)
{
struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
struct sa11x0_dma_phy *p;
struct sa11x0_dma_chan *c;
unsigned pch, pch_alloc = 0;
dev_dbg(d->slave.dev, "tasklet enter\n");
list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) {
spin_lock_irq(&c->vc.lock);
p = c->phy;
if (p && !p->txd_done) {
sa11x0_dma_start_txd(c);
if (!p->txd_done) {
/* No current txd associated with this channel */
dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
/* Mark this channel free */
c->phy = NULL;
p->vchan = NULL;
}
}
spin_unlock_irq(&c->vc.lock);
}
spin_lock_irq(&d->lock);
for (pch = 0; pch < NR_PHY_CHAN; pch++) {
p = &d->phy[pch];
if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
c = list_first_entry(&d->chan_pending,
struct sa11x0_dma_chan, node);
list_del_init(&c->node);
pch_alloc |= 1 << pch;
/* Mark this channel allocated */
p->vchan = c;
dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
}
}
spin_unlock_irq(&d->lock);
for (pch = 0; pch < NR_PHY_CHAN; pch++) {
if (pch_alloc & (1 << pch)) {
p = &d->phy[pch];
c = p->vchan;
spin_lock_irq(&c->vc.lock);
c->phy = p;
sa11x0_dma_start_txd(c);
spin_unlock_irq(&c->vc.lock);
}
}
dev_dbg(d->slave.dev, "tasklet exit\n");
}
static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
{
return 0;
}
static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
{
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
unsigned long flags;
spin_lock_irqsave(&d->lock, flags);
list_del_init(&c->node);
spin_unlock_irqrestore(&d->lock, flags);
vchan_free_chan_resources(&c->vc);
}
static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
{
unsigned reg;
u32 dcsr;
dcsr = readl_relaxed(p->base + DMA_DCSR_R);
if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
(dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
reg = DMA_DBSA;
else
reg = DMA_DBSB;
return readl_relaxed(p->base + reg);
}
static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *state)
{
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
struct sa11x0_dma_phy *p;
struct virt_dma_desc *vd;
unsigned long flags;
enum dma_status ret;
ret = dma_cookie_status(&c->vc.chan, cookie, state);
if (ret == DMA_SUCCESS)
return ret;
if (!state)
return c->status;
spin_lock_irqsave(&c->vc.lock, flags);
p = c->phy;
/*
* If the cookie is on our issue queue, then the residue is
* its total size.
*/
vd = vchan_find_desc(&c->vc, cookie);
if (vd) {
state->residue = container_of(vd, struct sa11x0_dma_desc, vd)->size;
} else if (!p) {
state->residue = 0;
} else {
struct sa11x0_dma_desc *txd;
size_t bytes = 0;
if (p->txd_done && p->txd_done->vd.tx.cookie == cookie)
txd = p->txd_done;
else if (p->txd_load && p->txd_load->vd.tx.cookie == cookie)
txd = p->txd_load;
else
txd = NULL;
ret = c->status;
if (txd) {
dma_addr_t addr = sa11x0_dma_pos(p);
unsigned i;
dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
for (i = 0; i < txd->sglen; i++) {
dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
i, txd->sg[i].addr, txd->sg[i].len);
if (addr >= txd->sg[i].addr &&
addr < txd->sg[i].addr + txd->sg[i].len) {
unsigned len;
len = txd->sg[i].len -
(addr - txd->sg[i].addr);
dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
i, len);
bytes += len;
i++;
break;
}
}
for (; i < txd->sglen; i++) {
dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
i, txd->sg[i].addr, txd->sg[i].len);
bytes += txd->sg[i].len;
}
}
state->residue = bytes;
}
spin_unlock_irqrestore(&c->vc.lock, flags);
dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", state->residue);
return ret;
}
/*
* Move pending txds to the issued list, and re-init pending list.
* If not already pending, add this channel to the list of pending
* channels and trigger the tasklet to run.
*/
static void sa11x0_dma_issue_pending(struct dma_chan *chan)
{
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
if (vchan_issue_pending(&c->vc)) {
if (!c->phy) {
spin_lock(&d->lock);
if (list_empty(&c->node)) {
list_add_tail(&c->node, &d->chan_pending);
tasklet_schedule(&d->task);
dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
}
spin_unlock(&d->lock);
}
} else
dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
spin_unlock_irqrestore(&c->vc.lock, flags);
}
static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
enum dma_transfer_direction dir, unsigned long flags, void *context)
{
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_desc *txd;
struct scatterlist *sgent;
unsigned i, j = sglen;
size_t size = 0;
/* SA11x0 channels can only operate in their native direction */
if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
&c->vc, c->ddar, dir);
return NULL;
}
/* Do not allow zero-sized txds */
if (sglen == 0)
return NULL;
for_each_sg(sg, sgent, sglen, i) {
dma_addr_t addr = sg_dma_address(sgent);
unsigned int len = sg_dma_len(sgent);
if (len > DMA_MAX_SIZE)
j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
if (addr & DMA_ALIGN) {
dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
&c->vc, addr);
return NULL;
}
}
txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
if (!txd) {
dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
return NULL;
}
j = 0;
for_each_sg(sg, sgent, sglen, i) {
dma_addr_t addr = sg_dma_address(sgent);
unsigned len = sg_dma_len(sgent);
size += len;
do {
unsigned tlen = len;
/*
* Check whether the transfer will fit. If not, try
* to split the transfer up such that we end up with
* equal chunks - but make sure that we preserve the
* alignment. This avoids small segments.
*/
if (tlen > DMA_MAX_SIZE) {
unsigned mult = DIV_ROUND_UP(tlen,
DMA_MAX_SIZE & ~DMA_ALIGN);
tlen = (tlen / mult) & ~DMA_ALIGN;
}
txd->sg[j].addr = addr;
txd->sg[j].len = tlen;
addr += tlen;
len -= tlen;
j++;
} while (len);
}
txd->ddar = c->ddar;
txd->size = size;
txd->sglen = j;
dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
&c->vc, &txd->vd, txd->size, txd->sglen);
return vchan_tx_prep(&c->vc, &txd->vd, flags);
}
static struct dma_async_tx_descriptor *sa11x0_dma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
enum dma_transfer_direction dir, unsigned long flags, void *context)
{
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_desc *txd;
unsigned i, j, k, sglen, sgperiod;
/* SA11x0 channels can only operate in their native direction */
if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
&c->vc, c->ddar, dir);
return NULL;
}
sgperiod = DIV_ROUND_UP(period, DMA_MAX_SIZE & ~DMA_ALIGN);
sglen = size * sgperiod / period;
/* Do not allow zero-sized txds */
if (sglen == 0)
return NULL;
txd = kzalloc(sizeof(*txd) + sglen * sizeof(txd->sg[0]), GFP_ATOMIC);
if (!txd) {
dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
return NULL;
}
for (i = k = 0; i < size / period; i++) {
size_t tlen, len = period;
for (j = 0; j < sgperiod; j++, k++) {
tlen = len;
if (tlen > DMA_MAX_SIZE) {
unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN);
tlen = (tlen / mult) & ~DMA_ALIGN;
}
txd->sg[k].addr = addr;
txd->sg[k].len = tlen;
addr += tlen;
len -= tlen;
}
WARN_ON(len != 0);
}
WARN_ON(k != sglen);
txd->ddar = c->ddar;
txd->size = size;
txd->sglen = sglen;
txd->cyclic = 1;
txd->period = sgperiod;
return vchan_tx_prep(&c->vc, &txd->vd, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
{
u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
dma_addr_t addr;
enum dma_slave_buswidth width;
u32 maxburst;
if (ddar & DDAR_RW) {
addr = cfg->src_addr;
width = cfg->src_addr_width;
maxburst = cfg->src_maxburst;
} else {
addr = cfg->dst_addr;
width = cfg->dst_addr_width;
maxburst = cfg->dst_maxburst;
}
if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
(maxburst != 4 && maxburst != 8))
return -EINVAL;
if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
ddar |= DDAR_DW;
if (maxburst == 8)
ddar |= DDAR_BS;
dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
&c->vc, addr, width, maxburst);
c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
return 0;
}
static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
struct sa11x0_dma_phy *p;
LIST_HEAD(head);
unsigned long flags;
int ret;
switch (cmd) {
case DMA_SLAVE_CONFIG:
return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
case DMA_TERMINATE_ALL:
dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
/* Clear the tx descriptor lists */
spin_lock_irqsave(&c->vc.lock, flags);
vchan_get_all_descriptors(&c->vc, &head);
p = c->phy;
if (p) {
dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
/* vchan is assigned to a pchan - stop the channel */
writel(DCSR_RUN | DCSR_IE |
DCSR_STRTA | DCSR_DONEA |
DCSR_STRTB | DCSR_DONEB,
p->base + DMA_DCSR_C);
if (p->txd_load) {
if (p->txd_load != p->txd_done)
list_add_tail(&p->txd_load->vd.node, &head);
p->txd_load = NULL;
}
if (p->txd_done) {
list_add_tail(&p->txd_done->vd.node, &head);
p->txd_done = NULL;
}
c->phy = NULL;
spin_lock(&d->lock);
p->vchan = NULL;
spin_unlock(&d->lock);
tasklet_schedule(&d->task);
}
spin_unlock_irqrestore(&c->vc.lock, flags);
vchan_dma_desc_free_list(&c->vc, &head);
ret = 0;
break;
case DMA_PAUSE:
dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
spin_lock_irqsave(&c->vc.lock, flags);
if (c->status == DMA_IN_PROGRESS) {
c->status = DMA_PAUSED;
p = c->phy;
if (p) {
writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
} else {
spin_lock(&d->lock);
list_del_init(&c->node);
spin_unlock(&d->lock);
}
}
spin_unlock_irqrestore(&c->vc.lock, flags);
ret = 0;
break;
case DMA_RESUME:
dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
spin_lock_irqsave(&c->vc.lock, flags);
if (c->status == DMA_PAUSED) {
c->status = DMA_IN_PROGRESS;
p = c->phy;
if (p) {
writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
} else if (!list_empty(&c->vc.desc_issued)) {
spin_lock(&d->lock);
list_add_tail(&c->node, &d->chan_pending);
spin_unlock(&d->lock);
}
}
spin_unlock_irqrestore(&c->vc.lock, flags);
ret = 0;
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
struct sa11x0_dma_channel_desc {
u32 ddar;
const char *name;
};
#define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
static const struct sa11x0_dma_channel_desc chan_desc[] = {
CD(Ser0UDCTr, 0),
CD(Ser0UDCRc, DDAR_RW),
CD(Ser1SDLCTr, 0),
CD(Ser1SDLCRc, DDAR_RW),
CD(Ser1UARTTr, 0),
CD(Ser1UARTRc, DDAR_RW),
CD(Ser2ICPTr, 0),
CD(Ser2ICPRc, DDAR_RW),
CD(Ser3UARTTr, 0),
CD(Ser3UARTRc, DDAR_RW),
CD(Ser4MCP0Tr, 0),
CD(Ser4MCP0Rc, DDAR_RW),
CD(Ser4MCP1Tr, 0),
CD(Ser4MCP1Rc, DDAR_RW),
CD(Ser4SSPTr, 0),
CD(Ser4SSPRc, DDAR_RW),
};
static int sa11x0_dma_init_dmadev(struct dma_device *dmadev,
struct device *dev)
{
unsigned i;
dmadev->chancnt = ARRAY_SIZE(chan_desc);
INIT_LIST_HEAD(&dmadev->channels);
dmadev->dev = dev;
dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
dmadev->device_control = sa11x0_dma_control;
dmadev->device_tx_status = sa11x0_dma_tx_status;
dmadev->device_issue_pending = sa11x0_dma_issue_pending;
for (i = 0; i < dmadev->chancnt; i++) {
struct sa11x0_dma_chan *c;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c) {
dev_err(dev, "no memory for channel %u\n", i);
return -ENOMEM;
}
c->status = DMA_IN_PROGRESS;
c->ddar = chan_desc[i].ddar;
c->name = chan_desc[i].name;
INIT_LIST_HEAD(&c->node);
c->vc.desc_free = sa11x0_dma_free_desc;
vchan_init(&c->vc, dmadev);
}
return dma_async_device_register(dmadev);
}
static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
void *data)
{
int irq = platform_get_irq(pdev, nr);
if (irq <= 0)
return -ENXIO;
return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
}
static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
void *data)
{
int irq = platform_get_irq(pdev, nr);
if (irq > 0)
free_irq(irq, data);
}
static void sa11x0_dma_free_channels(struct dma_device *dmadev)
{
struct sa11x0_dma_chan *c, *cn;
list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) {
list_del(&c->vc.chan.device_node);
tasklet_kill(&c->vc.task);
kfree(c);
}
}
static int sa11x0_dma_probe(struct platform_device *pdev)
{
struct sa11x0_dma_dev *d;
struct resource *res;
unsigned i;
int ret;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENXIO;
d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d) {
ret = -ENOMEM;
goto err_alloc;
}
spin_lock_init(&d->lock);
INIT_LIST_HEAD(&d->chan_pending);
d->base = ioremap(res->start, resource_size(res));
if (!d->base) {
ret = -ENOMEM;
goto err_ioremap;
}
tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
for (i = 0; i < NR_PHY_CHAN; i++) {
struct sa11x0_dma_phy *p = &d->phy[i];
p->dev = d;
p->num = i;
p->base = d->base + i * DMA_SIZE;
writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
p->base + DMA_DCSR_C);
writel_relaxed(0, p->base + DMA_DDAR);
ret = sa11x0_dma_request_irq(pdev, i, p);
if (ret) {
while (i) {
i--;
sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
}
goto err_irq;
}
}
dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
dma_cap_set(DMA_CYCLIC, d->slave.cap_mask);
d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
d->slave.device_prep_dma_cyclic = sa11x0_dma_prep_dma_cyclic;
ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
if (ret) {
dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
ret);
goto err_slave_reg;
}
platform_set_drvdata(pdev, d);
return 0;
err_slave_reg:
sa11x0_dma_free_channels(&d->slave);
for (i = 0; i < NR_PHY_CHAN; i++)
sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
err_irq:
tasklet_kill(&d->task);
iounmap(d->base);
err_ioremap:
kfree(d);
err_alloc:
return ret;
}
static int sa11x0_dma_remove(struct platform_device *pdev)
{
struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
unsigned pch;
dma_async_device_unregister(&d->slave);
sa11x0_dma_free_channels(&d->slave);
for (pch = 0; pch < NR_PHY_CHAN; pch++)
sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
tasklet_kill(&d->task);
iounmap(d->base);
kfree(d);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sa11x0_dma_suspend(struct device *dev)
{
struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
unsigned pch;
for (pch = 0; pch < NR_PHY_CHAN; pch++) {
struct sa11x0_dma_phy *p = &d->phy[pch];
u32 dcsr, saved_dcsr;
dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
if (dcsr & DCSR_RUN) {
writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
dcsr = readl_relaxed(p->base + DMA_DCSR_R);
}
saved_dcsr &= DCSR_RUN | DCSR_IE;
if (dcsr & DCSR_BIU) {
p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
(dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
} else {
p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
}
p->dcsr = saved_dcsr;
writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
}
return 0;
}
static int sa11x0_dma_resume(struct device *dev)
{
struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
unsigned pch;
for (pch = 0; pch < NR_PHY_CHAN; pch++) {
struct sa11x0_dma_phy *p = &d->phy[pch];
struct sa11x0_dma_desc *txd = NULL;
u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
if (p->txd_done)
txd = p->txd_done;
else if (p->txd_load)
txd = p->txd_load;
if (!txd)
continue;
writel_relaxed(txd->ddar, p->base + DMA_DDAR);
writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
}
return 0;
}
#endif
static const struct dev_pm_ops sa11x0_dma_pm_ops = {
.suspend_noirq = sa11x0_dma_suspend,
.resume_noirq = sa11x0_dma_resume,
.freeze_noirq = sa11x0_dma_suspend,
.thaw_noirq = sa11x0_dma_resume,
.poweroff_noirq = sa11x0_dma_suspend,
.restore_noirq = sa11x0_dma_resume,
};
static struct platform_driver sa11x0_dma_driver = {
.driver = {
.name = "sa11x0-dma",
.owner = THIS_MODULE,
.pm = &sa11x0_dma_pm_ops,
},
.probe = sa11x0_dma_probe,
.remove = sa11x0_dma_remove,
};
bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
{
if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
const char *p = param;
return !strcmp(c->name, p);
}
return false;
}
EXPORT_SYMBOL(sa11x0_dma_filter_fn);
static int __init sa11x0_dma_init(void)
{
return platform_driver_register(&sa11x0_dma_driver);
}
subsys_initcall(sa11x0_dma_init);
static void __exit sa11x0_dma_exit(void)
{
platform_driver_unregister(&sa11x0_dma_driver);
}
module_exit(sa11x0_dma_exit);
MODULE_AUTHOR("Russell King");
MODULE_DESCRIPTION("SA-11x0 DMA driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:sa11x0-dma");